Appendix I Air Impact Study for Guam and CNMI Military Relocation EIS

- 1. Air Impact Study and Calculations
- 2. Mobile Source Air Toxic Analysis

This Page Intentionally Left Blank.

Appendix I

Air Impact Study For Guam and CNMI Military Relocation EIS This Page Intentionally Left Blank.

Appendix I

Air Impact Study For Guam and CNMI Military Relocation EIS This Page Intentionally Left Blank.

Executive Summary

This air impact study discusses the air impacts in relation to the Guam and Commonwealth of the Northern Marianas (CNMI) Military Relocation Environmental Impact Statement (EIS) (U.S. Navy and Joint Guam Program Office). Only portions of the air impact study that are relevant to the Final EIS are included in this appendix.

The overall proposed action includes components involving the U.S. Marine Corps (Marine Corps or Marines), the Navy, and the U.S. Army [Army]. The three main components of the proposed action are briefly stated as follows:

- Marine Corps. (a) Develop and construct facilities and infrastructure within Guam and the CNMI to meet the Marine Corps' living, training, and readiness requirements. (b) Relocate approximately 8,600 Marines and their 9,000 dependents from Okinawa to the Mariana Islands (Marianas) while concurrently increasing the civilian support workforce by approximately 1,700. (c) Conduct and support training and operations for the relocated Marines.
- 2. *Navy*. Construct a new deep-draft wharf with shoreside infrastructure improvements creating the capability to support a transient nuclear aircraft carrier and carrier strike group (CSG) in Apra Harbor, Guam.
- 3. *Army*. (a) Develop facilities and infrastructure on Guam to allow an Army AMDTF to protect Guam from potential ballistic missile attacks. (b) Relocate approximately 600 military personnel, 900 dependents, and 100 civilian support workforce to Guam.

The locations of Guam and CNMI are shown in Figure ES-1.

Potential air impacts on Guam would occur from construction and operational activities associated with the project alternatives that are being evaluated for the proposed development on and around Guam.

Air quality can be affected by air pollutants produced by mobile sources, such as vehicular traffic, aircraft, or non-road equipment used for construction activities and by fixed or immobile facilities, referred to as "stationary sources." Stationary sources can include combustion and industrial stacks and exhaust vents.

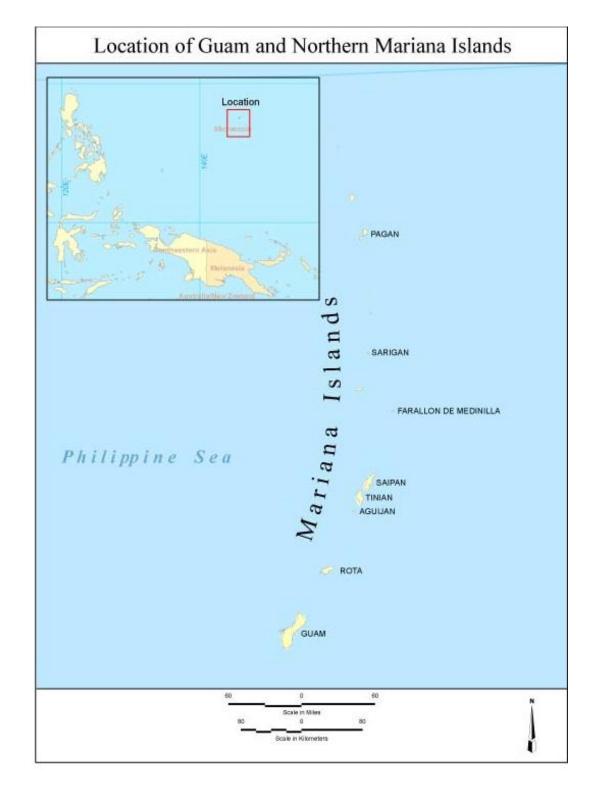


Figure ES-1: Locations of Guam and CNMI

MAJOR STATIONARY SOURCES

Power

• *Basic Alternative 1 (Preferred Alternative).* Basic Alternative 1 would recondition up to 5 existing combustion turbines and upgrade T&D systems and would not require new construction or enlargement of the existing footprint of the facilities. These reconditioned units would have the necessary reliability to serve as reserve capacity to ensure reliable operation of the IWPS. They would serve as peaking and reserve units. This work would be undertaken by the GPA on its existing permitted facilities, and potentially utilize a private entity (PE) to obtain funds, recondition the CTs, install the T&D upgrades, and operate the CTs for a fee to enable repayment of the financing. Reconditioning would be made to existing permitted facilities at the Marbo, Yigo, Dededo, and Macheche combustion turbines. These combustion turbines are not currently being used up to permit limits. T&D system upgrades would be on existing above ground and underground transmission lines. This alternative supports Main Cantonment Alternatives 1 and 2 and Main Cantonment Alternatives 3 and 8 would require additional upgrades to the T&D system.

MINOR STATIONARY SOURCES

Wastewater

- Basic Alternative 1 (Alternative 1a supports Main Cantonment Alternatives 1 and 2; and Alternative 1b supports Main Cantonment Alternatives 3 and 8) combines upgrade to the existing primary treatment facilities and expansion to secondary treatment at the Northern District Wastewater Treatment Plant (NDWWTP). The difference between Alternatives 1a and 1b is a requirement for a new sewer line from Barrigada housing to NDWWTP for Alternative 1b.
- *Long-Term Alternative 1.* Construct a new DoD only stand alone secondary treatment facility on DoD land at Finegayan including a new outfall in support of all main cantonment alternatives.

Solid Waste

• The Preferred Alternative for solid waste would be the continued use of Navy Landfill at Apra Harbor until Layon Landfill is opened, which is scheduled for July 2011. In July 2011, DoD would use GovGuam's Layon Landfill for disposal of municipal solid waste as set forth in the letter of intent (see Appendix C).

MOBILE SOURCES

Mobile sources are covered by four alternatives for the location of the cantonment area functions and family housing/community support functions.

- Alternative 1. Represents one contiguous location for cantonment area functions and family housing/community support functions. It would include portions of Naval Computer and Telecommunications Station (NCTS) Finegayan and South Finegayan, as well as acquisition or long-term leasing of non-DoD lands at the former Federal Aviation Administration (FAA) parcel and the Harmon Annex parcel. A portion of the development would be constructed in the undeveloped overlay refuge.
- Alternative 2. Represents one contiguous land area for the cantonment and family housing /community support functions. It would include portions of NCTS Finegayan, portions of South Finegayan, and the acquisition or long-term leasing of portions of privately-held lands in the former FAA parcel. A portion of the development would be constructed in the undeveloped overlay refuge.

- Alternative 3. Plans for the main cantonment to include portions of NCTS Finegayan, and housing would be located on three geographically separated DoD parcels, including South Finegayan, Air Force Barrigada, and Navy Barrigada. No privately held lands would be acquired. Housing would be located non-contiguous to the main cantonment functions and a portion of the main cantonment would be constructed in the undeveloped overlay refuge.
- Alternative 8. would include portions of NCTS Finegayan, a portion of South Finegayan, the former FAA parcel, and a portion of the housing would be located on the geographically separated Air Force Barrigada parcel. A portion of privately held lands would be acquired by purchase or long-term lease. A portion of the main cantonment would be constructed in the undeveloped overlay refuge and a portion of the required housing would be non-contiguous to the Main Cantonment Area.

CONSTRUCTION ACTIVITY EMISSIONS

- Construction-related emissions were estimated for each alternative based on information specific to construction activities associated with different components of the proposed action. Because no specific information regarding sizes or types of construction is provided in the case of certain components, a series of construction prototypes was developed to represent these components.
- Estimates of the operational emissions from construction equipment were developed based on the estimated hours of equipment use and the emission factors for each type of equipment. An actual running time factor (i.e., actual usage factor) was employed to determine actual equipment usage hours for the purpose of estimating equipment emissions.
- Emission factors related to construction-associated delivery trucks, truck and commuting vehicles, and asphalt curing-related VOC emissions were also calculated.

REGIONAL EMISSIONS UNDER PREFERRED ALTERNATIVES

The greatest impact to air quality resources would occur if all of the proposed actions were implemented concurrently. Impacts on air quality were evaluated for each individual region of influence (ROI). As construction activities would occur prior to operational activities, it was assumed that all of the proposed construction actions are occurring at the same time and that all operational activity will commence upon completion of construction. The potential scenario, a consideration of the preferred alternative from each individual component of the proposed action, is addressed to provide a summary assessment of potential impacts associated with the overall proposed action.

Preferred Alternatives

Each component of the overall proposed action has separate alternatives. A preferred alternative has not been identified for the overall proposed action at this time, but each individual component of the proposed action is assumed to have a preferred alternative in order to facilitate this summary analysis. The alternatives to be addressed in the analysis of preferred alternatives are as follows; however, it should be noted that this study does not contain details of all components of the overall proposed action (see EIS for further details):

- Volume 2, Marine Corps Guam: Alternative 2
- Volume 3, Marine Corps Tinian: Alternative 1
- Volume 4, Aircraft Carrier Berthing: Alternative 1
- Volume 5, Army AMDTF: Alternative 1
- Volume 6, Related Actions:

- Power: Basic Alternative 1 (Preferred Alternative)
- Potable Water: Basic Alternative 1 (Preferred Alternative)
- Wastewater: Basic Alternative 1a (Preferred Alternative) and 1b
- Solid Waste: Basic Alternative 1 (Preferred Alternative)
- Roadway Projects: Alternative 2 (Preferred Alternative)

CAA GENERAL CONFORMITY APPLICABILITY ANALYSIS

The 1990 amendments to the CAA (CAAA) require federal agencies to ensure that their actions conform to the State Implementation Plan (SIP) in a nonattainment area. As the proposed action would potentially involve activities in Piti and Tanguisson sulfur dioxide (SO₂) nonattainment areas, the General Conformity Rule (GCR) applies to the proposed activities within the nonattainment areas. Therefore, a subsequent general conformity applicability analysis is required.

The *de minimis* level established by USEPA applicable to the two non-attainment areas on Guam, Piti and Tanguisson, is 100 TPY of SO₂. If the total direct and indirect emissions of a pollutant are above the *de minimis* level, a formal general conformity determination is required for that pollutant. The net increase in SO₂ emissions with potential to emit from the proposed action within the two SO₂ nonattainment areas was predicted for operational and construction activities with potential to occur. Annual SO₂ emissions from the Guam Military Relocation under the preferred alternatives would not exceed the *de minimis* criterion of 100 TPY of SO₂ in both the Tanguisson and the Piti nonattainment areas and a formal conformity determination is not required.

SUMMARY

The air quality analyses conducted in this study and summarized in Table ES-1 indicate that emissions from the categories and alternatives discussed above would range from less than significant impacts to significant mitigable to less than significant impacts. Alternatives with significant mitigable to less than significant impacts be implemented if those alternatives were selected.

Table ES-1: Summary of Air Quality Impacts

Category/Alternative	Significance Level	Mitigation/Comments
Major Stationary Sources		
Power Basic Alternative 1 (Preferred Alternative)	LSI	
Minor Stationary Sources		
Wastewater Basic Alternative 1a and 1b (Preferred Alternative)	LSI	
Wastewater Long-Term Alternative 1	SI-M	Refers only to odor impacts.
Solid Waste Basic Alternative 1 (Preferred Alternative)	LSI	
Mobile Sources		
Alternative 1	LSI	
Alternative 2 (Preferred Alternative)	LSI	
Alternative 3	LSI	
Alternative 8	LSI	
Construction Activity		
All Alternatives	LSI	Construction impacts for all alternatives for each component resulted in LSI.
Regional Emissions under Preferred Alternatives		
Preferred Alternative	LSI	
CAA General Conformity Applicability under Preferre	d Alternatives	·
Preferred Alternative	LSI	Annual SO ₂ emissions would not exceed the de minimis criterion of 100 TPY.

NI SI SI-M

No impact Significant impact Significant impact mitigable to less than significant.

Contents

Exect	utive Summary	¥		I.i
List c	of Acronyms			I.xx
1.	Introduction			1
2.	Air Quality S	tandards	s and Regulations	3
	2.1 2.2 2.3 2.4	Attainn Clean A	al Ambient Air Quality Standards nent Status and Area Classification Air Act General Conformity xics and Mobile Source Air Toxics	3 7 10 11
2.5	Greenhouse (Gas Emis	ssions	12
3.	Air Impact A	nalysis		15
	3.1	-	Sources and Major Stationary Sources Stationary Source Regulations Operating Permits Power Basic Alternative 1 Impact Modeling for Power Plants	15 15 17 17 20
	3.2	Minor 3 3.2.1 3.2.2	Stationary Sources Annual Operational Emissions for Wastewater Treatment Annual Operational Emissions for Solid Waste Disposal	27 28 28
	3.3	Mobile 3.3.1 3.3.2	Sources Aircraft Operational Emissions Aircraft Operational Emissions from Aircraft Carrier	33 34
		3.3.3 3.3.4 3.3.5 3.3.6 3.3.7	Berthing Aircraft Training Emissions Marine Vessel Training Emissions Training Vehicles Emissions On Base Vehicle Operational Emissions Off Base On-road Vehicle Operational Emissions and	42 43 51 55 57
	3.4	Constru 3.4.1 3.4.2 3.4.3 3.4.4	Impact action Activity Emissions Construction Emissions: Marine Corps Relocation – Guan Construction Emissions: Marine Corps Relocation – CNM Construction Emissions: Marine Corps Relocation – Aircraft Carrier Berthing Construction Emissions: Marine Corps Relocation –Army Air and Missile Defense Task	
		3.4.5	Construction Emissions: Marine Corps Relocation – Related Actions/Utilities Projects	152
	3.5	Region	al Emissions under Preferred Alternatives	172
	3.6	3.6.1 3.6.2	General Conformity Applicability Analysis General Conformity Rule Applicability Analysis	177 177 179
	27	3.6.3	Compliance Analysis	194
	3.7	Greenh 3.7.1	ouse Gases and Global Warming Background and Regulatory Framework	196 196

	3.7.2	Proposed Action and Cumulative GHG Impacts	198
4.	REFERENCES		201

LIST OF FIGURES

Figure I.2-1: Guam SO2 Nonattainment Areas	9
Figure I.3-1: Locations of Affected Major Existing EGU Sources on Guam	19
Figure I.3-2: Annual Surface Wind Rose at Guam's International Airport (PGUM) - 2005	22
Figure I.3-3: Guam Power Authority Air Monitoring Stations	26
Figure I.3-4: Projected MSAT Emissions and Traffic Volumes (2000-2020)	65
Figure I.3-5. Main Cantonment Conformity Areas	187

LIST OF TABLES

Table I.2-1: Criteria Pollutants - Sources and Impacts	4
Table I.2-2: National and Guam Ambient Air Quality Standards	8
Table I.3-1: Applicable Major Source and Major Modification Thresholds	16
Table I.3-2: National Ambient Air Quality Standards	16
Table I.3-3: Net Increase in Annual Emissions Above Existing Condition – Basic Alternative 1	18
Table I.3-4: Permitted Condition Short-Term Modeling – GPA Marbo Station	25
Table I.3-5: Permitted Condition Used for Annual Modeling – GPA Marbo Station	25
Table I.3-6: Predicted Criteria Pollutant Concentrations – GPA Marbo Station	27
Table I.3-7: Summary of Potential Air Quality Impacts – Major Sources	27
Table I.3-8: Total Annual Operation Emissions – Basic Alternative 1	30
Table I.3-9: Total Annual Operation Emissions – Basic Alternative 1 / Layon	30
Table I.3-10: Waste Acceptance Rates for Basic Alternative 1 / Layon	31
Table I.3-11: Summary of Potential Air Quality Impacts – Minor Stationary Sources	32
Table I.3-12: Net Emissions for EA-18G	35
Table I.3-13: Net Emissions for F-18AC	36
Table I.3-14: Net Emissions for F-18EF	36
Table I.3-15: Net Emissions for E-2C	37
Table I.3-16: Net Emissions for SK 70 (UH-60A)	37
Table I.3-17: Total Net Emissions for Aircraft Associated with Aircraft Carrier Airwings	38
Table I.3-18 CH-53E Based Addition Aircraft Emissions	38

Table I.3-19: AH-1N Based Addition Aircraft Emissions	39
Table I.3-20: UH-1N Based Addition Aircraft Emissions	39
Table I.3-21: MV-22 Based Additions Aircraft Emissions	40
Table I.3-22: FA-18D Based Additions Aircraft Emissions	41
Table I.3-23: Total Net Emissions for Aircraft Associated with the Based Addition	42
Table I.3-24: Annual Increase in Aircraft Sortie Emissions at Andersen AFB	42
Table I.3-25: Aircraft Carrier Berthing Operational Emissions	42
Table I.3-26: Aviation Training Types	44
Table I.3-27: Estimated Annual Training Sortie Activities at Improved Airfields	45
Table I.3-28: Estimated Annual Training Sortie Activity in Military Flight Corridors, Routes, or Tactical Navigation Area on Guam Based on Minimum Training Requirements	45
Table I.3-29: Estimated Annual Training Sortie Activity at Guam LZ Sites	47
Table I.3-30: Aircraft Training Emissions Rates	48
Table I.3-31: Annual Sortie-Ops by Training Airspace	49
Table I.3-32: Aircraft Training Flight Annual Emissions at Andersen AFB	51
Table I.3-33: Marine Vessel Annual Operational Running Times	53
Table I.3-34: Marine Vessel Training Operational Emissions	54
Table I.3-35: Marine Vessel Training Annual Emissions	55
Table I.3-36: Training Vehicle Operational Exhaust Emissions	56
Table I.3-37: Training Vehicle Fugitive Dust Operational Emissions	58
Table I.3-38: On Base Vehicle Emissions	59
Table I.3-39: On Base Vehicle Annual Emissions within Andersen AFB	60
Table I.3-40: Daily Regional Emission Burdens (TPY) for Alternative 1	64
Table I.3-41: Average Daily Traffic for Major Roadways, Alternative 1	64
Table I.3-42: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, North Region	68
Table I.3-43: Average Daily Traffic for Major Roadways in North Project Section under Alternative 1	er 69
Table I.3-44: Screening Analysis Locations – North, Alternative 1	70
Table I.3-45: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, Alternative 1	71
Table I.3-46: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North Alternative 1	71
Table I.3-47: Estimated Construction Emission Burden – North, Alternative 1	71
Table I.3-48: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, Central Region	72

Table I.3-49: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 1	72
Table I.3-50: Screening Analysis Locations – Central, Alternative 1	73
Table I.3-51: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 1	74
Table I.3-52: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 1	74
Table I.3-53: Estimated Construction Emission Burden – Central, Alternative 1	75
Table I.3-54: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, Apra Harbor	75
Table I.3-55: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 1	76
Table I.3-56: Screening Analysis Locations – Apra Harbor, Alternative 1	76
Table I.3-57: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 1	76
Table I.3-58: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 1	77
Table I.3-59: Estimated Construction Emission Burden – Apra Harbor, Alternative 1	77
Table I.3-60: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, South Region	77
Table I.3-61: Average Daily Traffic for Major Roadways in South Project Section unde Alternative 1	r 78
Table I.3-62: Screening Analysis Locations – South, Alternative 1	78
Table I.3-63: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South, Alternative 1	79
Table I.3-64: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 1	79
Table I.3-65: Estimated Construction Emission Burden – South, Alternative 1	70
Tuble 1.5 05. Estimated Construction Emission Burden South, Themative 1	79
Table I.3-67: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, North Region	79 80
Table I.3-67: Estimated Project Related Impacts Compared to Cancer Risk Threshold	80
Table I.3-67: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, North RegionTable I.3-68: Average Daily Traffic for Major Roadways in North Project Section under	80 r
Table I.3-67: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, North RegionTable I.3-68: Average Daily Traffic for Major Roadways in North Project Section under Alternative 2	80 r 81
 Table I.3-67: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, North Region Table I.3-68: Average Daily Traffic for Major Roadways in North Project Section unde Alternative 2 Table I.3-69: Screening Analysis Locations – North, Alternative 2 Table I.3-70: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, 	80 r 81 82
 Table I.3-67: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, North Region Table I.3-68: Average Daily Traffic for Major Roadways in North Project Section unde Alternative 2 Table I.3-69: Screening Analysis Locations – North, Alternative 2 Table I.3-70: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, Alternative 2 Table I.3-71: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North Region, 	80 r 81 82 82

Table I.3-74: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 2	84
Table I.3-75: Screening Analysis Locations – Central, Alternative 2	84
Table I.3-76: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 2	86
Table I.3-77: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 2	86
Table I.3-78: Estimated Construction Emission Burden – Central, Alternative 2	86
Table I.3-79: Estimated Project Related Impacts Compared to Cancer Risk Thresholdand Hazard Index, Alternative 2 Apra Harbor	87
Table I.3-80: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 2	87
Table I.3-81: Screening Analysis Locations – Apra Harbor, Alternative 2	88
Table I.3-82: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2	88
Table I.3-83: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2	88
Table I.3-84:Estimated Construction Emission Burden – Apra Region, Alternative 2	88
Table I.3-85: Estimated Project Related Impacts Compared to Cancer Risk Thresholdand Hazard Index, Alternative 2, South Region	89
Table I.3-86: Average Daily Traffic for Major Roadways in South Project Section under Alternative 2	r 89
Table I.3-87: Screening Analysis Locations – South, Alternative 2	90
Table I.3-88: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South, Alternative 2	90
Table I.3-89: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 2	90
Table I.3-90: Estimated Construction Emission Burden – South, Alternative 2	91
Table I.3-91: Regional Annual Emission Burdens, Alternative 2 Constrained	92
Table I.3-92: Estimated Project Related Impacts Compared to Cancer Risk Thresholdand Hazard Index, Alternative 2 Constrained, North Region	92
Table I.3-93: Average Daily Traffic for Major Roadways in North Project Section under Alternative 2 Constrained	r 93
Table I.3-94: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, Alternative 2 Constrained	94
Table I.3-95: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North Region, Alternative 2 Constrained	94
Table I.3-96: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2 Constrained, Central Region	94

Table I.3-97: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 2 Constrained	95
Table I.3-98: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 2 Constrained	95
Table I.3-99: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 2 Constrained	96
Table I.3-100: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2 Constrained Apra Harbor	96
Table I.3-101: Average Daily Traffic for Major Roadways in Apra Harbor ProjectSection under Alternative 2 Constrained	97
Table I.3-102: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2 Constrained	97
Table I.3-103: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2 Constrained	97
Table I.3-104: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2 Constrained, South Region	98
Table I.3-105: Average Daily Traffic for Major Roadways in South Project Section under Alternative 2 Constrained	98
Table I.3-106 Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South, Alternative 2 Constrained	99
Table I.3-107: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 2 Constrained	99
Table I.3-108: Daily Regional Emission Burdens (TPY), Alternative 3	100
Table I.3-109: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 3, North Region	100
Table I.3-110: Average Daily Traffic for Major Roadways in North Project Section under Alternative 3	101
Table I.3-111: Screening Analysis Locations – North, Alternative 3	102
Table I.3-112: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, Alternative 3	102
Table I.3-113 Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North, Alternative 3	102
Table I.3-114: Estimated Construction Emission Burden – North, Alternative 3	103
Table I.3-115: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 3, Central Region	103
Table I.3-116: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 3	103
Table I.3-117: Screening Analysis Locations – Central, Alternative 3	104
Table I.3-118: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 3	106

Table I.3-119: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 3	106
Table I.3-120: Estimated Construction Emission Burden – Central, Alternative 3	106
Table I.3-121: Estimated Project Related Impacts Compared to Cancer Risk Thresh and Hazard Index, Alternative 3 Apra Harbor	old 107
Table I.3-122: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 3	107
Table I.3-123: Screening Analysis Locations – Apra Harbor, Alternative 3	108
Table I.3-125: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Har Alternative 3	bor, 108
Table I.3-126: Estimated Construction Emission Burden – Apra Harbor, Alternative	e 3 108
Table I.3-128: Average Daily Traffic for Major Roadways in South Project Section under Alternative 3	109
Table I.3-129: Screening Analysis Locations – South, Alternative 3	110
Table I.3-130: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South, Alternative 3	110
Table I.3-131: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 3	110
Table I.3-132: Estimated Construction Emission Burden – South, Alternative 3	111
Table I.3-134: Estimated Project Related Impacts Compared to Cancer Risk Thresh and Hazard Index, Alternative 8, North Region	old 112
Table I.3-135: Average Daily Traffic for Major Roadways in North Project Section under Alternative 8	112
Table I.3-136: Screening Analysis Locations – North, Alternative 8	113
Table I.3-137: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, Alternative 8	113
Table I.3-138: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North, Alternative 8	114
Table I.3-139: Estimated Construction Emission Burden – North, Alternative 8	114
Table I.3-140: Estimated Project Related Impacts Compared to Cancer Risk Thresh and Hazard Index, Alternative 8, Central Region	old 115
Table I.3-141: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 8	on 115
Table I.3-142: Screening Analysis Locations – Central, Alternative 8	116
Table I.3-143: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 8	117
Table I.3-144: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 8	117
Table I.3-145: Estimated Construction Emission Burden – Central, Alternative 8	117

Table I.3-147: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 8	118
Table I.3-148: Screening Analysis Locations – Apra Harbor, Alternative 8	119
Table I.3-149: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor Alternative 8	; 119
Table I.3-150: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor Alternative 8	:, 119
Table I.3-151:Estimated Construction Emission Burden – Apra Harbor, Alternative 8	120
Table I.3-152: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 8, South Region	1 120
Table I.3-153: Average Daily Traffic for Major Roadways in South Project Section under Alternative 8	121
Table I.3-154: Screening Analysis Locations – South Region, Alternative 8	121
Table I.3-155: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South Regio Alternative 8	n, 121
Table I.3-156: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South Regio Alternative 8	n, 121
Table I.3-157: Estimated Construction Emission Burden – South, Alternative 8	122
Table I.3-158: Marine Corps Construction Equipment Emissions – Airfield / North	132
Table I.3-159: Marine Corps Van & Truck Emissions – Airfield / North	134
Table I.3-160: Marine Corps Pavement Emissions – Airfield / North	134
Table I.3-161: Marine Corps Total Construction Emissions – Airfield / North	134
Table I.3-163: Marine Corps Van & Truck Emissions – Main Cantonment / North and Central	136
Table I.3-164: Marine Corps Pavement Emissions – Main Cantonment / North and Central	136
Table I.3-165: Marine Corps Total Construction Emissions – Main Cantonment / Nort and Central	h 136
Table I.3-167: Marine Corps Van & Truck Emissions – Waterfront / Apra Harbor	140
Table I.3-168: Marine Corps Pavement Emissions – Waterfront / Apra Harbor	140
Table I.3-169: Marine Corps Total Construction Emissions – Waterfront / Apra Harbo	r140
Table I.3-170: Marine Corps Construction Equipment Emissions – Training / South & North	140
Table I.3-171: Marine Corps Van & Truck Emissions – Training / South & North	141
Table I.3-172: Marine Corps Total Construction Emissions – Training / South & North	n 141
Table I.3-174: Guam Military Relocation Truck Emissions - Firing Training Option A Central	A / 142
Table I.3-175: Guam Military Relocation Pavement Emissions - Firing Training Optio A / Central	on 143

Table I.3-176: Guam Military Relocation Total Construction Emissions - Firing Training Option A / Central	143
Table I.3-177: Guam Military Relocation Construction Equipment Emissions - Firing Training Option B / Central	143
Table I.3-178: Guam Military Relocation Van & Truck Emissions - Firing Training Option B / Central	144
Table I.3-179: Guam Military Relocation Pavement Emissions - Firing Training Option B / Central	n 144
Table I.3-180: Guam Military Relocation Total Construction Emissions - Firing Training Option B / Central	145
Table I.3-181: Guam Military Relocation Construction Equipment Emissions - C3 & Non Firing Training / North & Central	145
Table I.3-182: Guam Military Relocation Van & Truck Emissions - C3 & Non Firing Training / North & Central	146
Table I.3-183: Guam Military Relocation Pavement Emissions - C3 & Non Firing Training / North & Central	146
Table I.3-184: Guam Military Relocation Total Construction Emissions - C3 & Non Firing Training / North & Central	146
Table I.3-185: CNMI Construction Equipment Emissions - Alternatives 1 and 2	147
Table I.3-186: CNMI Van & Truck Emissions - Alternatives 1 and 2	148
Table I.3-187: CNMI Pavement Emissions - Alternatives 1 and 2	148
Table I.3-188: CNMI Total Construction Emissions - Alternatives 1 and 2	148
Table I.3-189: Aircraft Carrier Berthing Construction Equipment Emissions – Alternative 1 and Alternative 2 - Apra Harbor	149
Table I.3-191: Aircraft Carrier Berthing Van &Truck Emissions – Alternative 1 and Alternative 2 – Apra Harbor	150
Table I.3-192Aircraft Carrier Berthing (Dredging) Van & Truck Emissions – Alternativ 1 and Alternative 2 – Apra Harbor	/e 151
Table I.3-193: Aircraft Carrier Berthing Pavement Emissions – Alternative 1 and Alternative 2 – Apra Harbor	151
Table I.3-194: Aircraft Carrier Berthing Total Construction Emissions – Alternative 1 and Alternative 2 – Apra Harbor	151
Table I.3-195: AMDTF Construction Equipment Emissions – Alternative 1 - North	152
Table I.3-196: AMDTF Van & Truck Emissions – Alternative 1 - North	153
Table I.3-197: AMDTF Pavement Emissions – Alternative 1 - North	153
Table I.3-198: AMDTF Total Construction Emissions – Alternative 1 - North	153
Table I.3-199: AMDTF Construction Equipment Emissions –Alternative 2 –Central	154
Table I.3-200: AMDTF Van & Truck Emissions – Alternative 2 – Central	155
Table I.3-201: AMDTF Pavement Emissions –Alternative 2 –Central	155

Table I.3-202: AMDTF Total Construction Emissions –Alternative 2 –Central	155
Table I.3-203: AMDTF Construction Equipment Emissions – Alternative 3 - North	156
Table I.3-204: AMDTF Van & Truck Emissions – Alternative 3 - North	157
Table I.3-205: AMDTF Pavement Emissions – Alternative 3 - North	157
Table I.3-206: AMDTF Total Construction Emissions – Alternative 3 - North	157
Table I.3-207: AMDTF Construction Equipment Emissions – Alternative 3 - Central	158
Table I.3-208: AMDTF Van & Truck Emissions – Alternative 3 - Central	158
Table I.3-209: AMDTF Total Construction Emissions – Alternative 3 - Central	159
Table I.3-210: Utilities Construction Equipment Emissions -Power Basic Alternative 1	159
Table I.3-211: Utilities Van & Truck Emissions - Power Basic Alternative 1	160
Table I.3-212: Utilities Total Construction Emissions - Power Basic Alternative 1	160
Table I.3-213: Utilities Construction Equipment Emissions –Potable Basic Water Alternative 1	160
Table I.3-214: Utilities Van & Truck Emissions –Potable Basic Water Alternative 1	161
Table I.3-215: Utilities Total Construction Emissions - Potable Basic Water Alternative 1	e 162
Table I.3-216: Utilities Construction Equipment Emissions – Potable Basic Water Alternative 2	162
Table I.3-217: Utilities Van & Truck Emissions - Potable Basic Water Alternative 2	163
Table I.3-218: Utilities Total Construction Emissions - Potable Basic Water Alternative 2	e 163
Table I.3-219: Utilities Construction Equipment Emissions - Wastewater Basic Alternative 1a and 1b	163
Table I.3-220: Utilities Van & Truck Emissions - Wastewater Basic Alternative 1a and 1b	164
Table I.3-221: Utilities Total Construction Emissions - Wastewater Basic Alternative 1 and 1b	a 164
Table I.3-222: Utilities Construction Equipment Emissions –Solid Waste Basic Alternative 1 / Apra Harbor	164
Table I.3-223: Utilities Van & Truck Emissions –Solid Waste Basic Alternative 1 / Apr Harbor	ra 165
Table I.3-224: Utilities Total Construction Emissions - Solid Waste Basic Alternative 1 / Apra Harbor	165
Table I.3-225: Utilities Construction Equipment Emissions - Solid Waste Basic Alternative 1 / Layon	165
Table I.3-226: Utilities Van & Truck Emissions - Solid Waste Basic Alternative 1 / Layon	166
Table I.3-227: Utilities Total Construction Emissions - Solid Waste Basic Alternative 1 / Layon	166

Table I.3-228: Roadway Projects Estimated Construction Emission Burden – North, Alternative 1	166
Table I.3-229: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 1	167
Table I.3-230: Roadway Projects Estimated Construction Emission Burden – Apra Harbor, Alternative 1	167
Table I.3-231: Roadway Projects Estimated Construction Emission Burden – South, Alternative 1	167
Table I.3-232: Roadway Projects Estimated Construction Emission Burden – North, Alternative 2	167
Table I.3-233: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 2	168
Table I.3-234: Roadway Projects Estimated Construction Emission Burden – Apra Region, Alternative 2	168
Table I.3-235: Roadway Projects Estimated Construction Emission Burden – South, Alternative 2	168
Table I.3-236: Roadway Projects Estimated Construction Emission Burden – North, Alternative 3	169
Table I.3-237: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 3	169
Table I.3-238: Roadway Projects Estimated Construction Emission Burden – Apra Harbor, Alternative 3	169
Table I.3-239: Roadway Projects Estimated Construction Emission Burden – South, Alternative 3	170
Table I.3-240: Roadway Projects Estimated Construction Emission Burden – North, Alternative 8	170
Table I.3-241: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 8	170
Table I.3-242: Roadway Projects Estimated Construction Emission Burden – Apra Harbor, Alternative 8	171
Table I.3-243: Roadway Projects Estimated Construction Emission Burden – South, Alternative 8	171
Table I.3-244: Collective Alternatives for Preferred Alternatives	172
Table I.3-245: Annual Construction Emissions by EIS Volume and ROI – Preferred Alternatives	174
Table I.3-246: Guam Annual Construction Emissions by Volume and ROIs – Preferred Alternatives	1 175
Table I.3-247: Annual Operational Emissions by EIS Volume and ROI – Preferred Alternatives	175
Table I.3-248: Guam Annual Operational Emissions – Preferred Alternatives	176

Table I.3-249: Guam Total Annual Construction and Operational Emissions Combined Preferred Alternatives	1– 176
Table I.3-250: Intersections Analyzed for CO Microscale Impact Analysis – Preferred Alternatives	177
Table I.3-251: De Minimis Emission Levels for Criteria Air Pollutants	179
Table I.3-252: Aircraft Carrier Berthing Operational Emissions in Piti Nonattainment Area	t 181
Table I.3-253: Aviation Training Types	182
Table I.3-254: Estimated Annual Training Sortie Activity in Military Flight Corridors Routes, or Tactical Navigation Area on Guam Based on Minimum Training Requirements	s, 183
Table I.3-255: Estimated Annual Training Sortie Activity at Guam LZ Sites	183
Table I.3-256: Annual Sortie-Ops by Training Airspace within Nonattainment Areas	184
Table I.3-258: On Base Vehicle Emissions within Nonattainment Areas	185
Table I.3-259: On Base Vehicle Annual Emissions within Nonattainment Areas	185
Table I.3-260: Percentage of Main Cantoment Area in Tanguisson Nonattainment Ar	ea192
Table I.3-261: Construction Emissions – Main Cantonment / Tanguisson Area	192
Table I.3-262: Construction Equipment Emissions – Waterfront / Piti	192
Table I.3-263: Van & Truck Emissions - Waterfront / Piti	193
Table I.3-264: Total Construction Emissions - Waterfront / Piti	193
Table I.3-265: Marine Corps Total Construction Emissions – Aircraft Carrier Berthin Alternative 1 / Apra Harbor	ng/ 193
Table I.3-266: Utility Total Construction Emissions - Power Basic Alternative 1 / Tanguisson	193
Table I.3-267: Percentage Within Nonattainment Areas – Potable Basic Water Alternative 1 / Piti & Tanguisson	193
Table I.3-268: Utility Total Construction Emissions – Potable Basic Water Alternativ / Piti & Tanguisson	ve 1 194
Table I.3-269: Utility Total Construction Emissions - Wastewater Basic Alternative 1 and 1b / Tanguisson	la 194
Table I.3-270: Preferred Alternatives SO2 Emissions – Tanguisson (TPY)	194
Table I.3-271: Preferred Alternatives Total Annual SO2 Emissions – Tanguisson (TPY	2) 195
Table I.3-272: Preferred Alternatives SO2 Emissions – Piti (TPY)	195
Table I.3-273: Preferred Alternatives Total Annual SO2 Emissions – Piti (TPY)	195
Table I.3-274: Preferred Alternatives CO2 Emissions Equivalents (TPY)	199

GPA Guam Power Authority gpd gallons per day	
AFB Air Force Base gph gallons per hour	
AFCEEAir Force Center for Engineering and the Environment gpm gallons per minute	
AMDTF Air and Missile Defense Task Force GTR Ground Threat Reaction	
APCR Air Pollution Control Regulations GUI graphical user interface	
APCSRAir Pollution Control Standards and Regulations	
HIE Helicopter Insertion Extraction	
BACT Best Available Control Technology HMMV High Mobility Multipurpose Vehicle	
BMPBest Management Practiceshrhour(s)	
BOMBEXBombing Exercisehphorsepower	
Btu British Thermal Units HVAC heating, ventilation, and air-conditioning	
BUMED Bureau of Medicine and Surgery	
in inch(es)	
C3 Command, Control and Communications INRMPIntegrated Natural Resources Management Pla	1
CAA Clean Air Act	
CAAA Clean Air Act Amendment km kilometer(s)	
CAL Confined Area Landing km ² square kilometer(s)	
CEQ Council on Environmental Quality kph kilometers per hour	
CFR Code of Federal Regulations kW kilowatt(s)	
CM cubic meter kW/hr kilowatts per hour	
CCN Command Code Numbers	
CNMICommonwealth of the Northern Mariana Islands L liter	
CO carbon monoxide LAER Lowest Achievable Emission Rate	
CO ₂ carbon dioxide lb pound	
CO ₂ Eq carbon dioxide equivalents LF linear feet	
CY cubic yard LOS level of service	
LNG Liquefied Natural Gas	
DEIS Draft Environmental Impact Statement	
DEG diesel electric generator m meter(s)	
DEM digital elevation model m^2 square meter(s)	
DEQ Department of Environmental Quality m ³ cubic meters()	
DM Defensive Maneuvering M million	
DoD Department of Defense MACG Marine Air Control Group Training	
EG Emission Guidelines mgd million gallons per day	
I I I I I I I I I I I I I I I I I I I	
1	
FAA Federal Aviation Administration MSWLF Municipal Solid Waste Landfill Facility MW megawatts	
e e	
č	
1	int
NEPA National Environmental Policy Act	
gagallonNESHAPs National Emission Standards for HazardousGCAGuam Code AnnotatedAir Pollutants	
GCRGeneral Conformity RuleNEWNet Explosive WeightGEPAGuam Environmental Protection AgencyNMOCnon-methane organic compounds	
$\nabla \mu_{\alpha} = \nabla \mu_{\alpha}$ $\nabla \mu_$	
GISGeographic Information SystemsNO2nitrogen dioxides	

	nitrogen oxides al Oceanic and Atmospheric Administration nal Pollutant Discharge Elimination System New Source Review New Source Performance Standards Northwest Field
O ₃	ozone
OAQPS Offic	e of Air Quality Planning and Standards
O&M	Operations and Maintenance
ODMDS	Ocean Dredged Material Disposal Site
Pb	lead
PGUM	Guam International Airport
PM	particulate matter
ppm	parts per million
ppmv	parts per million by volume
PSD	Prevention of Significant Deterioration
RTA	Range Training Area
SIL SIP SLAMRAAM Surface-Lau Air-to-Air M	nched Advanced Medium-Range
SO ₂	sulfur dioxide
SRTM	Shuttle Radial Topography Mission
TERF	Terrain Flight
THAAD	Terminal High Altitude Area Defense
TPY	tons per year
TSP	total suspended particles
U.S.	United States
USEPA	U.S. Environmental Protection Agency
UTM	Universal Transverse Mercator
VMT	vehicle miles traveled
VOC	Volatile Organic Compound
WGS	World Geodetic System
WWTP	Wastewater Treatment Plant

1. Introduction

This report focuses on air quality issues associated with the proposed United States (U.S.) Marine Corps Relocation to Guam and the Commonwealth of the Northern Mariana Islands (CNMI). The overall proposed action includes components involving the U.S. Marine Corps (Marine Corps or Marines), the U.S. Navy (Navy), and the U.S. Army (Army). The three main components of the proposed action are briefly stated as follows:

- Marine Corps. (a) Develop and construct facilities and infrastructure within Guam and the CNMI to meet the Marine Corps' living, training, and readiness requirements. (b) Relocate approximately 8,600 Marines and their 9,000 dependents from Okinawa to the Mariana Islands (Marianas) while concurrently increasing the civilian support workforce by approximately 1,700. (c) Conduct and support training and operations for the relocated Marines.
- 2. *Navy*. Construct a new deep-draft wharf with shoreside infrastructure improvements creating the capability to support a transient nuclear aircraft carrier and carrier strike group (CSG) in Apra Harbor, Guam.
- 4. *Army*. (a) Develop facilities and infrastructure on Guam to allow an Army AMDTF to protect Guam from potential ballistic missile attacks. (b) Relocate approximately 600 military personnel, 900 dependents, and 100 civilian support workforce to Guam.

Potential air quality effects on Guam would occur from construction and operational activities associated with project alternatives that are being evaluated for the proposed development on and around Guam that are described in detail in the Guam and Commonwealth of the Northern Marianas (CNMI) Military Relocation Environmental Impact Statement (EIS) (U.S. Navy and Joint Guam Program Office). The EIS provides further information on some components of the proposed action that are not discussed in detail in this study. Only portions of the air impact study that are relevant to the Final EIS are included in this appendix. Volumes 2-7 of the EIS discuss the following components of the proposed action:

- Volume 2: Marine Corps Relocation Guam
- Volume 3: Marine Corps Relocation CNMI
- Volume 4: Aircraft Carrier Berthing
- Volume 5: Army Air and Missile Defense Task Force
- Volume 6: Related Actions Utilities and Roadway Projects
- Volume 7: Mitigation, Summary of Impacts, and Cumulative Impacts

Volume 6 in particular uses many of the analyses contained in this study to determine air quality emissions associated with utilities (major and minor stationary sources) and roadway (mobile sources) projects. Construction and operational elements that would generate air quality emissions are included in all volumes of the EIS. Regional emissions under all the preferred alternatives are covered in Volume 7.

Air quality can be affected by air pollutants produced by mobile sources, such as vehicular traffic, aircraft, or non-road equipment used for construction activities, and by fixed or immobile facilities, referred to as "stationary sources." Stationary sources can include combustion and industrial stacks and exhaust vents. This study is organized as follows:

• *Chapter 1:* Introduction. States the purpose of and need for the proposed action and presents the organization of the report.

- *Chapter 2:* Air Quality Standards and Regulations. Discusses U.S. national, Guam, and CNMI air quality standards and regulations and their application to the proposed action.
- *Chapter 3*: Air Impact Analysis. This chapter contains the analyses performed for this study. It is divided into the following sections:
 - Major sources. Summarizes regulations for stationary sources of air emissions and evaluates air quality impacts of major power generation facilities under the power alternative.
 - Minor stationary sources. Evaluates air quality impacts from additional wastewater treatment and solid waste disposal associated with the proposed action under the preferred alternative, including odor impacts from wastewater treatment.
 - Mobile sources. Examines potential air quality impacts associated with mobile sources (e.g., on-road vehicle operations and roadway construction) on a micro-scale (local) and mesoscale (regional) basis.
 - Construction activity emissions. Describes various construction activities associated with different components of the proposed action and how associated air emissions were estimated for components such as buildings, equipment, vehicles, and asphalt curing. Constructions estimates for all parts of the proposed action are referenced.
 - Regional emissions under preferred alternatives. Discusses and provides references to the summary impact to air quality resources if all of the proposed actions were implemented concurrently.
 - CAA general conformity applicability analysis. Describes conformity regulations and how they apply to the proposed action.
- *Chapter 4:* References.

2. Air Quality Standards and Regulations

Air quality can be affected by air pollutants produced by mobile sources, such as vehicular traffic, aircraft, or non-road equipment used for construction activities, and by fixed or immobile facilities, referred to as "stationary sources." Stationary sources can include combustion and industrial stacks and exhaust vents. Potential air quality effects on Guam would occur from construction and operational activities associated with project alternatives that are being evaluated for the proposed development on and around Guam. The proposed action also includes relocation of some United States Marine Corps (Marine Corps) training operations to the CNMI, which are considered separately from Guam due to the geographic distance.

2.1 NATIONAL AMBIENT AIR QUALITY STANDARDS

The U.S. Environmental Protection Agency (USEPA), under the requirements of the 1970 Clean Air Act (CAA), as amended in 1977 and 1990 (Clean Air Act Amendments [CAAA]), has established National Ambient Air Quality Standards (NAAQS) for six contaminants, referred to as criteria pollutants (40 Code of Federal Regulations [CFR] 50). These six criteria pollutants are:

- Carbon monoxide (CO)
- Nitrogen dioxide (NO₂)
- Ozone (O₃), with nitrogen oxides (NO_x) and volatile organic compounds (VOCs) as precursors
- Particulate matter (PM₁₀—less than 10 microns in particle diameter; PM_{2.5}—less than 2.5 microns in particle diameter)
- Lead (Pb)
- Sulfur dioxide (SO₂)

Table I.2-1 presents a description of the criteria pollutants and their effects on public health and welfare.

The NAAQS are comprised of primary and secondary standards. The primary standards were established to protect human public health. Typical sensitive land uses and associated sensitive receptors protected by the primary standards include publicly accessible areas, such as residences, hospitals, libraries, churches, parks, playgrounds, and schools. The secondary standards were established to protect the environment, including plants and animals, from adverse effects associated with pollutants in the ambient air.

The Guam Air Pollution Control Standards and Regulations, under Section 1103.2, contain the Guam Ambient Air Quality Standards (GAAQS), which are equivalent to the NAAQS. Table I. presents the NAAQS and the GAAQS.

The CNMI Air Pollution Control Regulations require compliance with NAAQS and permitting for stationary sources of air emissions. The CNMI Division of Environmental Quality (DEQ) reviews air permit applications and issues air permits for stationary sources.

The air emissions that may result from the proposed action are addressed in this study for all criteria pollutants with the exception of lead. Lead emissions have been reduced significantly over years as a result of federal programs to control vehicle emissions by eliminating the use of lead-containing fuel. Ozone is a regional pollutant which normally is not addressed on a project basis; however, its precursor's emissions (NO_x and VOCs) are quantified in this study.

Table I.2-1: Criteria Pollutants - Sources and Impacts

Pollutants and Their Sources	Health and Environmental Impacts
Ozone (O ₃): a gas composed of three oxygen atoms. It is not usually emitted directly into the air, but is created at ground level by a chemical reaction between oxides of nitrogen (NO _x) and volatile organic compounds (VOC) in the presence of heat and sunlight. Ground-level O ₃ is known as smog. O ₃ has the same chemical structure whether it occurs miles above the earth or at ground level and can have positive or negative effects, depending on its location in the atmosphere. Most O ₃ (about 90%) occurs naturally in the stratosphere approximately 10 to 30 miles above the earth's surface it forms a layer that protects life on earth by absorbing most of the biologically damaging ultraviolet sunlight. In the earth's lower atmosphere, ozone comes into direct contact with living organisms. High levels of ground-level ozone can cause toxic effects, detailed in the adjacent column. VOC + NOx + Heat + Sunlight = O ₃ : Motor vehicle exhaust and industrial emissions, gasoline vapors, and chemical solvents are some of the major sources of NO _x and VOC that help to form O ₃ . Sunlight and hot weather cause ground-level O ₃ to form in harmful concentrations in the air. As a result, it is considered an air pollutant, particularly in summer. Many urban areas tend to have high levels of O ₃ , but even rural areas are also subject to increased O ₃ levels because wind carries O ₃ and associated pollutants hundreds of miles away from their original sources.	 Health Problems: O₃ can irritate lung airways and cause inflammation much like sunburn. Other symptoms include wheezing, coughing, pain when taking a deep breath, and breathing difficulties during exercise or outdoor activities. People with respiratory problems are most vulnerable, but even healthy people that are active outdoors can be affected when O₃ levels are high. Repeated exposure to O₃ pollution for several months may cause permanent lung damage. Anyone who spends time outdoors in the summer is at risk, particularly children and other people who are active outdoors. Even at very low levels, ground-level O₃ triggers a variety of health problems including aggravated asthma, reduced lung capacity, and increased susceptibility to respiratory illnesses like pneumonia and bronchitis. Plant and Ecosystem Damage: Ground-level O₃ interferes with the ability of plants to produce and store food, which makes them more susceptible to disease, insects, and harsh weather. O₃ damages the leaves of trees and other plants, injuring them and impacting the appearance of cities, national parks, and recreation areas. O₃ reduces crop and forest yields and increases plant vulnerability to disease, pests, and harsh weather.
Carbon Monoxide (CO) : a colorless, odorless gas that is formed when carbon in fuel is incompletely burned. It is a component of motor vehicle exhaust, which contributes about 56 % of all CO emissions nationwide. Nonroad engines and vehicles (such as construction equipment and boats) contribute about 22 % of all CO emissions nationwide. Higher levels of CO generally occur in areas with heavy traffic congestion. In cities, 85 to 95 % of all CO emissions may come from motor vehicle exhaust. Other sources of CO emissions include industrial processes (e.g., metals processing and chemical manufacturing), residential wood burning, and natural sources such as forest fires. Woodstoves, gas stoves, cigarette smoke, and unvented gas and kerosene space heaters are sources of CO indoors. The highest levels of CO in the outside air typically occur during the colder months of the year when inversion conditions are more frequent. The air pollution becomes trapped near the ground beneath a layer of warm air.	 Health Problems: CO can cause harmful health effects by reducing oxygen delivery to the body's organs (e.g., heart, brain) and tissues. Cardiovascular Effects – The health threat from lower levels of CO is most serious for those who suffer from heart disease (e.g., clogged arteries, congestive heart failure). For a person with heart disease, a single exposure to CO at low levels may cause chest pain and reduce their ability to exercise; repeated exposures may contribute to other cardiovascular effects. Central Nervous System Effects – Even healthy people can be affected by high levels of CO. People who breathe high levels of CO can develop vision problems, reduced ability to work or learn reduced manual dexterity, and difficulty performing complex tasks. At extremely high levels, CO is poisonous and can cause death. Smog – CO contributes to the formation of smog (ground-level O₃), which can trigger serious respiratory problems.

Pollutants and Their Sources	Health and Environmental Impacts
Sulfur Dioxide (SO ₂): SO ₂ belongs to the family of sulfur oxide gases (SO _x). These gases dissolve easily in water. Sulfur is prevalent in raw materials, including crude oil, coal, and ore that contains common metals like aluminum, copper, zinc, lead, and iron. SO _x gases are formed when fuel containing sulfur, such as coal and oil, is burned, when gasoline is extracted from oil, or when metals are extracted from ore. SO ₂ dissolves in water vapor to form acid, and interacts with other gases and particles in the air to form sulfates and other products that can be harmful to people and their environment.	 SO₂ causes a wide variety of health and environmental impacts because of the way it reacts with other substances in the air. Particularly sensitive groups include people with asthma who are active outdoors, and children, the elderly, and people with heart or lung disease. Health Problems: Respiratory Effects from Gaseous SO₂ – High levels of SO₂ in the air can cause temporary breathing difficulty for people with asthma who are active outdoors. Longer-term exposures to high levels of SO₂ gas and particles cause respiratory illness and aggravate existing heart disease. Respiratory Effects from Sulfate Particles - SO₂ reacts with other chemicals in the air to form tiny sulfate particles. When these are breathed, they gather in the lungs and are associated with increased respiratory symptoms and disease, difficulty in breathing, and premature death. Plant and Ecosystem Damage: Acid Rain - SO₂ and NO_x react with other substances in the air to form acids, which fall to earth as rain, fog, snow, or dry particles. Some may be carried by the wind for hundreds of miles. Plant and Water Damage - Acid rain damages forests and crops, changes the makeup of soil, and makes lakes and streams acidic and unsuitable for fish and other aquatic life. Continued exposure over a long time changes the community of plants and animals in an ecosystem. Visibility Impairment: Haze occurs when light is scattered or absorbed by particles and gases in the air. Sulfate particles are the major cause of reduced visibility in many parts of the United States.
Nitrogen Oxides (NO _x): the generic term for a group of highly reactive gases, all of which contain nitrogen and oxygen in varying amounts. Many of the NO _x are colorless and odorless. However, one common pollutant, NO ₂ , along with particles in the air can often be seen as a reddish-brown layer over many urban areas. NO _x form when fuel is burned at high temperatures, as in a combustion process. The primary sources of NO _x are motor vehicles, electric utilities, and other industrial, commercial, and residential sources that burn fuels.	 Aesthetic Damage: SO₂ accelerates the decay of building materials and paints, including irreplaceable monuments, statues, and sculptures that are part of our cultural heritage NO_x causes a wide variety of health and environmental impacts because of various compounds and derivatives in the family of NO_x, including NO₂, nitric acid, nitrous oxide, nitrates, and nitric oxide. Health Problems: Ground-level O₃ (smog) is formed when NO_x and volatile organic compounds (VOCs) react in the presence of heat and sunlight. Children, people with lung diseases (e.g., asthma), and people who work or exercise outside are susceptible to adverse effects such as damage to lung tissue and reduction in lung function. O₃ can be transported by wind currents and cause health impacts far from original sources. Millions of Americans live in areas that do not meet the health standards for ozone. Particles - NO_x reacts with ammonia, moisture, and other compounds to form nitric acid and related particles. Human health concerns include effects on breathing and the respiratory system, damage to lung tissue, and premature death. Small particles penetrate deeply into sensitive parts of the lungs and can cause or worsen respiratory diseases such as emphysema and bronchitis, and aggravate existing heart disease. Toxic Chemicals - In the air, NO_x reacts readily with common organic chemicals and even O₃, to form a wide variety of toxic products. Examples of these chemicals include the nitrate radical, nitroarenes, and nitrosamines.

Pollutants and Their Sources	Health and Environmental Impacts	
	Plant and Ecosystem Damage:	
	 Acid Rain - NO_x and sulfur dioxide react with other substances in the air to form acids that fall to earth as rain, fog, snow or dry particles, which can be carried by wind for hundreds of miles. Acid rain causes lakes and streams to become acidic and unsuitable for many fish and other aquatic life. 	
	Water Quality Deterioration - Increased nitrogen loading in water bodies, particularly coastal estuaries, upsets the chemical balance of nutrients used by aquatic plants and animals. Additional nitrogen accelerates "eutrophication," which leads to oxygen depletion and reduces fish and shellfish populations.	
	Global Warming - One of the NO _x , nitrous oxide, is a greenhouse gas. It accumulates in the atmosphere with other greenhouse gasses causing a gradual rise in the earth's temperature. This leads to increased risks to human health, a rise in sea level, and other adverse changes to plant and animal habitat.	
	Visibility Impairment:	
	• Nitrate particles and nitrogen dioxide can block the transmission of light, reducing visibility in urban areas and on a regional scale in other areas.	
	Aesthetic Damage:	
	• Acid rain damages cars, buildings and historical monuments.	
Particulates (PM ₁₀ and PM _{2.5}): Particulate matter (PM) is the	Health Problems:	
term for particles found in the air, including dust, dirt, soot, smoke, and liquid droplets. Particles can be suspended in the air for long periods of time. Some particles are large or dark enough	 Many scientific studies have linked breathing PM to a series of significant health problems, including: 	
for long periods of time. Some particles are large or dark enough to be seen as soot or smoke. Others are so small that	 Aggravated asthma. 	
individually they can only be detected with an electron microscope.	 Increases in respiratory symptoms (e.g., coughing; difficult or painful breathing etc.) 	
	 Chronic bronchitis. 	
Some particles are directly emitted into the air. They come from a variety of sources such as cars, trucks, buses, factories,	 Decreased lung function. 	
construction sites, tilled fields, unpaved roads, stone crushing,	 Premature death. 	
and burning of wood. Other particles may be formed in the air from the chemical change of gases. They are indirectly formed when gases from burning fuels react with sunlight and water vapor. These can result from fuel combustion in motor vehicles, at power plants, and in other industrial processes.	Plant and Ecosystem Damage:	
	• Particle matter can be carried over long distances by wind, settling on ground or water. The effects of this atmospheric deposition include:	
	 Contributing to acidification of water bodies. 	
	 Changing the nutrient balance in coastal waters and large river basins. 	
	 Depleting the nutrients in soil. 	
	 Damaging sensitive forests and farm crops. 	
	Visibility impairment:	
	• PM is the major cause of reduced visibility (haze) in parts of the United States.	
	Aesthetic damage:	
	 Soot, a type of PM, stains and damages stone and other materials, including culturally important objects such as monuments and statues. 	

Source: USEPA (August 2003)

2.2 ATTAINMENT STATUS AND AREA CLASSIFICATION

Areas where concentration levels are below the NAAQS for a criteria pollutant are designated as being in "attainment." Areas where a criteria pollutant level equals or exceeds the NAAQS are designated as being in "nonattainment." Based on the severity of the pollution problem, nonattainment areas are categorized as marginal, moderate, serious, severe, or extreme. Where insufficient data exist to determine an area's attainment status, it is designated as either unclassifiable or in attainment.

Components of the proposed action would occur in various locations on Guam. Many of the areas where the actions are proposed are currently designated as attainment areas for all criteria pollutants. There are two areas on Guam that are designated as attainment areas for CO, NO_x , O_3 , PM, and Pb, but are designated as nonattainment areas for SO₂, as follows (Figure I.2-1, Guam SO₂ Nonattainment Areas):

- Piti: Portion of Guam within a 3.5- kilometers (km) (2.2-mile) radius of the Piti Power Plant
- Tanguisson: Portion of Guam within a 3.5-km (2.2-mile) radius of the Tanguisson Power Plant

Pursuant to Section 325(a) of the CAA and a petition submitted by the Governor of Guam on February 11, 1997, the EPA conditionally exempts Guam power plants from certain CAA requirements including using low sulfur fuel requirement. Such low sulfur fuel exemption is also applicable to Guam highway diesel vehicles (USEPA, 2000).

Pollutant and Averaging Time	Primary Standard	Secondary Standard
Carbon Monoxide: 8-Hour Concentration ¹ 1-Hour Concentration ¹	9 ppm (10,000 µg/m³) 35 ppm (40,000 µg/m³)	None
Nitrogen Dioxide: Annual Arithmetic Mean	0.053 ppm (100 µg/m ³)	Same as Primary
Ozone 8-Hour Average ²	0.075 ppm	Same as Primary
Particulate Matter ³ : PM ₁₀ 24-Hour Average ⁴ PM _{2.5} Annual Arithmetic Mean ⁵ 24-Hour Average ⁶	150 μg/m ³ 15 μg/m ³ 35 μg/m ³	Same as Primary Same as Primary Same as Primary
Lead: Quarterly Average Rolling 3-Month Average ⁷	1.5 μg/m³ 0.15 μg/m³	Same as Primary Same as Primary
Sulfur Dioxide: Annual Arithmetic Mean ⁸ 24-Hour Maximum ^{1,8} 3-Hour Maximum ¹ 1-Hour Average ⁹	0.03 ppm 0.14 ppm 0.075 ppm	 0.5 ppm (1,300 µg/m³)

Table I.2-2: National and Guam Ambient Air Quality Standards

Notes: 1. Not to be exceeded more than once a year

2. To attain this standard, the 3-year average of the fourth-highest daily maximum 8-hour average ozone concentrations measured at each monitor within an area over each year must not exceed 0.075 ppm.

3. PM₁₀ - particulate matter diameter of 10 microns or less; PM_{2.5} - particulate matter diameter of 2.5

4. Not to be exceeded more than once per year on average over 3 years.

5. To attain this standard, the 3-year average of the weighted annual mean PM2.5 concentrations from single or multiple community-oriented monitors must not exceed 15.0 μ g/m³.

6. To attain this standard, the 3-year average of the 98th percentile of 24-hour concentrations at each population-oriented monitor within an area must not exceed 35 μ g/m³.

7. Final rule signed October 15, 2008.

8 Revoked on June 2, 2010.

⁹ Standard attained when the 99th percentile of daily highest level over 3 years is below 0.075 ppm.

Sources: 40 CFR 50 and Guam Air Pollution Control Standards and Regulations.

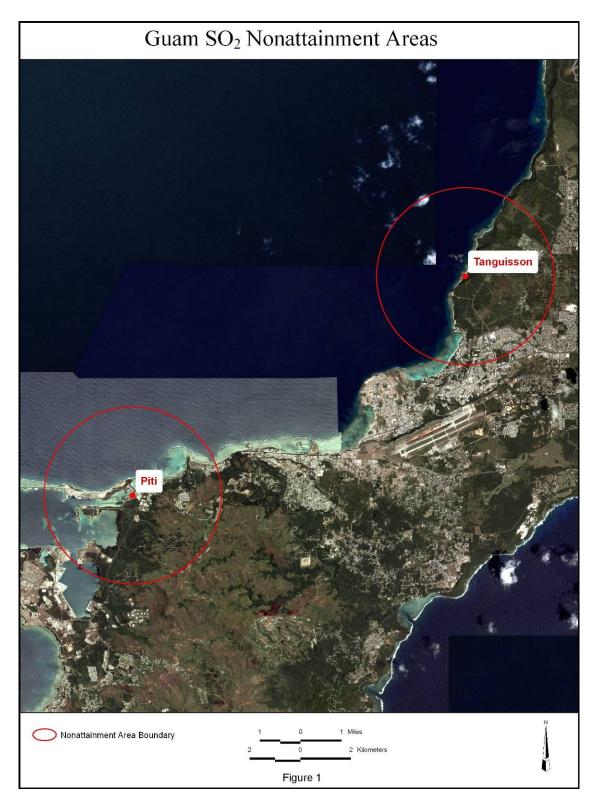


Figure I.2-1: Guam SO2 Nonattainment Areas

Both areas are designated nonattainment for SO_2 as a result of monitored and modeled exceedances in the 1970s. Since that time, changes have been made to these power generation facilities. In accordance with 40 CFR Parts 80 and 86, both plants were rebuilt, upgrading their emission controls in the 1990s. Based on these improvements, Guam has submitted a redesignation request to USEPA. The pending redesignation request shows that the Piti power plant is now in attainment. The Tanguisson power plant is relatively far from sensitive land use areas. In addition, as both plants are located on the western side of the island and the trade winds blow persistently from east-to-west (Volume 2, Section 5.1.1.5), the impact of the SO₂ emissions on the people of Guam from the power plants is reduced. Mobile sources, such as cars, are a minor contributor to SO₂ emissions.

However, on June 3, 2010 USEPA issued a new a final new health standard for SO_2 , setting the one-hour SO_2 health standard at 75 parts per billion (ppb), a level designed to protect against short-term exposures ranging from five minutes to 24 hours. USEPA revokes the previous 24-hour and annual SO_2 health standards. The attainment designation based on the new standard is anticipated to occur in 2012.

On CNMI, except for power generating facilities, there are no significant sources of air emissions resulting from the components of the proposed action on Tinian. However, military training vessels, on-road vehicles, and open burnings are sources of emissions that contribute to the existing ambient air quality background conditions at Tinian. While there are no air monitoring stations on Tinian, it can be assumed that ambient air quality is good and in compliance with air quality standards given the small number of emission sources on the island and that the island is currently designated as an attainment area for all criteria pollutants.

2.3 CLEAN AIR ACT GENERAL CONFORMITY

The 1990 amendments to the CAA require federal agencies to ensure that their actions conform to the appropriate state implementation plan (SIP) in a nonattainment area. The SIP is a plan that provides for implementation, maintenance, and enforcement of the NAAQS, and it includes emission limitations and control measures to attain and maintain the NAAQS. Conformity to a SIP, as defined in the CAA, means conformity to a SIP's purpose of reducing the severity and number of violations of the NAAQS to achieve attainment of such standards. The federal agency responsible for an action is required to determine if its action conforms to the applicable SIP.

The USEPA has developed two sets of conformity regulations, and federal actions are appropriately differentiated into transportation projects and non-transportation-related projects:

- Transportation projects are governed by the "transportation conformity" regulations (40 CFR Parts 51 and 93), which became effective on December 27, 1993 and were revised on August 15, 1997.
- Non-transportation projects are governed by the "general conformity" regulations (40 CFR Parts 6, 51 and 93) described in the final rule for Determining Conformity of General Federal Actions to State or Federal Implementation Plans that was published in the Federal Register on November 30, 1993. The General Conformity Rule (GCR) became effective January 31, 1994 and was revised on March 24, 2010.

As the proposed action is a non-transportation project and would potentially involve activities in the Piti and Tanguisson SO_2 nonattainment areas, the GCR applies to the proposed activities within the nonattainment areas. Therefore, a conformity analysis is required.

2.4 AIR TOXICS AND MOBILE SOURCE AIR TOXICS

In addition to the criteria pollutants, the CAA also lists 188 air toxics, known as hazardous air pollutants (HAPs). Toxic air pollutants include a number of substances that are known or suspected to cause cancer or other health effects in humans when they are exposed to certain levels of the pollutants. The CAA authorizes USEPA to characterize and control emissions of these pollutants. However, unlike the criteria pollutants, the ambient air quality standards have not been established for the majority of the air toxics by USEPA.

For air toxic pollutants, USEPA has identified a group of 21 air toxics as mobile-source air toxics, among which a total of seven air toxics are considered the priority Mobile Source Air Toxics (MSATs). These seven pollutants are: naphthalene, acrolein, benzene, 1-3 butadiene, formaldehyde, polycyclic organic matter (POM) and diesel particulate matter plus diesel exhaust organic gases (DPM+DEOG).

As part of the National Environmental Policy Act (NEPA) process, air toxics require review and evaluation as they could affect the quality of the human environment. The Federal Highway Administration (FHWA) issued an Interim Guidance Update (FWHA 2009) regarding MSAT analysis for NEPA documentation. In this guidance the FHWA developed a tiered approach, which includes the following three levels:

- Tier 1 No analysis for projects with no potential for meaningful MSAT effects. These projects include:
 - Projects qualifying as a categorical exclusion under 23 CFR 771.117(c)
 - Projects exempt under the CAA Conformity Rule under 40 CFR 93.126
 - Other projects with no meaningful impacts on traffic volumes or vehicle mix
- Tier 2 Qualitative analysis for projects with low potential MSAT effects
- Tier 3 Quantitative analysis to differentiate alternatives for projects with higher potential MSAT effects. These projects include:
 - Projects that would create or significantly alter a major intermodal freight facility that has the potential to concentrate high levels of diesel PM in a single location
 - Projects that would create new or add significant capacity to urban highways, such as interstates, urban arterials, or urban collector-distribution routes with traffic volumes where the average annual daily traffic is projected to be in the range of 140,000 to 150,000 vehicles or greater by the design year
 - Projects located in proximity to populated areas or in rural areas, in proximity to concentrations of sensitive populations (i.e., schools, nursing homes, hospitals).

Using this methodology, an initial MSAT analysis for this project indicated that it would have a low potential for MSAT effects (i.e., Tier 2) and would require only a qualitative analysis (Parsons Brinkerhoff 2010).

However, a quantitative MSAT analysis based on the methodology described in the research report "Analyzing, Documenting, and Communicating the Impacts of Mobile Source Air Toxic Emissions in the NEPA Process" prepared for the American Association of State Highway and Transportation Officials (AASHTO) (ICF International 2007) was performed for the EIS given the unusual scale of the proposed relocation as compared to other Navy actions, and to accommodate USEPA's request as part of the NEPA disclosure process. This additional MSAT analysis (Parsons Brinkerhoff 2010) is summarized in Attachment B.

Based on the AASHTO report, a microscale MSAT analysis was performed at the worst-case congested intersections, as requested by USEPA. This analysis consists of:

- Local microscale sites (congested intersections)
- MSAT emission factors estimated using USEPA's Mobile6 program (Input parameters to accurately model MSATs were determined through consultation with FHWA and USEPA)
- CAL3QHC dispersion modeling conducted using maximum potential adverse effect meteorology to estimate 1-hour concentrations of each MSAT, which were then used to estimate acute (short-term) impacts. One-hour values were converted, using conservative traffic and meteorological persistence factors, to annual values in order to estimate annual impacts.
- Additional MSAT analysis also assessed traffic volumes, particularly at intersections, and vehicle-hours for idling heavy duty diesel trucks during peak construction. Diesel particulate matter was not considered because hot-spot modeling of particulate matter is not recommended, per USEPA's 2006 Conformity Rule.

2.5 Greenhouse Gas Emissions

Greenhouse gases (GHGs) are compounds that contribute to the greenhouse effect. The greenhouse effect is a natural phenomenon where gases trap heat within the surface-troposphere (lowest portion of the earth's atmosphere) system, causing heating (radiative forcing) at the surface of the earth. The primary long-lived GHGs directly emitted by human activities are carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). Although CO₂, CH₄, and N₂O occur naturally in the atmosphere, their concentrations have increased by 38, 149, 23 %, respectively, from the preindustrial era (1750) to 2007/2008 (USEPA 2009a). These gases influence the global climate by trapping heat in the atmosphere that would otherwise escape to space. The heating effect from these gases is considered the probable cause of the global warming observed over the last 50 years (USEPA 2009a). Global warming and climate change can affect many aspects of the environment. Not all effects of GHGs are related to climate, for example, elevated concentrations of CO₂ can lead to ocean acidification and stimulate terrestrial plant growth, and CH₄ emissions can contribute to ozone levels.

The USEPA Administrator has recognized potential risks to public health or welfare and on December 7, 2009 (USEPA 2009b) signed an endangerment finding regarding greenhouse gases under Section 202(a) of the Clean Air Act (CAA), which finds that the current and projected concentrations of the six key well-mixed greenhouse gases – CO_2 , CH_4 , N_2O , HFCs, PFCs, and SF_6 in the atmosphere threaten the public health and welfare of current and future generations.

The primary GHG emitted by human activities in the U.S. is CO_2 , representing approximately 85% of total GHG emissions. The largest source of CO2, and of overall GHG emissions, is fossil fuel combustion. CH_4 emissions, which have declined from 1990 levels, result primarily from enteric fermentation (digestion) associated with domestic livestock, decomposition of wastes in landfills, and natural gas systems. Agricultural soil management and mobile source fuel combustion are the major sources of N₂O emissions in the U.S. Because CO_2 emissions comprise approximately more than 85% of GHGs and CO_2 emission factors are readily available for many stationary and mobile sources, this study considers CO_2 as an indicator of GHG emissions. Accordingly, this study provides estimates of CO_2 emissions predicted in a similar way to those predicted for GHG, inclusive of CO_2 , therefore, the predicted GHG emissions levels provided in this study only fulfill National Environmental Policy Act (NEPA) disclosure purposes, whereas predicted criteria pollutant emissions are regulated under the NAAQS.

The USEPA final rule on Mandatory Reporting of Greenhouse Gases (October 30, 2009) applies to fossil fuel suppliers and industrial gas suppliers, direct greenhouse gas emitters and manufacturers of heavyduty and off-road vehicles and engines. Under the rule, suppliers of fossil fuels or industrial greenhouse gases, manufacturers of vehicles and engines, and facilities that emit 25,000 metric TPY of GHG emissions are required to submit annual reports to USEPA. The rule provides various methodologies to estimate CO_2 equivalencies based on fuel test and consumption data, but is essentially designed for specific stationary facility reporting purposes and cannot be directly used to calculate the CO_2 equivalencies of the proposed action. Most of the USEPA tools that are widely used for NEPA study purposes (e.g., AP-42, NONROAD and Mobile6 emissions factor models) do not provide emission factors for CO_2 equivalencies other than CO_2 . Therefore, given the lack of regulatory tools to provide reasonable estimates of CO_2 equivalency, this study utilized the inventory ratios among CO_2 , CH_4 and N_2O summarized in the most recent USEPA inventory report (USEPA 2009c) as the basis to approximately prorate CH_4 and N_2O emission levels.

In 2007, the U.S. generated about 7,150 Tg (million metric tons) CO_2 Eq (USEPA 2009c). This total includes emissions from Guam and Tinian, as after 2002 the United Nations no longer reports energy statistics for Guam separately (Marland et al. 2008) and emissions from Tinian were never reported separately. As the U.S. inventory does not provide a baseline for Guam, using the U.S. baseline condition for a comparison is considered appropriate for current conditions. The most recent year 2007 inventory data (USEPA 2009b) shows that CO_2 , CH_4 and N_2O contributed from fossil fuel combustion process from mobile and stationary sources include approximately:

- 5,736 teragrams (Tg) (or million metric tons) of CO₂.
- 9 Tg CH₄.
- 45 Tg N₂O.

Since the estimates of CO_2 emissions for fossil fuel combustion sources and landfill were estimated in this study, the ratios among CO_2 , CH_4 and N_2O based on above inventory levels were used to further predict CH_4 and N_2O equivalencies from combustion sources:

- $CH_4 = (tons per year [TPY] of CO_2) * (9 / 5,736) = 0.16 \% TPY of CO_2.$
- $N_2O = (TPY \text{ of } CO_2) * (45/5,736) = 0.78 \% TPY \text{ of } CO_2.$

Based on these ratios, the GHG contribution from CH_4 and N_2O is less than 1% of the total CO_2 equivalency for fossil fuel combustion sources. The total CO_2 Eq level was determined by combining CH_4 and N_2O equivalencies with CO_2 emissions. Additionally the Navy landfill resulting CH_4 emission was predicted directly through using the Landfill Gas Emission model (LandGEM) (USEPA 2005) and then further converted to the CO_2 Eq by multiplying CH_4 Global Warming Potential (GWP) value of 21.

This Page Intentionally Left Blank.

3. Air Impact Analysis

The air impact analysis is divided into the following sections:

- Major sources and major stationary sources.
- Minor stationary sources.
- Mobile sources.
- Construction activity emissions.
- Regional emissions under preferred alternatives.
- CAA general conformity applicability analysis.

3.1 MAJOR SOURCES AND MAJOR STATIONARY SOURCES

According to CAA regulations, a facility is considered to be a major stationary source when annual emissions exceed 250 tons per year (TPY) of any criteria pollutants (with the exception of a list of 28 source categories including fossil-fuel-fired steam electric plants with more than 250 British thermal unit per hour heat input for which 100 TPY will apply) in an attainment area or 100 TPY in a nonattainment area. Some existing major stationary sources are associated with the major power generation facilities described in EIS under the following alternatives:

• Major power generation facilities under Basic Alternative 1.

3.1.1 Stationary Source Regulations

Table I.3-1 summarizes the applicable emissions thresholds for air pollutants for a major source and a major source modification. For sources with annual emission levels exceeding the threshold of a major stationary source or major modification of the existing major stationary source, microscale ambient concentration levels from these sources are predicted and compared with the applicable standards and thresholds. The analysis is conducted in accordance with NEPA requirements, and the air permitting requirements describedon Guam's Environmental Protection Agency (GEPA's) Air Pollution Control Standards and Regulations (APCSR) Section 1104.6 (c) (12) (ix) (GEPA 2004) and applicable USEPA regulations on major sources. As noted, a facility is considered to be a major stationary source when annual emissions exceed 250 TPY of any criteria pollutants in an attainment area (with the exception of a list of 28 source categories including fossil-fuel–fired steam electric plants with more than 250 British thermal unit per hour heat input for which 100 TPY will apply) and 100 TPY in a nonattainment area. For an existing major stationary source, the net emission increase of each attainment pollutant that exceeds a specified significant emission increase level is considered to be a major modification that is subject to the provisions of the major modification regulations and New Source Review (NSR) regulations.

Pollutant	Major Source Threshold (TPY)	Major PSD Source Threshold (TPY)	Major Modification Threshold (TPY)
Sulfur dioxide (SO ₂)	100	250/100 ^a	40
Carbon monoxide (CO)	100	250/100 ^a	100
Particulate matter (PM ₁₀) ^b	100	250/100 ^a	15
Particulate matter (PM _{2.5}) ^b	100	250/100 ^a	10
Nitrogen oxide (NOx)	100	250/100 ^a	40
Volatile organic compounds (VOCs)	100	250/100 ^a	40

Table I.3-1: Applicable	Major Source and Major	Modification Thresholds
-------------------------	------------------------	-------------------------

Notes: PSD = Prevention of Significant Deterioration

^a 100 TPY applies to certain sources such as fossil-fuel-fired steam electric plants with more than 250 British thermal unit per hour heat input

^b PM₁₀ is particulate matter with a diameter of 10 microns. PM_{2.5} is particulate matter with a diameter of 2.5 microns. Source: USEPA (40 CFR)

The USEPA also established Prevention of Significant Deterioration (PSD) regulations, last modified under the 1990 CAA Amendments (42 USC §§7470-7479), to ensure that air quality in attainment areas does not significantly deteriorate as a result of construction and operation of major stationary sources, and to allow future industrial growth to occur. New PSD major sources or major modifications to existing PSD major sources that are located in attainment areas are required to obtain a PSD permit prior to initiation of construction. Major new sources or major modifications to existing major sources located in non-attainment areas must meet the more stringent nonattainment NSR requirements as established in both USEPA and GEPA programs.

A PSD major source is classified as a stationary source with the potential to emit 250 TPY of any regulated pollutant in an attainment area. However, for several types of major source operations, including fossil fuel–fired steam electric plants of more than 250 million British thermal units (Btu) per hour heat input, 100 TPY is the PSD major source threshold. For an existing PSD major source, the net emission increase of each attainment pollutant that exceeds a specified significant emission increase level is considered to be a major modification that is subject to the provisions of the PSD regulations and PSD NSR. Table I.3-1 summarizes the applicable emissions thresholds for air pollutants for a PSD major source. Table I.3-2 provides the NAAQS for CO, NO_x , PM_{10} and $PM_{2.5}$ and SO_2 used in the analysis, if necessary.

Pollutant	Averaging Period	$\begin{array}{c} NAAQS\\ (\mu g/m^3) \end{array}$
NO ₂	Annual	100
SO ₂	Annual 24-hour 3-hour	80 365 1,300
PM ₁₀	24-hour	150
PM _{2.5}	Annual 24-hour	15 35
со	8-hour 1-hour	10,000 40,000

Table I.3-2: National Ambient Air Quality Standards

Legend: $\mu g/m^3 = microgram per cubic meter.$

Because Guam has two nonattainment areas for SO_2 , a nonattainment NSR under both USEPA and GEPA programs would be required by the project for SO_2 if an existing source major modification within the SO_2 nonattainment area would occur. However, since the power alternative would not construct a new power facility or modify any of existing GPA facilities within the two SO_2 nonattainment areas, the nonattainment NSR requirement would not apply.

3.1.2 Operating Permits

Stationary sources of air emissions at the various sites that could be affected by the proposed action include combustion turbines, boilers, generators, and fuel tanks. The CAAA set permit rules and emission standards for pollution sources of certain sizes. An air permit application is submitted by the operator of an emitting source in order to obtain approval of the source construction permit. A construction permit generally specifies a time period within which the source must be constructed. Permits should be reviewed for any modifications to the site or the air emissions sources to determine permit applicability. The USEPA oversees the programs that grant stationary source operating permits (Title V) and new or modified major stationary source construction and operation permits (NSR). The New Source Performance Standards (NSPS) apply to sources emitting criteria pollutants, while the National Emission Standards for Hazardous Air Pollutants (NESHAPs) apply to sources emitting hazardous air pollutants (HAPs). HAPs, also known as toxic air pollutants, are chemicals that can cause adverse effects to human health or the environment. The 1990 CAAA directed USEPA to set standards for all major sources of toxic air pollutants. The Title V major source thresholds for pollutant emissions that are applicable to Guam are:

- 100 tons per year (TPY) for any criteria pollutant
- 25 TPY total HAPs
- 10 TPY for any one HAP.

The GEPA has adopted the USEPA-established stationary source regulations and acts as the administrator to enforce these stationary source air pollution control regulations on Guam. This is accomplished by requiring major emission sources and major modifications to employ the best available control technology (BACT) to curb air pollutant emissions (GEPA, Guam Code Annotated [GCA] Chapter 49, Title 10) in attainment areas. Therefore, the GEPA standards and permitting requirements may impose design constraints on modified major stationary sources. Further, the GEPA standards and stationary source regulations in conjunction with USEPA standards and regulations establish the basis for the assessment of the potential impacts on ambient air quality of the modified emission sources.

3.1.3 Power Basic Alternative 1

In 2008, the power requirements for proposed facilities were evaluated under the various planning alternatives (NAVFAC 2008). This study determined the electrical generation capacity needs, evaluated the interconnection options with existing GPA infrastructure, and evaluated alternative energy generation options that are viable on Guam. The air quality modeling for stationary sources assesses the air impacts from the power alternative, considering the specific equipment operating scenario for the alternative. The power alternative evaluated for the proposed action is described as follows:

• *Basic Alternative 1 (Preferred Alternative).* Basic Alternative 1 would recondition up to five existing combustion turbines and upgrade T&D systems and would not require new construction or enlargement of the existing footprint of the facilities. These reconditioned units would have the necessary reliability to serve as reserve capacity to ensure reliable operation of the IWPS. They would serve as peaking and reserve units.

This work would be undertaken by the GPA on its existing permitted facilities, and potentially utilize a private entity (PE) to obtain funds, recondition the CTs, install the T&D upgrades, and operate the CTs for a fee to enable repayment of the financing. Reconditioning would be made to existing permitted facilities at the Marbo, Yigo, Dededo (two CTs), and Macheche combustion turbines. These combustion turbines are not currently being used up to permit limits. T&D system upgrades would be on existing above ground and underground transmission lines. This alternative supports Main Cantonment Alternatives 1 and 2 and Main Cantonment Alternatives 3 and 8 would require additional upgrades to the T&D system.

Potential increases of air emissions, as compared to the actual affected operational conditions of the existing CTs, are anticipated from the proposed action. For NEPA disclosure purposes, the annual emissions above the current actual condition were estimated based on the anticipated total number of hours in power output required at each affected CT under the peaking condition and are summarized in Table I.3-3. The operation of reconditioned CTs (at Marbo, Dededo, Yigo, Macheche) are anticipated to require up to a total of 2,500 hours increase (maximum) from the baseline. The air emission impact analysis calculations assume an average of 500 hours per CT.

Since each affected CT facility is currently operated with the permitted annual emissions levels defined in the Title V permit issued by GEPA on March 2, 2009, the emissions associated with an average of 500 hours above the currently actual emission levels for each CT were prorated based on: 1) the permitted annual emissions levels and 2) the ratio of 500 hours and the permitted annual operating hours. The prorated emissions levels are summarized in Table I.3-3..

	Pollutant						
Affected Source	SO ₂	СО	PM ₁₀	NO_x	VOC	CO_2	HAP
Dededo CT#1	54.5	5.3	5.0	20.8	1.0	7,695.9	0.12
Dededo CT#2	54.5	5.35	5.0	20.8	1.0	7,695.9	0.12
Yigo	31.3	5.5	5.0	14.05	1.0	7,361.3	0.07
Marbo	16.2	5.5	1.6	9.1	2.6	5,353.7	0.08
Macheche	31.3	5.5	5.0	14.0	1.0	7,361.3	0.07
Combined Sources	187.7	26.9	21.5	78.5	6.6	35,468.3	0.46

Table I.3-3: Net Increase in Annual Emissions Above Existing Condition – Basic Alternative 1

It is anticipated that the limited increase in power required under the proposed action would be well below the permitted capacity at each affected CT for which the compliance of any applicable CAA air quality standards should have already been demonstrated during the air permitting process when GPA obtained the air permit for each affected source. Based on record searches, it was found that GPA conducted a health-based NAAQS compliance analysis for the Dededo, Macheche, and Yigo power facilities as listed below:

- PSD Air Quality Impact Analysis for Dededo Facility (R. W. Beck and Associates, June 11, 1992).
- Environmental Impact Assessment for Proposed Macheche Generating Facility (R.W. Beck and Associates, August 1992).
- Environmental Impact Assessment for Proposed Yigo Generating Facility (R.W. Beck and Associates, January 1993).

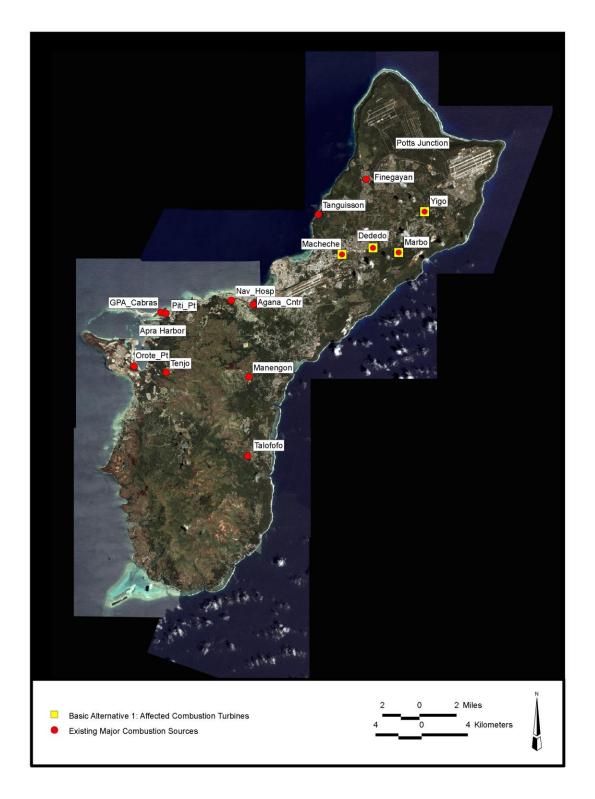


Figure I.3-1: Locations of Affected Major Existing EGU Sources on Guam

According to these documents, the CTs that would be potentially affected by the proposed action in Dededo, Macheche, and Yigo facilities, were modeled operating under the permitted conditions and the results are in compliance with the NAAQS.

However, a health-based NAAQS compliance analysis was not found at this time for the Marbo CT facility. DoD in coordination with GPA conducted an ambient concentration dispersion modeling analysis, using the methodology described below in Section 3.1.4, for the Marbo CT facility operating under its permitted capacity.

3.1.4 Impact Modeling for Power Plants

This section discusses the air quality impacts resulting from the proposed power alternative. The goal of the power plant impact study was to determine whether the proposed reconditioning of the existing CTs would exceed the NAAQS.

3.1.4.1 TECHNICAL APPROACH FOR MODELING

The air quality dispersion modeling was used to estimate air concentrations based on the available information for existing sources. The components of the modeling include, but are not limited to, choice of models and model options, assumptions and caveats regarding the emissions limits established in the affected GPA existing source Title V permit, development of model inputs, and analysis of the modeling results to quantify changes in air emission concentrations resulting from Basic Alternative 1. Air dispersion modeling was conducted for the emissions arising from the combustion of fossil fuels by existing major EGUs that would be utilized under the alternative GPA EGUs. This approach was only used for the Marbo CT, as the results of the GPA-conducted health-based NAAQS compliance analysis for the Dededo, Macheche, and Yigo power facilities described in the previous section were available for these CTs.

The dispersion modeling approach is designed to estimate near-field impacts, defined as within a 50-km (31-mile) transport radius (USEPA 2005), which covers the Region of Influence (ROI) of the proposed alternative. The modeling approach was developed in accordance with the following USEPA guidance:

- Guideline on Air Quality Models (Revised), incorporated as Appendix W of 40 CFR Part 51, Code of Federal Register (FR) Revision to the Guideline on Air Quality Models (USEPA November 2005)
- Draft New Source Review Workshop Manual (USEPA 1990)

The USEPA recommended regulatory dispersion model for near-field applications, American Meteorological Society (AMS)/USEPA Regulatory Model (AERMOD), was used. AERMOD is a steady-state plume dispersion model that simulates transport and dispersion from multiple point, area, or volume sources based on an up-to-date characterization of the atmospheric boundary layer. The model employs hourly sequential pre-processed meteorological data to estimate concentrations for selected averaging times from 1 hour to 1 year.

Because the existing sources to be impacted under the alternative are located inland in areas remote from coastal effects and under the influence of the relatively constant nature of the trade winds, the near-source steady-state regulatory model, AERMOD, is an appropriate tool for estimating air impacts from these sources.

Geography and Climate

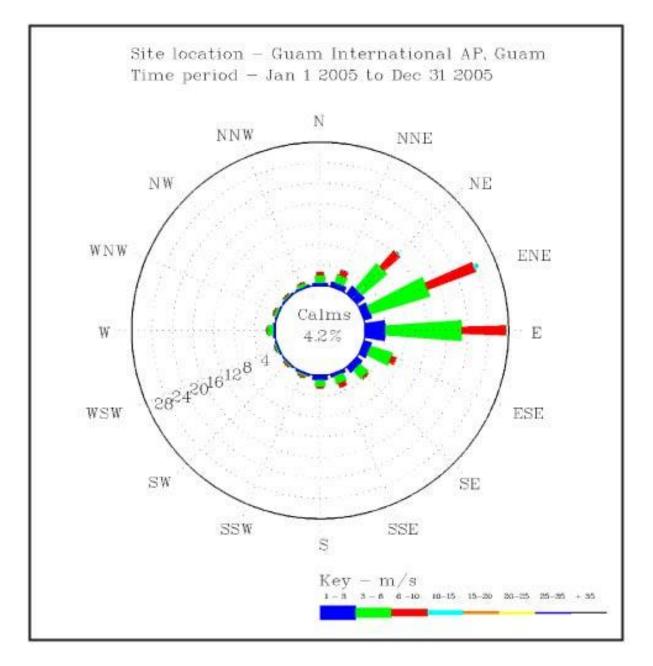
Guam is the largest and southernmost island in the Marianas Archipelago, bounded by the Philippine Sea to the west and the Western Pacific Ocean to the east. The island is divided into a northern coralline limestone plateau and a southern chain of volcanic hills. It is 25 km by 45 km (15.5 miles by 28 miles) and has a population approximately of 176,000 people, with a number of significant population centers concentrated in the central of the island, near areas of interest covered by this study.

The southwestern portion of Guam has a sharp ridge of hills terminating at, the highest point on Guam. The topography is significant enough to often induce rows of cumulus or cumulus-type clouds that align parallel to the low-level wind, downwind of the island. The northern portion of the island has a raised plateau where Andersen Air Force Base (AFB) is located. The terrain of the island in many places rises steeply near the shore.

The climate is characterized as tropical marine. The weather is generally hot and very humid with little seasonal temperature variation. Guam has two seasons, the wet season (July - December) and the dry season (January - June). During the dry season the prevailing winds (trades winds) from the east intensify. Figure I.3-2 (Annual Surface Wind Rose at Guam International Airport (PGUM) – 2005) displays the wind rose from PGUM. The figure illustrates the peak in the trade wind direction (east to northeast). When a cool lake or sea breeze blows inland, it gradually warms through heating and mixing. At the shoreline this layer of cool air is generally rather thin, but as it moves inland the surface heating creates an increasingly thicker layer of well mixed air. When the plume from a power plant near the shore initially enters the atmosphere it experiences relatively stable air in the marine layer or in the air above it. The power plant plume rapidly rises and reaches a constant height above the ground and moves inland. In the stable air the plume initially grows in size at a moderate pace. When the plume encounters the increasing well-mixed layer, an abrupt and rapid mixing occurs, known as fumigation.

Shoreline sea breeze circulations can modify a dominant trade wind from the east northeast on Guam and bluffs along the shoreline can also influence local wind patterns. Onshore wind flow from either the trade winds or from a sea breeze may result in the possibility of shoreline fumigation for the EGUs located along the coast. As all affected existing EGUs under the alternative are all located in inland areas, the use of AERMOD, which assumes that the atmosphere has the same degree of mixing everywhere outside of a building wake, is applicable.

Meteorological Model Input Selection and Preparation


AERMOD meteorological inputs consist of hourly surface observations from the airport over five years (2003 through 2007), and twice-daily upper air soundings collected at the airport (WBAN No. 91212). Data was processed using AERMET software, with surface parameters derived from land use around the PGUM anemometer site (see discussion of land use below.)

Geophysical Data Preparation

Topographic digital elevation model (DEM) data was extracted from the Shuttle Radial Topography Mission (SRTM) database provided by the U.S. Geological Survey USGS at approximately 100 m (328 feet [ft]) resolution. The DEM data was reprojected from longitude – latitude to UTM zone 55 using the WGS-84 datum.

The U.S. Department of Agriculture (USDA) has created a 28 m (92 ft) high resolution ground cover data set for Guam (Liu and Fischer 2000) using satellite imagery, a spectral classification scheme, and an extensive ground level calibration effort. This data set was processed to develop fractional land cover

information for the CALSYSTEM Makegeo Program. USDA land cover categories represent specific landscapes unique to Guam. Twenty-one land cover categories were mapped using a supplied weighting system for a set of reference classes for which values are assigned for roughness, albedo (surface reflectivity of sun's radiation), Bowen ratio (the ratio of sensible heat to latent heat -in arid zones, values are much greater than unity; in humid zones they are much less than unity), and other variables. These values were then averaged for each grid. For each receptor around a typical radial AERMOD extending out to 1 km (0.6 mile) the roughness length, albedo, and Bowen ratio were found and averaged to a 30 degree sector. A single season was used since snow and deciduous tree variations are not present on Guam. The 28 m (92 ft) ground cover classification information was also analyzed to provide a matrix of the land cover by type around PGUM.

Modeling System Configuration

The receptor network that was used for AERMOD modeling is described below along with the AERMOD control input settings and the output concentration metrics that were used to assess the concentrations for existing sources, and the changes in concentrations under Basic Alternative 1.

Receptor Configuration

A common receptor grid was utilized for AERMOD modeling. The grid includes a near source field of receptors around each source, and a coarse grid of receptors extending across the modeling domain.

The near source receptor grids are centered on the major sources that will be utilized under Basic Alternative 1 at Marbo. The polar grid consists of receptors along 36 radials that are spaced at 10 degree arcs (10 through 360 degrees). For each radial, receptors are located at 100 m (328 ft) increments from 100 m to 2,000 m (6,560 ft) from the center of the receptor grid, and at 200 m (656 ft) increments from 2,000 m to 5,000 m (16,400 ft) from the center of the grid. The near field polar grid is overlaid on a rectangle grid which covers the entire island of Guam, with receptors spaced 500 m (1,640 m) apart. The rectangular receptor network is truncated over water.

Development of Source Stack Parameters and Model Emissions

Source information, including emission rates and stack parameters, is discussed for existing sources in the Section 3.1.4.3. For stacks that do not follow good engineering practice (GEP) (e.g. less than 2.5 times highest wake generating building height), the physical height and footprint of nearby buildings were established from available drawings, satellite images, onsite photographs, and information confirmed by the GPA. Stack locations were determined from drawings, satellite images and onsite photographs. Model emission estimates SO₂, NO_x, CO, and PM were based on the emissions limits available from current Title V permits.

Options for AERMOD

AERMOD was run with the rural dispersion option and no dry or wet deposition. The model used stack tip downwash and elevated terrain effects. Predicted concentration averaging times used were:

- 3-hour, 24-hour, and annual for SO₂
- Annual for NO_x
- 1-hour and 8-hour for CO
- 24-hour and annual for PM₁₀
- 24-hour and annual for $PM_{2.5}$. Given the lack of established emission factors, it is conservatively assumed that the $PM_{2.5}$ emission rate is the same as the PM_{10} emission rate for modeling purposes.

3.1.4.2 HISTORICAL MONITORING OBSERVATIONS AND EXISTING BACKGROUND CONDITIONS

The government of Guam has not collected ambient air quality data since 1991. Therefore, no existing ambient air quality data are available to represent current air quality conditions with respect to the criteria pollutants for which the NAAQS were established. Historical data are available from 1972 through 1991, when ambient air quality data were collected at a number of sites through a USEPA-sponsored monitoring program. The monitored pollutants were total suspended particles (TSP), SO₂, NO₂, and nitrogen monoxide (NO). In 1991, PM₁₀ was monitored in addition to TSP.

Prior to 1991, TSP were monitored at 20 sites, SO_2 at 14 sites, NO_2 at five sites, and NO at one site. In 1991, PM_{10} was monitored at four sites. In addition to the historical monitoring identified above, the GPA established a network of five stations to measure SO_2 at locations that are not downwind or close to any major EGUs during normal trade wind conditions from the fall of 1999 through the summer of 2000. Measured data for these monitoring stations, whose locations are shown in Figure I.3-3, indicate that the Apra Heights site has the highest concentrations, occurring in spring. The Dededo site recorded the highest concentrations during the unstable low wind conditions in summer. The Orote Point monitor concentrations were the highest during the fall and winter months. All of the observed SO_2 concentrations were below the 24-hour NAAQS.

Because there are no comprehensive ambient background air quality levels from recent monitoring available for Guam, the existing background air quality conditions around Guam are based on the current ambient air quality attainment status condition applicable for Guam:

- Attainment for all criteria pollutants, except for SO₂.
- Two SO₂ nonattainment areas with a 3.5 km radius around Piti and Tanguisson power plants.

The areas around affected existing sources under the power alternative are in attainment areas. Ambient air quality conditions are expected to be affected by existing stationary source operations and other minor source operations such as vehicular traffic.

Given the lack of existing ambient background levels, the applicable modeling results for each affected CT under its permitted capacity were compared directly with the NAAQS (Table I.3-2) to determine potential impact significance.

3.1.4.3 AFFECTED EXISTING SOURCE EMISSION RATES AND STACK PARAMETERS

Data used for the AERMOD modeling analysis for Marbo CT were based on information available from various sources including air permits and GPA-provided information. To predict NO₂ concentration levels, the USEPA-recommended default conversion factor of 0.75 (40 CFR 51-Appendix W USEPA November 2005) was used to convert predicted NO_x concentration levels to NO₂ concentration levels.

The stack parameters and emissions for Marbo Station Power Plant that were used in the short-term and annual permitted conditions are summarized in Table I.3-4 and Table I.3-5, respectively. Annual emissions were scaled based on permitted 2,654 hours of operation.

Unit	Capacity	Stack Exhaust	Stack	Stack Exit	Stack	Emissions (g/sec)			
Name	MW	Temp. °K	Height m	Velocity m/sec	Diameter m	СО	SO ₂	PM ₁₀	PM _{2.5}
CT-1	16	688	11.8	18.87	3.44	3.6	23.69	1.17	1.17

Table I.3-4: Permitted Condition Short-Term Modeling – GPA Marbo Station

Source: Emissions based on Guam EPA Title V Permit No. FO-009

Table I.3-5: Permitted Condition Used for Annual Modeling – GPA Marbo Station

Unit	Capacity	Stack Exhaust Temp.	Stack Height	Stack Exit Velocity	Stack Diameter	Emissions (g/sec)		
Name	MW	°K	m	m/sec	m	NOx	SO ₂	PM ₁₀
CT-1	16	688	11.8	18.87	3.44	3.75	7.18	0.35

Source: Emissions based on Guam EPA Title V Permit No. FO-009

Figure I.3-3: Guam Power Authority Air Monitoring Stations

3.1.4.4 BASIC ALTERNATIVE 1 CRITERIA POLLUTANT IMPACT ANALYSIS

As indicated previously, health-based NAAQS compliance analyses were completed by GPA for the Dededo, Macheche, and Yigo CT facilities, which demonstrated compliance with the NAAQS. For the Marbo CT facility, a health-based NAAQS compliance analysis was not found at this time; however, this does not indicate that an analysis was not conducted. DoD in coordination with GPA conducted an ambient concentration dispersion modeling analysis using the modeling methodologies described above for the Marbo CT facility under its permitted capacity. The modeling results indicate that the facility is in compliance with the NAAQS. The baseline modeling results for predicted criteria pollutant concentrations at Marbo are summarized in Table I.3-6.

Pollutant	Station Name	Averaging Period	Concentration	Distance (m)	Direction	NAAQS
Poliulani	Name	Penod	(µg/m³)	Distance (m)	Direction	(µg/m ³)
SO ₂	Marbo	3-hour	447.9	99	Ш	1,300
	Marbo	24-hour	145.3	99	E	365
	Marbo	Annual	2.3	301	WSW	80
NO ₂	Marbo	Annual	0.9	301	WSW	100
CO	Marbo	1-hour	92.6	99	Е	40,000
	Marbo	8-hour	57.4	99	Е	10,000
PM ₁₀	Marbo	24-hour	3.1	201	W	150
PM _{2.5}	Marbo	24-hour	1.2	401	WSW	35
	Marbo	Annual	0.1	301	WSW	15

 Table I.3-6: Predicted Criteria Pollutant Concentrations – GPA Marbo Station

Although it is concluded that the operation of affected CTs would not result in a significant health-based air quality impact, whether a major permit modification is required at any of these CTs remain to be determined. There is an ongoing DoD CT study to determine the specific repairs needed to recondition the CTs. Based on the study, if it is determined that Title V modifications (including PSD modifications for PSD sources) are required for one or more of the combustion turbine facilities, then modifications to the respective Title V permits would be obtained prior to the commencement of any reconditioning activities to ensure that potential air quality impact from these affected CTs would not be significant.

Summary of Impacts

Table I.3-7 summarizes the potential air quality impacts associated with Basic Alternative 1 for major sources. Operational activities for Basic Alternative 1 would result in less than significant impacts to air quality resources.

 Table I.3-7: Summary of Potential Air Quality Impacts – Major Sources

	Basic Alternative 1			
Power	LSI			
<i>Legend:</i> LSI = Less than significant impact.				

3.2 MINOR STATIONARY SOURCES

New or modified minor stationary sources that are associated with the utility development include the wastewater treatment plant and the solid waste landfill facility. Air emissions under each of these alternatives were modeled, as described in the following sections.

In addition to the minor stationary sources noted above, the proposed Marine Corps Main Cantonment build-up will require various minor stationary sources such as heating boilers, emergency generators, etc. At this stage, most of these anticipated minor sources are unknown because the proposed action is still in the EIS planning stage. These minor stationary sources are typically of a small scale, and would potentially produce only negligible emissions. As such, operation of these sources is unlikely to require air permitting. However, if an air permit is required for a specific minor source, the permit application will be prepared during the final design stage. Nevertheless, as these sources are identified during the design stage for each proposed facility, these minor stationary source emissions will be quantified to ensure that their operation is in compliance with applicable regulations.

3.2.1 Annual Operational Emissions for Wastewater Treatment

The proposed alternative (Basic Alternatives 1a and 1b) combines upgrade to the existing primary treatment facilities and expansion to secondary treatment at the Northern District Wastewater Treatment Plant (NDWWTP). The difference between Alternatives 1a and 1b is a requirement for a new sewer line from Barrigada housing to NDWWTP for Alternative 1b. Because this alternative would utilize existing primary and secondary treatment facilities within their operational capacity and these facilities consist of only limited combustion sources, it is anticipated that this alternative would not result in significant air quality impacts with respect to criteria pollutants. Although potential odor emissions associated with wastewater treatment would likely increase above the existing level, the odor impact evaluated over the short-term average condition (e.g., one hour) around existing facilities would remain the same and would result in no significant odor impact.

Given the incomplete design data provided for the programmatic long-term alternative, potential air quality impacts resulting from the alternative are not analyzed in this study and, if required, may be addressed in a future NEPA document. However, potential odor emissions from the new long-term wastewater treatment facility are expected to be significant particularly within the neighborhoods located around the new facility, and given the relatively high temperature on Guam. Odor control measures are anticipated to be required for the new facility under the long-term alternative.

3.2.2 Annual Operational Emissions for Solid Waste Disposal

Basic Alternative 1 was evaluated for solid waste disposal, as follows:

The Preferred Alternative for solid waste would be the continued use of Navy Landfill at Apra Harbor until Layon Landfill is opened, which is scheduled for July 2011. Operation of solid waste disposal facilities to handle additional solid waste generated as a result of the Proposed Action would increase air emissions. The USEPA LandGEM model (USEPA December 2005) was used to predict the increase in landfill-associated emissions resulting from the additional solid waste disposal.

3.2.2.1 LANDFILL GAS EMISSIONS MODEL (LANDGEM) AND PREDICTED EMISSIONS

The LandGEM model (Version 3.02) is a screening tool used to estimate emission rates from municipal solid waste landfills of total landfill gas, methane (CH₄), carbon dioxide (CO₂), non-methane organic compounds (NMOC equivalent to non-methane VOC), and individual air pollutants (USEPA May 2005). The model uses a first order decay equation and estimates annual emissions over a period specified by the user. LandGEM provides two sets of default parameters to use if site-specific data are not available and CAA defaults and inventory defaults. The CAA defaults are based on federal regulations pertaining to municipal solid waste (MSW) landfills as specified in the CAA, and may be used to determine whether the proposed landfill would be subject to control requirements associated with the regulations. The inventory defaults are based on emission factors in the USEPA *Compilation of Air Pollution Emission Factors (AP-42)* (USEPA 1995 and after) and may be used to generate emission estimates for use in emission inventories and air permits.

Control requirements could include a gas flare or flare stack to vent and/or burn waste gas resulting from the decomposition of waste. Flaring is a VOC combustion control process in which the VOCs are piped to a remote, usually elevated location, and burned in an open flame in the open air using auxiliary fuel, steam, air, or a specially designed burner tip, to promote mixing for nearly complete (>98%) VOC

destruction. In this evaluation, 98 % destruction efficiency was assumed for VOC including CH_4 and NMOC.

LANDGEM Model Parameters and Data Inputs

The CAA default parameters were used in this analysis to determine whether the proposed landfill would be subject to control requirements associated with the regulations. The CAA defaults incorporate the federal NSPS requirements for new MSW landfills, the federal Emission Guidelines (EG) for existing MSW landfills, and the NESHAP for MSW landfills. The emission estimates generated from the model reflect maximum expected emissions and are used to determine whether a potential landfill would be subject to NSPS/EG and/or NESHAP regulatory controls.

The applicability of the NSPS to a particular landfill is determined in tiers. Landfills under 2.5 million tons (or 2.5 million cubic meters of waste) are not subject to the rule. After the size cutoff, the first tier of the applicability determination is to assess whether estimated emissions of NMOCs exceed a cutoff value of 50 megagrams (Mg), or metric tons, of NMOCs a year (USEPA May 2005). Landfills with emissions exceeding the cutoff value can install emission controls or move to the second tier of the applicability determination, which consists of testing the landfill for landfill gas NMOC concentrations. If testing shows NMOC emissions that exceed 50 Mg of NMOCs/yr, the landfill can choose to install emission controls or move to the third tier of the applicability determination, which is to perform another test to obtain a site-specific methane generation rate constant.

LandGEM relies on four model parameters to estimate landfill emissions, as follows:

- CH_4 generation rate (*k*).
- Potential CH_4 generation capacity (L_o).
- NMOC concentration.
- CH₄ content.

The CH₄ generation rate constant, or *k* value, is a constant that determines the rate of CH₄ generation for the mass of waste in the landfill. The higher the value of *k*, the faster the CH₄ generation rate increases and then decays over time. The value of *k* is a function of: the moisture content of the waste mass; the availability of nutrients for the microorganisms that break down the waste and form CH₄ and CO₂; the pH of the waste mass; and the temperature of the waste mass. The default CAA value is 0.05/ year.

The potential CH₄ generation capacity (L_o) is a constant that represents the potential capacity of a landfill to generate CH₄. This value depends only on the type and composition of waste placed in the landfill. The higher the cellulose content of the waste, the higher the value of *Lo*. The default CAA value is 170 m³/Mg.

The NMOC concentration in landfill gas is a function of the type of waste in the landfill and the extent of the reactions that produce various compounds from the anaerobic decomposition of waste. The default CAA value is 4,000 parts per million by volume (ppmv) as hexane. Finally, in the LandGEM model, emissions resulting from a MSW landfill are estimated to be approximately 50% methane.

The LandGEM model also requires waste acceptance data. Characteristics to be entered in the model include the landfill name, opening date, closure date, design capacity (the total amount of refuse that can be disposed of in the landfill), and the amount of refuse in place in the landfill, or the annual refuse acceptance rate for the landfill.

Under the Basic Alternative for solid waste treatment, solid waste disposal would occur at the Navy Sanitary Landfill at Apra Harbor, until the GovGuam Landfill in Layon is completed. At that time, the solid waste will be diverted to the GovGuam Landfill per the Memorandum of Understanding between the DoD and GovGuam. This action would potentially result in increased NMOC (non-methane VOC), CO_2 , and CH_4 emissions. To estimate this potential increase, the landfill throughput (input) was based on a waste generation rate of 7.4 lbs (3.4 kg) per capita per day. The future additional waste throughput associated with the Basic Alternative was considered to begin in 2010 and the resulting net annual increases in air emissions, shown in Table I.3-8, were predicted up to 2011.

	Pollutant (TPY)						
	Uncontrolled	Controlled	Uncontrolled	Controlled			
Year	NMOC	NMOC	CH_4	CH_4	CO_2		
2011	2.6	NANA	59.9	NANA	164		

Legend: NANA = Not Applicable.

Once the new Layon Landfill is opened, DoD will divert solid waste from the Navy Sanitary Landfill to Layon per the Memorandum of Understanding between the DoD and GovGuam. The new landfill is assumed to open in 2011 and close in 2051 (with 80th year limit and without limit).

The same methodology described above was used to predict the increase in VOC, CO_2 , and CH_4 emissions associated with the added solid waste disposal at the proposed GovGuam landfill beyond 2011. Table I.3-9 summarizes the predicted emissions for each year after the interim period. According to the *Revised Final Report: Guam Solid Waste Utility Study for Proposed Marine Corps Relocation* (HDR/Hawaii Pacific Engineers 2008), a flare system to control VOC emissions would be installed in 2013. Therefore, the controlled VOC including CH_4 component emissions increase shown in Table I.3-9 for 2014 reflects the presence of a flare controlling VOC including CH_4 component emissions with a destruction rate of 98% or greater (USEPA August 2003).

The waste acceptance rates used in the model for the GovGuam option presented in Table I.3-10 are based on the waste generation rate of 7.4 lbs/cy provided in the Guam Solid Waste Utility Study (HDR/Hawaii Pacific Engineers 2008). The model applies the final (or most current) acceptance rate over the baseline entered for 2010 to 2050, the year prior to the estimated closure date.

	Uncontrolled NMOC	Controlled NMOC		Pollutant (TPY)	
			Uncontrolled	Controlled	
Year			CH_4	CH_4	CO_2
2011	2.6	NANA	59.9	NANA	164
2012	9.0	NANA	208.4	NANA	572
2013	18.7	NA	435.5	NA	1195
2014	NA	0.6	NA	13.9	1903
2015	NA	0.9	NA	21.1	2900
2016	NA	1.1	NA	26.7	3665
2017	NA	1.3	NA	29.6	4055
2018	NA	1.3	NA	31.4	4302
2019	NA	1.4	NA	33.1	4537
2020	NA	1.5	NA	34.7	4763
2021	NA	1.6	NA	36.3	4978
2022	NA	1.6	NA	37.8	5182
2023	NA	1.7	NA	39.2	5377
2024	NA	1.7	NA	40.5	5562
2025	NA	1.8	NA	41.8	5738
2026	NA	1.9	NA	43.0	5905

Table I.3-9: Total Annual Operation Emissions – Basic Alternative 1 / Layon

	Uncontrolled NMOC	Controlled NMOC		Pollutant (TPY)	
			Uncontrolled	Controlled	
Year			CH_4	CH_4	CO_2
2027	NA	1.9	NA	44.2	6065
2028	NA	1.9	NA	45.3	6216
2029	NA	2.0	NA	46.4	6360
2030	NA	2.0	NA	47.4	6497
2031	NA	2.1	NA	48.3	6628
2032	NA	2.1	NA	49.2	6752
2033	NA	2.2	NA	50.1	6870
2034	NA	2.2	NA	50.9	6982
2035	NA	2.2	NA	51.7	7089
2036	NA	2.3	NA	52.4	7190
2037	NA	2.3	NA	53.1	7287
2038	NA	2.3	NA	53.8	7379
2039	NA	2.3	NA	54.4	7466
2040	NA	2.4	NA	55.0	7549
2041	NA	2.4	NA	55.6	7628
2042	NA	2.4	NA	56.2	7703
2043	NA	2.4	NA	56.7	7775
2044	NA	2.5	NA	57.2	7843
2045	NA	2.5	NA	57.6	7908
2046	NA	2.5	NA	58.1	7969
2047	NA	2.5	NA	58.5	8028
2048	NA	2.5	NA	58.9	8084
2049	NA	2.5	NA	59.3	8137
2050	NA	2.6	NA	59.7	8187
2051	NA	2.6	NA	60.0	8235

Legend: NA = Not Applicable.

Year	Waste Acceptance Rate ((tons/yr)
2010	10,803
2011	27,303
2012	42,785
2013	50,373
2014	71,631
2015	59,568
2016	37,406
2017	29,227
2018	29,227
2019	29,396
2020	29,396
2021	29,396
2022	29,396
2023	29,396
2024	29,396
2025	29,396
2026	29,396
2027	29,396
2028	29,396
2029	29,396

Table I.3-10: Waste Acceptance Rates for Basic Alternative 1 / Layon

Year	Waste Acceptance Rate ((tons/yr)
2030	29,396
2031	29,396
2032	29,396
2033	29,396
2034	29,396
2035	29,396
2036	29,396
2037	29,396
2038	29,396
2039	29,396
2040	29,396
2041	29,396
2042	29,396
2043	29,396
2044	29,396
2045	29,396
2046	29,396
2047	29,396
2048	29,396
2049	29,396
2050	29.396

Summary of Minor Stationary Source Impacts

Table I.3-11 summarizes the potential impacts associated with the alternatives for minor stationary sources, consisting of wastewater treatment and solid waste disposal. The operation activities associated with wastewater facilities would be well below the significance criterion of 250 TPY.

 Table I.3-11: Summary of Potential Air Quality Impacts – Minor Stationary Sources

Component	Basic Alternative 1	Long-Term Alt. 1
Wastewater	LSI	SI-M ¹
Solid waste	LSI/ SI-M ²	NA

¹ Refers to odor : Refers to VOC emissions

Legend: NA = Not Applicable; LSI = Less than Significant Impacts: SI-M = significant and mitigable to less than significant impacts.

Potential air quality impacts associated with the solid waste alternative are also shown in Table I.3-11. Operational emissions associated with solid waste facilities were well below the significance criterion of 250 TPY for criteria pollutants for all alternatives. Therefore, the Basic Alternative 1 would result in less than significant impacts to air quality resources with respect to criteria pollutants but the planned new GovGuam Landfill in Layon would result in significant odor impacts that are mitigable to less than significant impacts.

It should be noted that CO_2 is not a criteria pollutant and therefore is not compared to criteria pollutant thresholds. The potential effects of CO_2 and other greenhouse gas emissions are by nature global and are based on cumulative impacts. Individual sources are not large enough to have an appreciable effect on climate change. Hence, the impact of proposed CO_2 and other greenhouse gas emissions is discussed in the context of summary of preferred alternatives impacts later in this report.

3.3 MOBILE SOURCES

Typical mobile sources include aircraft, aircraft ground support equipment, on-road and non-road vehicles, and construction equipment. Air quality impacts would result from the following four functional components of the proposed action:

- 1. *Main Cantonment Area functions*. Main cantonment military support functions (also known as base operations and support) include headquarters and administrative support, bachelor housing, family housing, supply, maintenance, open storage, community support (*e.g.*, retail, education, recreation, medical, day care, etc.), some site-specific training functions, and open space (e.g. parade grounds, open training areas, open green space in communities, etc), as well as the utilities and infrastructure required to support the cantonment area.
- 2. Training functions. There are three subclasses of training support functions required by Marine Corps units that would be stationed on Guam: *Firing ranges* are required for live and inert munitions practice, which generates the need for safety buffers called Surface Danger Zones (SDZs), and special use airspace (SUA) for certain weapons. *Non-fire maneuver ranges* are required for vehicle and foot maneuver training, including urban warfare training. Urban warfare training is conducted in buildings that simulate an urban environment. These buildings would be arranged close together where Marines can practice entering and maneuvering in tight spaces. *Aviation training ranges* are either improved (paved runway) or unimproved (unpaved landing sites) used to practice landing/takeoff and air field support (including loading/unloading of fuel, munitions, cargo, and personnel).
- 3. *Airfield functions*. The proposed Marine Corps relocation would include aviation units and aviation support units that require runway and hangar space and maintenance, supply and administrative facilities. There is also a need for air embarkation operations that are comparable to and compatible with the existing AFB embarkation operations that they would be co-located. Air embarkation operations refer to loading and unloading cargo and passengers to and from aircraft, comparable to a civilian airport terminal.
- 4. *Waterfront functions*. The ships and assault craft associated with the proposed Marine Corps relocation are transient (visiting) vessels. The transient vessels support Marine Corps operations and transient forces that presently train on Guam and in the CNMI. These ships would continue to support Marine Corps requirements in the Western Pacific after the proposed relocation, and would continue to require transient vessels support facilities on Guam. The planning criteria for harbors, regardless of usage, differ from those for land-based facilities and are therefore discussed as distinct from other training actions.

The following four action alternatives were carried forward for the proposed development of Marine Corps Main Cantonment Area functions (including housing/community support). All four of these alternatives also include areas to accommodate certain selected training functions.

- <u>Alternative 1</u> represents one contiguous location for cantonment area functions and family housing/community support functions. It would include portions of NCTS Finegayan and South Finegayan, as well as acquisition or long term leasing of non- DOD lands at the former Federal Aviation Administration (FAA) parcel and the Harmon Annex parcel. A portion of the development would be constructed in the undeveloped overlay refuge.
- <u>Alternative 2 (Preferred Alternative)</u> also represents one contiguous land area for the cantonment and family housing /community support functions. It would include portions of NCTS Finegayan, portions of South Finegayan, and the acquisition or long term leasing of portions of privately-held lands in the former FAA parcel. A portion of the development would be constructed in the undeveloped overlay refuge.

- <u>Alternative 3</u> plans for the main cantonment to include portions of NCTS Finegayan, and housing would be located on three geographically separated DoD parcels, including South Finegayan, Air Force Barrigada, and Navy Barrigada. No privately held lands would be acquired under Alternative 3. Under this alternative, the housing would be located non-contiguous to the main cantonment functions. A portion of the main cantonment would be constructed in the undeveloped overlay refuge.
- <u>Alternative 8</u> would include portions of NCTS Finegayan, a portion of South Finegayan, the former FAA parcel, and a portion of the housing would be located on the geographically separated Air Force Barrigada parcel. A portion of privately held lands would be acquired by purchase or long term lease under Alternative 8. A portion of the main cantonment would be constructed in the undeveloped overlay refuge. Under Alternative 8, a portion of the required housing would be non-contiguous to the Main Cantonment Area.

The emissions from these mobile sources are regulated under the CAA Title II Emission Standards for Moving Sources that establishes emission standards that manufacturers must achieve. Therefore, unlike stationary sources, no permitting requirements exist for operating mobile sources.

3.3.1 Aircraft Operational Emissions

Aircraft and helicopter engines emit criteria pollutants during all phases of operation whether climb out, approach, touch and go, GCA Box, or cruise. Based on the estimated number of additional sorties on an annual basis (Czech and Kester 2008) and on base maintenance for the addition of new aircraft at Andersen AFB North Ramp field, the annual aircraft operational emissions at Andersen AFB were estimated using the emission factors provided by Aircraft Environmental Support Office (AESO).

The proposed action for the Marine Corps Relocation to Guam would result in a change to aircraft operations at Andersen AFB. Specific changes to aircraft operations would include the following:

- Transfer of four CH-53E, six AH-1Z, and three UH-1N aircraft in support of the Marine Corps relocation to Guam.
- Transfer of a Marine F/A-18D squadron in support of the Marine Corps relocation to Guam.
- Basing of two new MV-22 squadrons.
- Increased visits by aircraft carrier airwings to Andersen AFB, resulting in a four-fold increase of transient F/A-18C, F/A-18F, SH-60B/F, EA-18G, and E-2C airfield operations.

The airfield operations associated with the proposed action would primarily take place at Andersen AFB. Air pollutants would be emitted during all phases of these operations, including on-ground parking and engine idling, maintenance testing, and flight. Future annual emissions of criteria pollutants were estimated using:

- The USEPA Mobile Sources methodology laid out in *Procedures of Emission Inventory Preparation, Volume IV: Mobile Sources* (USEPA December 1992).
- Aircraft engine emission factors developed by the Navy's Aircraft Environmental Support Office (AESO,1999, 2000, 2001, and 2002 [multiple references for each year]) and
- The anticipated number of new aircraft sorties presented in the *Aircraft Noise Study for Guam Joint Military Master Plan at Andersen AFB* (Wyle 2008).

The airfield operations types for the no-action and proposed action scenarios include departures, straightin (non-break) arrivals, overhead break arrivals, touch-and-go patterns, and ground controlled approach patterns.

Procedures to calculate emissions for each aircraft type typically include the following steps:

- Obtain emission factors for each aircraft engine type.
- Consider the range of operation types for each aircraft.
- Apply the applicable aircraft operating mode associated with annual flight operations.
- Calculate the emission rates for each aircrafts' type and operating mode by multiplying the respective emissions rates by annual flight operation numbers.
- Determine the total annual emissions by combining the emissions from all operations for all aircraft types.

Although air pollutant emissions occur during all phases of aircraft operation (parking, idling, and inflight), only those emissions emitted in the lower atmosphere's mixing layer have the potential to result in ground-level ambient air quality impacts. The mixing layer is the air layer extending from ground level up to the point at which the vertical mixing of pollutants decreases significantly. The USEPA recommends that a default mixing layer of 3,000 ft (914 m) be used in aircraft emission calculations (USEPA December 1992). Consistent with this recommendation, aircraft emissions released above 3,000 ft were not included in this study. Emissions results for each aircraft type are presented in Table I.3-12 through Table I.3-13, and include two summary tables that present combined aircraft emissions as described below:

- Table I.3-17: Net emissions for aircraft Associated with Aircraft Carrier Airwings (EA-18G, F-18A/C, F-18E/F, E-2C, SK70 [UH-60A]) associated with baseline conditions and alternatives.
- Table I.3-23: Total Net Emissions for Aircraft (CH-53E, AH-1Z, UH-1N, MV-22B, F/A-18D) associated with the based addition to the alternatives only.

The emissions from aircraft sorties and maintenance were calculated by aircraft type on an annual basis and are also presented in Table I.3-24. The aircraft sortie emissions estimates are summarized in Table I.3-14.

	LTO Emission Rate	# of LTOs	LTO Emissions	Total Emissions
Pollutant	(lbs/LTO)	(LTOs/yr)	(lbs/yr)	(TPY)
	SORTIE EMISSION	NS FROM EA-18G Straight	In Arrival AIRCRAFT	
NO _x	23.04	69.12	0.03	
HC	66.14	3	198.42	0.10
CO	264.34	3	793.02	0.40
SO ₂	0.98	3	2.94	0.00
PM ₁₀	18.35	3	55.05	0.03
	SORTIE EMISSIO	NS FROM EA-18G Break a	at Arrival AIRCRAFT	
NO _x	23.31	48	1188.88	0.56
HC	66.66	48	3199.68	1.60
СО	265.78	48	12757.44	6.38
SO ₂	0.96	48	46.08	0.02
PM ₁₀	17.94	48	861.12	0.43

Table I.3-1: Net Emissions for EA-18G

Note: Emission factors are obtained from AESO Report No. 9815, Revision E, November 2002 and Report No. 9933 Revision B, November 2002.

Table I.3-2: Net Emissions for F-18AC

Pollutant	LTO Emission Rate (lbs/LTO)	# of LTOs (LTOs/yr)	LTO Emissions (lbs/yr)	Total Emissions (TPY)
Tonununi		NS FROM F-18AC Straight		(111)
NO _x	13.09	36	471.24	0.24
HC	53.74	36	1934.64	0.97
СО	139.40	36	5018.40	2.51
SO ₂	0.82	36	29.52	0.01
PM ₁₀	16.17	36	58.56	0.03
	SORTIE EMISSIC	NS FROM F-18AC Break a	at Arrival AIRCRAFT	
NO _x	13.49	330	4451.70	2.23
HC	54.35	330	17935.50	8.97
СО	141.32	330	46635.60	23.32
SO ₂	0.82	330	270.60	0.14
PM ₁₀	15.98	330	58.56	0.03

Note: Emission factors are obtained from AESO Report No. 9815, Revision E, November 2002 and Report No. 9933 Revision B, November 2002.

Table I.3-3: Net Emissions for F-18EF

	LTO Emission Rate	# of LTOs	LTO Emissions	Total Emissions
Pollutant	(lbs/LTO)	(LTOs/yr)	(lbs/yr)	(TPY)
	SORTIE EMISSIO	NS FROM F-18EF Straight	In Arrival AIRCRAFT	
NO _x	0.48			
HC	66.14	42	2777.88	1.39
СО	264.34	42	11102.28	5.55
SO ₂	0.98	42	41.16	0.02
PM ₁₀	18.35	42	770.70	0.39
	SORTIE EMISSIC	ONS FROM F-18EF Break a	t Arrival AIRCRAFT	
NO _x	23.31	393	9160.83	4.58
НС	66.66	393	26197.38	13.10
СО	265.78	393	104451.54	52.23
SO ₂	0.96	393	377.28	0.19
PM ₁₀	17.94	393	7050.42	3.53

Note: Emission factors are obtained from AESO Report No. 9815, Revision E, November 2002 and Report No. 9933 Revision B, November 2002.

	LTO Emission Rate	# of LTOs	LTO Emissions	Total Emissions									
Pollutant	(lbs/LTO)	(LTOs/yr)	(lbs/yr)	(TPY)									
	SORTIE EMISSIC	ONS FROM E-2C Straight In	n Arrival AIRCRAFT										
NO _x													
HC	9.37	9	84.33	0.04									
СО	13.91	9	125.19	0.06									
SO ₂	0.41	9	3.69	0.00									
PM ₁₀	4.11	9	36.99	0.02									
	SORTIE EMISSI	ONS FROM E-2C Break at	Arrival AIRCRAFT										
NO _x	7.92	69	546.48	0.27									
HC	9.39	69	647.91	0.32									
СО	13.96	69	963.24	0.48									
SO ₂	0.46	69	31.74	0.02									
PM ₁₀	4.61	69	318.09	0.16									

Table I.3-4: Net Emissions for E-2C

Note: Emission factors are obtained from AESO Report No. 9920B, Revision C, April 2000 and Report No. 9943 Revision B, April 2000.

Table I.3-5: Net Emissions for SK 70 (UH-60A)

D - Ilert met	LTO Emission Rate	# of LTOs	LTO Emissions	Total Emissions
Pollutant	(lbs/LTO)	(LTOs/yr)	(lbs/yr)	(TPY)
	SORTIE EMISSIONS	FROM SK 70 (UH-60A) Br	eak at Arrival AIRCRAFT	
NO _x	3.40	117	397.80	0.20
HC	1.40	117	163.80	0.08
CO	12.30	117	1439.10	0.72
SO_2	0.30	117	35.10	0.02
PM ₁₀	2.30	117	269.10	0.13

Note: Emission factors are obtained from AESO Report No. 9929, February 1999 and Report No. 9933, June 1999 for Aircraft UH-60A.

		Sortie Emissions (tons/yr)														
	S	SO_2	CO		Р	M_{10}	Λ	VO_x	I	IC	(CO_2				
				Straig ht In												
	Break at	Straight In	Break at	Arriva	Break at	Straight In	Break at	Straight In	Break at	Straight In	Break at	Straight In				
Aircraft	Arrival	Arrival	Arrival	1	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival				
					Sortie Emissions		8									
EA-18G	0.02	0.00	6.38	0.40	0.43	0.03	0.56	0.03	1.60	0.10	-	-				
F-18A/C	0.14	0.01	23.32	2.51	0.03	0.03	2.23	0.24	8.97	0.97	-	-				
F-18E/F	0.19	0.02	52.23	5.55	3.53	0.39	4.58	0.48	13.10	1.39	-	-				
E-2C	0.02	0.00	0.48	0.06	0.16	0.02	0.27	0.03	0.32	0.04	-	-				
SK70 (UH-60A) BLACKH	0.02		0.72		0	.13	0	.20	0	.08		-				
Total Emissions	0.42		91.64		4	4.74		.62	26.57		-					

Table I.3-6: Total Net Emissions for Aircraft Associated with Aircraft Carrier Airwings

Table I.3-7 CH-53E Based Addition Aircraft Emissions

						So	rtie Emissic	ons						Mai	ntenance Em	issions		CH-53E sions
Pollut ant	LTO Emissi on Rate (lbs/L TO)	# of LTO (LTOs /yr)	LTO Emissi ons (lbs/yr	T&G Emissi ons Rate (lbs/T &G)	# of T&G (T&Gs /yr)	T&G Emissi ons (lbs/yr	GCA Box Emissio n Rate (lbs/GC As)	# of GCA Box (GCAs /yr)	GCA Box Emissi ons (lbs/yr	FCLP Emiss ion Rate (lbs/yr	# of FCLP (FCLPs /yr)	FCLP Emissi ons (lbs/yr	Total Sortie Emissi ons (lbs/yr	# of Aircr afts	Mainten ance Emissio ns lbs/AC/y	Total Mainten ance Emissio ns (lbs/yr)	Lbs/yr	Tons/y ear
	10)	/ 91))	2.11	600	1266.0	4.44	120.00	532.8)	/y1)))		1		7,075.	
NO _x	8.90	472	4200.8	2.11	000	1200.0	4.44	120.00	552.0	2.11	20	42.2	6041.8	4	258.4	1033.60	40	3.54
HC	11.20	472	5286.4	0.13	600	78.0	0.19	120.00	22.8	0.13	20	2.6	5389.8	4	195.9	783.60	6,173. 40	3.09
	11120	., _	10808.	0.77	600	462.0	1.44	120.00	172.8	0110	20	210	11459.		17017	100100	13,069	0.07
СО	22.90	472	8							0.77	20	15.4	0	4	402.6	1610.40	.40	6.53
SO ₂	0.70	472	330.4	0.11	600	66.0	0.23	120.00	27.6	0.11	20	2.2	426.2	4	20.0	80.00	506.20	0.25
PM ₁₀	3.80	472	58.6	0.61	600	366.0	1.25	120.00	150.0	0.61	20	12.2	586.8	4	78.0	312.00	898.76	0.45

Note: Emission factors are obtained from AESO Report No. 9922, Revision C, February 2000 and Report No. 9960 Revision B, April 2000.

Table I.3-8: AH-1N Based Addition Aircraft Emissions

						So	rtie Emissio	ons						Maintenance Emissions				CH-53E sions
Pollut ant	LTO Emissi on Rate (lbs/L	# of LTO (LTOs	LTO Emissi ons (lbs/yr	T&G Emissi ons Rate (lbs/T	# of T&G (T&Gs	T&G Emissi ons (lbs/yr	GCA Box Emissio n Rate (lbs/GC	# of GCA Box (GCAs	GCA Box Emissi ons (lbs/yr	FCLP Emiss ion Rate (lbs/yr	# of FCLP (FCLPs	FCLP Emissi ons (lbs/yr	Total Sortie Emissi ons (lbs/yr	# of Aircr afts	Mainten ance Emissio ns lbs/AC/y	Total Mainten ance Emissio ns	Lbs/yr	Tons/y ear
um	TO)	/yr)	(103/y1	(105/1 &G)	/yr)	(103/yi	(IDS/GC As)	/yr)	(103/y1)	(103/yi	(relis /yr))	(103/y1)		r	(lbs/yr)		
NO _x				0.25	3000	750.0	1.12	1500.0	1680.0								7,302.	
NOx	2.09	2281	4767.3					0		0.32	30.0	9.6	7206.9	6	15.88	95.28	17	3.65
HC	0.33	2281	752.7	0.03	3000	90.0	0.12	1500.0 0	180.0	0.04	30.0	1.2	1023.9	6	4.23	25.38	1,049. 31	0.52
СО	7.08	2281	16149. 5	0.54	3000	1620.0	2.5	1500.0 0	3690.0	0.79	30.0	23.7	21483. 2	6	76.33	457.98	21,941 .16	10.97
~~	7.00	2201	5	0.02	3000	60.0	0.08	1500.0	120.0	0.77	50.0	23.1	2	0	10.55	-57.70	.10	10.77
SO_2	0.17	2281	387.8		2.000	2.0.10	2.00	0		0.02	30.0	0.6	568.4	6	1.4	8.40	576.77	0.29
PM ₁₀				0.19	3000	570.0	0.88	1500.0	1320.0								2,044.	
	1.80	2281	58.6					0	15	0.26	30.0	7.8	1956.4	6	14.67	88.02	38	1.02

Note: Emission factors are obtained from AESO Report No. 9922, Revision C, February 2000 and Report No. 9960 Revision B, April 2000.

Table I.3-9: UH-1N Based Addition Aircraft Emissions

					Maintenance Emissions				CH-53E sions									
Pollut	LTO Emissi on Rate (lbs/L	# of LTO (LTOs	LTO Emissi ons	T&G Emissi ons Rate (lbs/T	# of T&G (T&Gs	T&G Emissi ons	rtie Emissio GCA Box Emissio n Rate (lbs/GC	# of GCA Box (GCAs	GCA Box Emissi ons	FCLP Emiss ion Rate (lbs/yr	# of FCLP (FCLPs	FCLP Emissi ons	Total Sortie Emissi ons (lbs/yr	# of Aircr afts	Mainten ance Emissio ns Ibs/AC/y	Total Mainten ance Emissio ns	Lbs/y r	Tons/y ear
ant	(IDS/L TO)	(LTOs /yr)	(lbs/yr)	(108/1 &G)	(1&Gs /yr)	(lbs/yr)	(IDS/GC As)	(GCAs /yr)	(lbs/yr)	(IDS/yr)	(FCLPS /yr)	(lbs/yr))		r	(lbs/yr)		
NOx	1.00	7.0	002.0	0.10	1000	190.0	0.52	500.0	260.0	0.05	15.0	2.0	1426.0	2	20.05	69.50	1,499	0.75
	1.28	768	983.0	0.19	1000	10.0	0.02	500.0	10.0	0.25	15.0	3.8	1436.8	3	20.86	62.58	.37	0.75
HC	0.67	768	514.6	0.01	1000	10.0	0.02	500.0	10.0	0.02	15.0	0.3	534.9	3	21.74	65.22	600.0 8	0.30
СО	3.32	768	2549.8	0.13	1000	130.0	0.36	500.0	180.0	0.25	15.0	3.8	2863.5	3	99.86	299.58	3,163 .09	1.58
SO_2	0.11	768	84.5	0.02	1000	20.0	0.04	500.0	20.0	0.02	15.0	0.3	124.8	3	2.09	6.27	131.0 5	0.07
PM ₁₀	1.18	768	906.2	0.16	1000	160.0	0.45	500.0	225.0	0.22	15.0	3.3	1291.2	3	21.92	65.76	1,357 .00	0.68

Note: Emission factors are obtained from AESO Report No. 9922, Revision C, February 2000 and Report No. 9960 Revision B, April 2000.

Table I.3-10: MV-22 Based Additions Aircraft Emissions

	Sortie Emissions											Mai	ntenance Em	nissions	Total C Emiss			
Pollut	LTO Emissi on Rate	# of LTO	LTO Emissi ons	T&G Emissi ons Rate	# of T&G	T&G Emissi ons	GCA Box Emissio n Rate	# of GCA Box	GCA Box Emissi ons	FCLP Emiss ion Rate	# of FCLP	FCLP Emissi ons	Total Sortie Emissi ons	# of Aircr afts	Mainten ance Emissio ns	Total Mainten ance Emissio ns	Lbs/yr	Tons/y ear
ant	(lbs/L TO)	(LTOs /yr)	(lbs/yr)	(lbs/T &G)	(T&Gs /yr)	(lbs/yr	(lbs/GC As)	(GCAs /vr)	(lbs/yr	(lbs/y	(FCLPs /yr)	(lbs/yr	(lbs/yr)		lbs/AC/y	(lbs/yr)		
	10)	/y1)	(108/yr)	æ(1)	/y1))	,	/y1) /IV-22 Brea) ak at Arriv	/	5,)	(108/yr)		1			
NO _x	6.13	1781	10917. 5	3.57	566	2020.6	5.20	707.0	3676.4	4.61	60.0	276.6	16891. 2	12	525.68	6307.68	23,198. 83	11.60
HC	0.05	1781	89.1	0.003	566	1.7	0.004	707.0	2.8	0.003	60.0	0.2	93.8	12	4.59	55.08	148.84	0.07
СО	3.07	1781	5467.7	0.19	566	107.5	0.260	707.0	183.8	0.22	60.0	13.2	5772.2	12	296.32	3553.32	9,325.5 5	4.66
SO_2	0.31	1781	552.1	0.11	566	62.3	0.16	707.0	113.1	0.14	60.0	8.4	735.9	12	26.05	312.60	1,048.4 9	0.52
PM ₁₀	1.06	1781	1887.9	0.44	566	249.0	0.63	707.0	445.4	0.55	60.0	33.0	2615.3	12	87.27	1,047.24	3,662.5 5	1.83
CO ₂	2498.7 0	1781	44501 84.7	899	566	50883 4.0	1283	707.0	90708 1.0	1119. 0	60.0	67140. 0	59332 39.7	12	209662	2,515,94 4.0	8,449,1 83.7	4,224. 59
								/-22 B Stra	ight In Arr									
NO _x	3087	261	1010.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	1010.1	NA	NA	NA	1010.1	0.51
HC	0.05	261	13.1	NA	NA	NA	NA	NA	NA	NA	NA	NA	13.1	NA	NA	NA	13.1	0.01
CO SO ₂	2.96 0.24	261 261	772.6 62.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA	772.6	NA	NA NA	NA	772.6	0.39
$\frac{SO_2}{PM_{10}}$	0.24	261	203.6	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	62.6 203.6	NA NA	NA NA	NA NA	62.6 203.6	0.03
CO_2	0.78 1934.8 0	261	203.0 50498 2.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	203.0 50498 2.8	NA	NA	NA	504982. 8	252.49

Note: Emission factors are obtained from AESO Report No. 9922, Revision C, February 2000 and Report No. 9960 Revision B, April 2000.

														Total	FA-18D
					Sortie	e Emissions					M	aintenance Em	issions	Em	issions
Polluta	LTO Emissio n Rate	# of LTO	LTO Emissions	T&G Emission s Rate	n # of T&G	T&G Emissi ns	GCA B Emissio Rate	on	GCA Box Emissio s	Total Sortie Emissi ons	# of Aircrafts	Maintena nce Emissions	Total Maintenand e Emission		Tons/ye ar
nt	(lbs/LT O)	(LTOs/y r)	(lbs/yr)	(lbs/T&C)	G (T&Gs/ r)	y (lbs/yr	(lbs/GC s)	CA (GCAs/	vr) (lbs/yr) (lbs/yr)		lbs/AC/yr	(lbs/yr)		
	MV-22 Break at Arrival AIRCRAFT														
NO _x	15.95	995	15870.3	5.86	1825	10694.5	11.71	398.0	4660.6	31225.3	12	513.9	6166.80	37392.13	18.70
HC	54.43	995	54157.9	0.22	1825	401.5	0.450	398.0	179.1	54738.5	12	1622.4	19468.8 0	74207.25	37.10
СО	143.03	995	142314. 9	1.14	1825	2080.5	2.27	398.0	903.5	145298.8	12	4460.5	53526.0 0	198824.8 1	99.41
SO ₂	0.89	995	885.6	0.22	1825	401.5	0.45	398.0	179.1	1466.2	12	27.6	331.20	1797.35	0.90
PM_{10}	16.61	995	16527.0	3.05	1825	5566.3	6.11	398.0	2421.8	24525.0	12	457.4	5488.80	30013.78	15.01
	MV-22 B Straight In Arrival AIRCRAFT														
NO _x	15.40	176	2710.40	NA	NA	NA	NA	NA	NA	2710.40	NA	NA	NA	2710.40	1.36
HC	53.82	176	9472.32	NA	NA	NA	NA	NA	NA	9472.32	NA	NA	NA	9472.32	4.74
СО	141.10	176	24833.6 0	NA	NA	NA	NA	NA	NA	24833.60	NA	NA	NA	24833.60	12.42
SO ₂	0.90	176	158.40	NA	NA	NA	NA	NA	NA	158.40	NA	NA	NA	158.40	0.08
PM ₁₀	16.86	176	2967.36	NA	NA	NA	NA	NA	NA	2967.36	NA	NA	NA	2967.36	1.48

Note: Emission factors are obtained from AESO Report No. 9815, Revision E, November 2002, and Report No. 9933, Revision B, November 2002.

Table I.3-12: Total Net Emissions for Aircraft Associated with the Based Addition

		Sortie Emissions (tons/yr)											
	SO_2		СО		PM_{10}		NO_x		НС		CO_2		
	Break			Straigh									
	at	Straigh	Break	t	Break	Straigh	Break	Straigh	Break	Straigh		Straigh	
	Arriv	t In	at	In	at	t In	at	t In	at	t In	Break at	t In	
Aircraft	al	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	Arrival	
Sortie Emission	is	-	-	-	-	-	-	-	-	-	-	-	
MV-22B	0.37	0.03	2.89	0.39	1.31	0.10	8.45	0.51	0.05	0.01	2966.62	252.49	
F/A-18D	0.73	0.08	72.65	12.27	12.26	1.48	15.61	1.36	27.37	4.74	-	-	
CH-53E	0.21		5.73		0.29		3.02		2.69		-		
AH-1N	0.28		10.74		0.98		3.60		0.51		-		
UH-1N	0.06		1.43		0.65		0.72		0.27		-		
Total Sortie													
Emissions	1.77		106.09		17.07		33.26		35.63		3219.11		
Maintenance Er			100.07		1/10/		00.20		00100		021/111		
MV-22B	0.16	-	1.78	-	0.52	-	3.15	-	0.03	-	1257.97	-	
F/A-18D	0.17	-	26.76	-	2.74	-	3.08	-	9.73	-	-	-	
CH-53E	0.04		0.81		0.16		0.52		0.39		-		
AH-1N	0.00		0.23		0.04		0.05		0.01		-		
UH-1N	0.00		0.15		0.03		0.03		0.03		-		
Total													
Maintenance													
Emissions	0.37		29.72		3.50		6.83		10.20		1257.97		
Total													
Emissions	2.14		135.82		20.57		40.09		45.83		4,477.08		

 Table I.3-13: Annual Increase in Aircraft Sortie Emissions at Andersen AFB

Activity		Pollutant (TPY)										
Activity	SO ₂	CO	PM ₁₀	PM _{2.5}	NOx	VOC	CO ₂					
Aircraft carrier Airwings	0.4	91.6	4.7	4.7	8.6	26.6	NA					
Based Aircraft LTO, touch and go, FCLP and												
GCA Box	1.8	106.1	17.1	17.1	33.3	35.6	3219.1					
Based Aircraft Maintenance	0.4	29.7	3.5	3.5	6.8	10.2	1258.0					
Total Operation	2.6	227.4	25.3	25.3	48.7	72.4	4,477.1					

Note: CO₂ emissions are only available for MV-22 aircraft.

Table I.3-14: Aircraft Carrier Berthing Operational Emissions

Operational Activities	Pollutant (TPY)										
2016 and after	SO_2	СО	PM ₁₀	<i>PM</i> _{2.5}	NO_x	VOC	CO ₂				
Aircraft Carrier Berthing	0.1	0.2	0.1	NA	1.1	1.3	NA				
Transient Aircraft	0.4	91.1	4.6	8.4	26.2	0.4	NA				
Total Operation	0.5	91.3	4.7	8.4	27.3	1.7	NA				

3.3.2 Aircraft Operational Emissions from Aircraft Carrier Berthing

The Navy proposes to construct a new deep-draft wharf with shoreside infrastructure improvements in Apra Harbor, Guam to provide for a transient nuclear powered aircraft carrier. Up to 59 aircraft including strike, surveillance, control, and other logistic and combat aircraft, would either remain onboard the ship or fly to Andersen AFB. Two locations for siting the new wharf are considered under the proposed action: 1) Polaris Point (preferred), and 2) the Former Ship Repair Facility (SRF).

The Aircraft Carrier Berthing component of the proposed action requires operational activities that have the potential to generate air emissions. Specifically, operational emissions would result from the following activities:

- Operation of the aircraft carriers' on-board diesel generators.
- Aircraft carrier routine maintenance.
- Transient aircraft operations.
- Escort vessels operations.
- Operation of the tugboats that assist in navigating the aircraft carrier through the harbor.
- Operation of the on-road vehicles transporting the aircraft carrier crew.
- Operations of the on-road trucks transporting materials to and from aircraft carriers.

The emissions inventory for one aircraft carrier homeporting for six months was taken from a U.S. Navy study (U.S. Navy July 1999). This inventory was used to prorate the aircraft carrier berthing emissions based on an increase in aircraft carrier berthing days at Apra Harbor of 49 days.

Accompanying vessel and tugboat emissions were not considered in this analysis because these operations are a function of the number of aircraft carrier visits rather than of the number of berthing days. Because the number of aircraft carrier visits at Apra Harbor would not increase, no additional emissions from vessel and tugboat operations are anticipated.

The aircraft carrier berthing-related vehicle operations would be increased due to an increase in berthing days. However, the impacts from increased on-road vehicular trips are covered in the traffic-related air quality impact analysis discussed later in this study. Aircraft carrier berthing-related emissions from operations in 2014 and beyond are shown in Table I.3-25.

3.3.3 Aircraft Training Emissions

Five sites were considered on Guam for aviation training: Andersen AFB airfield, Northwest Field at Andersen AFB, Orote Airfield at Navy Main Base, Andersen South (including two improved helicopter landing pads), and the Naval Munitions Site. The types of aviation training and facility requirements associated with Marine Corps units that would relocate to Guam are listed in Table I.3-26. The minimum requirement for most training would be twice annually; however, the minimum Field carrier landing practice (FCLP) training requirement is 12 times annually. The majority of this training requirement would be met at Guam and surrounding airspace.

Training	Tune	Facility/Airspace Paguiroments									
Training		Facility/Airspace Requirements									
FAM	Familiarization and	Improved airfield with air rescue available. FAM is a daylight operation									
	Instrument Flight	Instrument flight is day and night.									
FORM	Formation Flights	Flying in formation, often in Air Traffic Controlled Assigned Airspace									
		(ATCAA) assigned by FAA. Also includes helicopter flying Visual Flight Re									
		(VFR) information. Day and night use.									
CAL	Confined Area	Ground space, helicopter landing zones in approx. 10 locations. Day and night.									
	Landing										
TERF	Terrain Flights	1 or more routes in ATCAA assigned by FAA over varying terrain for day and									
	0	night flights at 50 to 200 ft (15 to 61 m) above ground level.									
EXT	External Loads	Both unimproved and improved LZs for day and night use. Unimproved LZs at									
		remote sites. Ground access needed to pre-position external loads that cannot be									
		carried across public roads or populated areas.									
GTR	Ground Threat	Tactical flight maneuver area or route where ground based threat simulators can									
	Reaction	be placed. Air routes similar to TERF. Day and night. Includes training on Tinian									
		that is addressed in Volume 3.									
FCLP	Field Carrier Landing	Simulated ship deck paved area. Day and night.									
	Practice										
TAC	Tactics	Routes over water or land of at least 50 nm (93 km), for chaff, flares, and .50 cal									
		machine gun engagement. Day and night. Includes training in CNMI that is									
		addressed in the MIRC EIS/OEIS.									
AG	Aerial Gunnery	Air-to-Ground gun munitions against ground targets. Day and night. Includes									
	,	training in CNMI that is addressed in the MIRC EIS/OEIS.									
HIE	Helicopter Insertion	Fast rope, rappelling, helo-casting, and parachute operations in improved fields,									
	and Extraction	drop zones, and water operating areas. Day and night									
DM	Defensive Maneuvers	Airspace routes similar to TERF, but at higher altitude. Day and night.									
		I A A A A A A A A A A A A A A A A A A A									

Table I.3-15: Aviation Training Types

Source: NAVFAC Pacific 2009.

The aircraft squadrons are proposed for basing at Andersen AFB North Ramp, in a separately constructed air facility. To reduce the operationally undesirable, simultaneous mix of fixed wing and rotary wing operations at Andersen AFB, proposed Marine Corps aviation training would primarily occur at the following sites rather than North Ramp: Northwest Field at Andersen AFB, Orote Airfield at Navy Main Base, Andersen South, and Naval Munitions Site.

In addition, aviation training would occur along proposed flight corridors and SUA within and offshore Guam and integrated with MIRC training operations. Specific aviation training proposals for Guam and surrounding airspace are as follows:

Marine Air Control Group Training (MACG). MACG training involves coordination of air command and control and air defense within the Marine Aircraft Wing.

Improved Airfield Training. FCLP and familiarization and instrument flight (FAM) training require improved airfields. Approximately training operations are conducted with each FAM sortie and five training operations with each FCLP sortie. Both are conducted during both day and night. On Guam, options for aviation training at an improved airfield are North Ramp and NWF, both at Andersen AFB.

Table I.3-27 provides an estimate of aviation training that would occur at each of these sites under the proposed action based on the minimum bi-annual training requirement for FAM and monthly training requirement for FCLP for aircrews associated with the proposed action.

Locati on and Traini ng Type	Sortia Type	e-Ops b	y Aircr	aft	Total Annu al Sorti e- Ops	Duratio n/Sortie - Op(Min utes)			ortie-O (Minut		Total Annu al Sorti e-Op Minu tes	% Nigh t	% Below 3,000ft AGL	Annual Freq. Training/Locati on(Days)
	CH -53	MV- 22	AH -1	UH-1			СН- 53	MV- 22	АН- 1	UH- 1				
Anderse	en AFB	North	Ramp											
FCLP	160	480	240	120	1,000	2	320	960	480	240	2,000	50%	100%	12-18
FAM	11	48	16	4	79	3	33	144	48	12	237	10%	100%	4-6
NWF														
FCLP	160	480	240	120	1,000	2	320	960	480	240	2,000	50%	100%	12-18
FAM	11	48	16	4	79	3	33	144	48	12	237	10%	100%	4-6

Table I.3-16: Estimated Annual Training Sortie Activities at Improved Airfields

Training in Military Flight Corridors, Routes, or Tactical Navigation Area. Aviation training requirements requiring military flight corridors or routes include Terrain Flight (TERF), Ground Threat Reaction (GTR), and Defensive Maneuvering (DM). All four aircraft types associated with the proposed action conduct TERF, GTR, and DM training. Table I.3-28 provides an estimate of aviation training that would occur in designated airspace on Guam based on the minimum bi-annual training requirement for TERF, GTR, and DM for aircrews associated with the proposed action. In addition, sorties associated with the transport personnel from Andersen South North Ramp to NMS or Andersen South for maneuver training is also estimated in Table I.3-28 (as MAN-LFT).

 Table I.3-17: Estimated Annual Training Sortie Activity in Military Flight Corridors, Routes, or Tactical

 Navigation Area on Guam Based on Minimum Training Requirements

Location and Training Type	Sortie-Ops by Aircraft Type				Total Annual Sortie- Ops	Duration/Sortie -Op(Minutes)		on of ft Type (N	Sortie-O Ainutes)	Total Annual Sortie- Op Minutes	% Night	% Below 3,000ft AGL	
	CH -53	MV- 22	АН- 1	UH-1			CH- 53	MV- 22	AH-1	UH-1			
TERF	16	48	24	12	100	90	1,440	4,320	2,160	1,080	9,000	10%	90%
GTR	16	48	24	6	94	90	1,440	4,320	2,160	540	8,460	10%	80%
DM	16	48	24	6	94	90	1,440	4,320	2,160	540	8,460	10%	80%
MAN- LFT	912	0	0	0	912	10	9,120	0	0	0	9,120	10%	80%

Landing zone training. Both improved and unimproved LZs are required to support training in Confined Area Landing (CAL), External Loads (EXT), and Helicopter Insertion Extraction (HIE). CAL training is required for all four aircraft types associated with the proposed action. EXT and HIE training is required for CH-53, UH-1, and MV-22, but not AH-1 aircraft. CAL requires approximately 10 LZs in various locations. All three types of training would include both day and night operations.

Table I.3-29 provides an estimate of aviation training that would occur at NWF, Andersen South, NMS, and Orote Airfield LZs based on the minimum bi-annual training requirement for CAL, EXT, and HIE for aircrews associated with the proposed action. In addition, sorties associated with the lifts for access to Andersen South and NMS for maneuver training are also estimated in Table I.3-29 (as MAN-LFT).

The emissions from aircraft training at existing airfields were estimated using the same methods and emission factors guidance described previously for Andersen AFB Aircraft Basing Operations. Annual emission rates are shown in Table I.3-30. The training flight sorties, as shown in Table I.3-31, and flight hours defined around each airfield were based on information provided above.

Location and Training Type	Sortie	e-Ops b	y Airc	raft Type	Total Annual Sortie- Ops	Duration/Sortie- Op(Minutes)			ortie-Ops (Minute		Total Annual Sortie-Op Minutes	% Night	% Below 3,000ft AGL	Annual Freq. Training/Location(Days)
	CH- 53	MV- 22	AH 1	H- UH-			CH-53	MV- 22	AH- 1	UH- 1				
	00		- ·					NF	•	•				
CAL	20	60	30	15	125	2	40	120	60	30	250	10%	100%	2-3
EXT	20	60	0	15	95	2	40	120	0	30	190	10%	100%	2-3
HIE	24	72	0	18	114	2	48	144	0	36	228	10%	100%	2-3
							Orote	Airfield						
EXT	20	60	0	15	95	2	40	120	0	30	190	10%	100%	1-2
	-							en South				· · · · ·		
CAL	20	60	30	15	125	2	40	120	60	30	250	10%	100%	2-3
EXT	13	40	0	10	63	2	27	80	0	20	127	10%	100%	2-3
HIE	24	72	0	18	114	2	48	144	0	36	228	10%	100%	2-3
MAN-LFT	720	0	0	0	720	2	1,440	0	0	0	1,440	10%	80%	90
	_							MS	_					
CAL	20	60	30	15	125	2	40	120	60	30	250	10%	100%	
EXT	13	40	0	10	63	2	27	80	0	20	127	10%	100%	1-2
MAN-LFT	192				192	2	384	0	0	0	384	10%	100%	12-18

Table I.3-18: Estimated Annual Training Sortie Activity at Guam LZ Sites

Table I.3-19: Aircraft Training Emissions Rates

A :	Or and in	Turining Turns		Eı	nission Rat	es (lb/Op)*	k	
Aircraft	Operation	Training Type	СО	CO2	NOx	НС	SO2	PM10
H-53	Cruise	FAM, FORM, TERF, GTR, TAC, AG, DM	9.5	-	36.1	0.67	1.8	9.9
	Rocks-and-Block	EXT	1.97	-	7.52	0.24	0.36	1
	Carrier-Controlled Approach	FCLP	2.67	-	5.33	0.74	0.29	1.59
	Special Personnel Insertion and Extraction Rig	HIE	1.28	-	3.81	0.18	0.2	1.08
	Pad Landing	CAL	1.94	-	4.03	0.52	0.22	1.19
V-22	Cruise - Airplane mode (nacellas horizontal)	FAM, FORM, TERF, GTR, TAC, AG, DM	1.99	12258.4	53.82	0.04	1.53	6.04
	Field Carrier Landing Practice	FCLP	0.22	1119	4.61	0.003	0.14	0.55
	Rocks-and-Blocks	EXT	0.63	3081	12.25	0.01	0.38	1.52
	Confined Area Landing	HIE	0.29	1899	8.87	0.01	0.24	0.94
	Special Personnel Insertion and Extraction Rig	CAL	0.32	1693	6.93	0.01	0.21	0.83
AH-1	Cruise	FAM, FORM, TERF, GTR, TAC, AG, DM	8.96	-	4.72	0.48	0.34	3.57
	Touch-and-Go	EXT	0.54	-	0.25	0.03	0.02	0.19
	Pad Landing	CAL	0.69	-	0.32	0.03	0.02	0.25
	Mountain Pad	HIE	0.76	-	0.36	0.04	0.03	0.28
	Field Carrier Landing Practice	FCLP	0.79	-	0.32	0.04	0.02	0.26
UH-1	Cruise	FAM, FORM, TERF, GTR, TAC, AG, DM	0.7	-	4.01	0.09	0.28	2.91
	Rocks-and-Block	EXT	0.39	-	0.71	0.03	0.06	0.58
	Special Personnel Insertion and Extraction Rig	HIE	0.15	-	0.4	0.01	0.03	0.31
	Pad Landing	CAL	0.13	-	0.25	0.01	0.02	0.21
	Field Carrier Landing Practice	FCLP	0.25	-	0.25	0.02	0.02	0.22

Source: AESO Memorandum Report Nos. 9822, Revision C, February 2000; 9824, Revision A, April 30, 1999; 9904, Revision A, May 3, 1999; 9946, Revision E, January 2001; 9960, Revision B, April 2000; 9961, July 1999; 9962, July 1999; 9965, Revision B, January 2001.

Table I.3-20: Annual Sortie-Ops by Training Airspace

		%	Sortie	Min/	% <	%	Sortie	Min/	% <	%	Sortie	Min/	% <	%	Sortie	Min/	% <	%	Sortie	Min/	% <
	Sortie	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000
Aircraft	-Ops	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft
FAM - Fai	miliarizat																				
			(North R			NWF				Tinian				-							
CH-53	32	33%	10.67	30	5%	33%	10.67	60	5%	33%	10.67	30	5%	-							
MV-22	144		48	30	5%		48	90	5%		48	30	5%	-							
AH-1	48		16	30	5%		16	60	5%		16	30	5%								
UH-1	12		4	30	5%		4	30	5%		4	30	5%								
FORM - F	ormation	U												1				1			
		Guam S				Tinian S															
CH-53	32	20%	6.4	30	5%	80%	25.6	60	5%												
MV-22	144		28.8	30	5%		115.2	90	5%												
AH-1	48		9.6	30	5%		38.4	60	5%												
UH-1	12		2.4	30	5%		9.6	30	5%												
CAL - Cor	nfined Ar		-											1				1			
		NW FL				ANDY				NMS				TIN N							
CH-53	80	25%	20	90	75%	25%	20	90	75%	25%	20	90	75%	25%	20	90	75%				
MV-22	240		60	120	75%		60	120	75%		60	120	75%		60	120	75%				
AH-1	120		30	90	75%		30	90	75%		30	90	75%		30	90	75%				
UH-1	60		15	60	75%		15	60	75%		15	60	75%		15	60	75%				
TERF - Te	errain Flig	/																1			
		NMS		1	1	Tinian															
CH-53	32	50%	16	90	100%	50%	16	90	100%												
MV-22	96		48	120	100%		48	120	100%												
AH-1	48		24	90	100%		24	90	100%												
UH-1	24		12	60	100%		12	60	100%												
EXT - Ext	ernal Loa	ds												1				1			
		NW Fie				Orote				ANDY			1	NMS				Tinian			
CH-53	80	25%	20	90	100%	25%	20	90	100%	17%	13.33	90	100%	17%	13.33	90	100%	17%	13.33	90	100%
MV-22	240		60	120	100%		60	120	100%		40	120	100%		40	120	100%		40	120	100%
AH-1	120		30	90	100%		30	90	100%		20	90	100%		20	90	100%		20	90	100%
UH-1	60		15	60	100%		15	60	100%		10	60	100%		10	60	100%		10	60	100%
GTR - Gro	ound Thre	at Reacti	on																		
		NMS				Rota/Ti	nian														
CH-53	32	50%	16	90	100%	50%	16	90	100%												
MV-22	96		48	120	100%		48	120	100%												

		%	Sortie	Min/	% <	%	Sortie	Min/	% <	%	Sortie	Min/	% <	%	Sortie	Min/	% <	%	Sortie	Min/	% <
	Sortie	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000	Sortie	-Ops	Sortie	3,000
Aircraft	-Ops	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft	-Ops	/Area	-Op	ft
AH-1	48		24	90	100%		24	90	100%												
UH-1	12		6	60	100%		6	60	100%												
FFCLP - I	Field Carr		ng Practio	ce														T			
		A AFB				NW Fie				Orote											
CH-53	480	33%	160	90	100%	33%	160	90	100%	33%	160	90	100%								
MV-22	1440		480	120	100%		480	120	100%		480	120	100%								
AH-1	720		240	90	100%		240	90	100%		240	90	100%								
UH-1	360		120	60	100%		120	60	100%		120	60	100%								
TAC – Ta	ctics																	_			
		GUAM	MOA/Re	oute		Tinian I	MOA/Ro	ute													
CH-53	32	50%	16	30	5%	50%	16	60	5%												
MV-22	144		72	30	5%		72	90	5%												
AH-1	48		24	30	5%		24	60	5%												
UH-1	12		6	30	5%		6	30	5%												
AG - Aeri	al Gunner	y																			
		WA																			
CH-53	80	100%	80	30	5%																
MV-22	240		240	30	5%																
AH-1	120		120	30	5%																
UH-1	60		60	30	5%																
HIE - Hel	icopter Ins	sertion ar	nd Extract	tion																	
		NWF				ANDY	S														
CH-53	48	50%	24	30	5%	50%	24	60	5%												
MV-22	144		72	30	5%		72	90	5%												
AH-1	72		36	30	5%		36	60	5%												
UH-1	36		18	30	5%		18	30	5%												
DM - Def	ensive Ma	neuvers																			
		NMS				Tinian															
CH-53	32	50%	16	90	100%	50%	16	90	100%												
MV-22	96		48	120	100%		48	120	100%												
AH-1	48		24	90	100%		24	90	100%												
UH-1	12		6	60	100%		6	60	100%												

The annual aircraft training flight emissions are summarized in Table I.3-21.

Location			ŀ	Pollutant (TP)	Y)		
Location	SO_2	СО	PM_{10}	$PM_{2.5}$	NO_x	VOC 0.1 0.3 0.4 0.1 0.1 0.1 0.1 0.1	CO ₂
North							
Northwest Field	0.1	0.5	0.4	0.4	2.4	0.1	920.2
Andersen AFB	0.1	1.1	0.6	0.6	3.2	0.3	479.5
Sub Total	0.2	1.6	1.0	1.0	5.6	0.4	1399.8
Central							
Andersen South	0.1	0.5	0.5	0.5	1.9	0.1	179.5
Apra Harbor							
Orote	0.1	0.4	0.4	0.4	2.0	0.1	361.0
South							
NMS	0.3	1.4	1.8	1.8	10.6	***	1883.8
Note: CO2 emissions	are only availa	able for MV-22	2, CH-46, and	C-130 aircraft	and includes of	perations >300	0 feet.

Table I.3-21: Aircraft Training Flight Annual Emissions at Andersen AFB

3.3.4 Marine Vessel Training Emissions

Marine vessel training operations at Apra Harbor and Tinian would result in an increase in pollutant emissions. These emissions were estimated using emission factors, load factors, and power levels obtained from:

- Final EIS/OEIS Southern California Range Complex (U.S. Navy 2008).
- Current Methodologies and Best Practices in Preparing Port Emission Inventories (USEPA January 2006)

Navy vessel criteria pollutant emissions were analyzed using the U.S. Navy (2008) emission factors for each power level. For emission factors given with multiple power levels, the average level was assumed. The vessels are assumed to operate at 100% capacity for each given power level emission factor. For greenhouse gas emissions in terms of CO_2 emissions from Navy vessel operations were estimated based on the fuel consumption related emission factors provided by the California Air Resources Board (CARB) (CARB, 2008). Fuel consumption for each ship was estimated first based on individual vessel's rated horsepower associated with each combustion source type and the forecasted running hours. Combustion source types include boilers used in the Amphibious Assault Ship and diesel engines used in all other vessels. The fuel to be consumed in gallons for each ship was then multiplied by the emission factor to determine the annual CO_2 level.

Barge emissions were analyzed using tugboat emission factors, load factor, and power levels presented in USEPA (January 2006). Based on the power levels presented, an average power level of 3,357 kW was assumed.

Estimated average traveling distances for each vessel were multiplied by the traveling speeds presented below to give a traveling running time.

- Open Ocean: 15.0 knots/hr
- Outer Apra Harbor: 10.0 knots/hr
- Inner Apra Harbor: 5.0 knots/hr
- Landing Craft: 6.0 knots/hr
- LCAC: 5.0 knots/hr

• Barge: 5.0 knots/hr

A total running time was calculated by adding any additional idling time that may occur. The marine vessel operational running times are presented in Table I.3-33. The total running time was then multiplied by the emission factor for each vessel. The marine vessel training operational emissions are presented in Table I.3-34. These emissions are considered to be the same for all action alternatives.

Marine		Annual	One Way Tri Breako		Anr	ual Vessel Distance			Ship/Bo	at Speeds		Ship/Boat Travel	Chin/Doot	Total
Vessel Group	Ship Type	Vessel Miles Traveled	Outer Apra Harbor	Inner Apra Harbor	Open Ocean	Outer Apra Harbor	Inner Apra Harbor	Open Ocean	Outer Apra Harbor	Inner Apra Harbor	Landing Craft	Running Time	Idle Time	Running Time
			Miles			Miles			Mil	es/hr		hr	hr	hr
Ships Carry	ying Amphibious Vehicles													
	Amphibious Assault Ship (LHD)	56	3	1.5	38	12	6	17.3	11.5	5.8	-	4.3	-	-
	Dock Landing Ship (LSD)	56	3	1.5	38	12	6	17.3	11.5	5.8	-	4.3	-	-
	Amphibious Transport Dock (LPD)	56	3	1.5	38	12	6	17.3	11.5	5.8	-	4.3	-	-
Amphibious	s Vehicles											•		
	Landing Craft, Air Cushion (LCAC)	1,280	-	-	-	-	-	5.8	-	-	-	222.46	0.18	222.6
	Amphibious Assault Vehicle (AAV)	64	-	-	-	-	-	-	-	-	6.9	9.3	-	-
Escort Con	nbatant Ships													
	Guided Missile Cruiser (CG-47)	112	3	1.5	76	24	12	17.3	11.5	5.8	-	8.6	-	-
	Guided Missile Destroyer (DDG)	112	3	1.5	76	24	12	17.3	11.5	5.8	-	8.6	-	-
	Barge between Guam and Tinian	3,240	-	-	-	-	-	5.8	-	-	-	563.1	-	-

Table I.3-23: Marine Vessel Training Operational Emissions

					tance	Annual	Total		Emi	ssion F	actors (lb/hr)				Emissic	ons (tons	/yr)	
Location	Marine Vessel Group	Ship Type	Annual Vessel Transits	Sea to Shore	Load- Unload	Vessel Miles Traveled	Running Time (hr)	SO ₂	СО	РМ	NO _x	VOC	CO ₂	SO_2	со	РМ	NO _x	VOC	CO_2
	Ships Ca	errying Amphibi	ous Vehicle	?S															
		Amphibious Assault Ship (LHD)	4	14	-	56	4.3	120.7	6.8	24.2	40.1	5.1	382469	0.26	0.01	0.05	0.09	0.01	820
		Dock Landing Ship (LSD)	4	14	-	56	4.3	32.8	1.8	6.6	10.9	1.4	13707	0.07	0.00	0.01	0.02	0.00	29
		Amphibious Transport Dock					1.2	22.0	1.0		10.0		15050	0.07	0.00	0.01	0.00	0.00	25
	Amphihi	(LPD) ous Vehicles	4	14	-	56	4.3	32.8	1.8	6.6	10.9	1.4	17279	0.07	0.00	0.01	0.02	0.00	37
	Impilion	Landing Craft, Air Cushion																	
Apra Harbor		(LCAC)	320	-	4	1,280	222.6	25.4	25.4	55.3	43.3	3.9	2910	2.83	2.83	6.16	4.82	0.43	324
I T T T		Amphibious Assault Vehicle (AAV)	16	_	4	64	9.3	0.1	0.6	0.3	3.8	0.2	166	0.00	0.00	0.00	0.02	0.00	1
	Escort C	(AAV) ombatant Ships	-	-	4	04	9.5	0.1	0.0	0.5	5.0	0.2	100	0.00	0.00	0.00	0.02	0.00	1
		Guided Missile Cruiser (CG-47)	8	14	-	112	8.6	21.0	107.8	2.6	47.1	8.8	18955	0.09	0.46	0.01	0.20	0.04	81
		Guided Missile Destroyer (DDG)	8	14		112	8.6	17.9	104.0	2.5	48.9	8.0	23693	0.08	0.45	0.01	0.21	0.03	102
	Barge be	etween Guam ar	-			112	0.0	17.9	101.0	2.0	10.9	0.0	23075	0.00	0.15	0.01	0.21	0.05	102
			24	-	135	3,240	563.1	0.6	2.5	0.3	13.0	0.3	208	0.20	0.81	0.10	4.20	0.09	29
Tinian	Barge be	etween Guam ar	ıd Tinian																
1 1111411			24	-	135	3,240	563.1	0.6	2.5	0.3	13.0	0.3	208	0.20	0.81	0.10	4.20	0.09	29
													Total	4.21	5.38	6.45	13.78	0.70	1452

The total annual vessel emissions during the training exercises around Apra Harbor are summarized in Table I.3-35.

Туре			Po	llutant (TPY	<i>'</i>)		
Type	SO_2	СО	PM_{10}	<i>PM</i> _{2.5}	NO_x	VOC	CO_2
ShipsCarryingAmphibiousVehicles	0.4	0.0	0.1	0.1	0.1	0.0	886
Amphibious Vehicles	2.8	2.8	6.2	6.2	4.8	0.4	325
Escort Combat Ships	0.2	0.9	0.0	0.0	0.4	0.1	183
Barges	0.2	0.8	0.1	0.1	4.2	0.1	29
Total	3.6	4.5	6.4	6.4	9.5	0.6	1423

Table I.3-24: Marine Vessel Training Annual Emissions

Legend: NA = not available.

3.3.5 Training Vehicles Emissions

Training operations associated with the action alternative would generate emissions from ground vehicle training operations on both paved and unpaved roadways. Therefore, both vehicle exhaust emission and fugitive dust emission were estimated.

Vehicle Exhaust Emissions

Vehicle exhaust emissions were estimated using the USEPA Mobile6 emission factor model (USEPA August 2003) associated with each type of training vehicle, based on the fuel type, and at an assumed speed of 25 mph. Since Guam is exempt from using low sulfur fuel, the current typical diesel sulfur content (0.6%) was assumed in predicting both SO_2 and PM emissions from diesel-powered training vehicles. Emission factors for motor vehicles were determined for High Mobility Multipurpose Vehicle (HMMWV) that were modeled as light duty diesel trucks, light duty gasoline trucks, heavy duty diesel trucks, and diesel buses associated with default input parameters provided by the USEPA. Season sensitive emission factors were modeled for each given season (e.g., VOC and NO_x were analyzed for summer, and CO was analyzed for winter). The emission factors were then multiplied by the annual vehicle miles traveled for each type of vehicle during the training periods within specific training regions. Training vehicle operational exhaust emissions are shown in Table I.3-36 for activities on Guam and Tinian.

Vehicle Fugitive Dust Emissions

Fugitive dust emissions resulting from operations on unpaved roadways were estimated using the USEPA AP-42 (USEPA 1995) unpaved roads emission factor formula:

 $E = k(s/12)^a(S/30)^d - C$

 $(M/0.5)^{c}$

Table I.3-25: Training Vehicle Operational Exhaust Emissions

	A	Vahiala Tura	Annual			Emis	sion Fact	ors (g/mi)				Vehicle E	Emissions	s (tons/yr)		
Activity Area	Activity	Vehicle Type	VMT	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	CO	PM ₁₀	PM _{2.5}	NOx	VOC	CO ₂
	AMVOC Course	HMMWV	2,700	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.006	0.002	0.001	0.000	0.002	0.001	1.776
	Convoy Course	HMMWV	28,125	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.058	0.025	0.006	0.005	0.020	0.015	18.50
Andersen South	Vehicle-based Maneuver Training	HMMWV	25,313	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.052	0.023	0.005	0.005	0.018	0.014	16.65
l I	MOUT	Heavy Truck	5,625	4.40	2.01	0.52	0.48	5.84	0.46	1417.8	0.027	0.012	0.003	0.003	0.036	0.003	8.791
l I	Maintenance	Light Truck	36,000	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.371	0.001	0.000	0.032	0.036	20.39
	Security Patrols	Light Truck	26,000	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.268	0.001	0.000	0.023	0.026	14.73
Guam	Range	Heavy Truck	11,250	4.40	2.01	0.52	0.48	5.84	0.46	1417.8	0.055	0.025	0.006	0.006	0.072	0.006	17.58
Range	Maintenance	Light Truck	72,000	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.001	0.741	0.002	0.001	0.065	0.073	40.79
Complex	Security Patrols	Light Truck	11,250	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.116	0.000	0.000	0.010	0.011	6.373
	With increased	Bus	1,800	7.28	2.96	0.73	0.70	10.87	0.34	2342.9	0.014	0.006	0.001	0.001	0.022	0.001	4.649
1	MEU events -	HMMWV	300	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.001	0.000	0.000	0.000	0.000	0.000	0.197
Troop Transport	between Apra Harbor and Andersen South	Light Truck	120	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.001	0.000	0.000	0.000	0.000	0.068
1	Between NCTS	HMMWV	7,425	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.015	0.007	0.001	0.001	0.005	0.004	4.885
	Finegayan and Andersen South	Bus	2,475	7.28	2.96	0.70.	0.73	10.87	0.34	2342.9	0.020	0.008	0.002	0.002	0.030	0.001	6.392
1	Maneuver Area	Heavy Truck	19	4.40	2.01	0.52	0.48	5.84	0.46	1417.8	0.000	0.000	0.000	0.000	0.000	0.000	0.030
l I	Access Option 1	Light Truck	144	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.001	0.000	0.000	0.000	0.000	0.082
l I	Access Option 1	HMMWV	192	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.000	0.000	0.000	0.000	0.000	0.000	0.126
NIMO	Maneuver Area	Heavy Truck	48	4.40	2.01	0.52	0.48	5.84	0.46	1417.8	0.000	0.000	0.000	0.000	0.000	0.000	0.075
NMS	Access Option 2	Light Truck	360	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.004	0.000	0.000	0.000	0.000	0.204
Access	Access Option 2	HMMWV	480	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.000	0.000	0.000	0.000	0.000	0.000	0.316
l I	Manage 4 4 4 4	Heavy Truck	120	4.40	2.01	0.52	0.48	5.84	0.46	1417.8	0.000	0.000	0.000	0.000	0.001	0.000	0.188
l I	Maneuver Area	Light Truck	900	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.009	0.000	0.000	0.001	0.001	0.510
l I	Access Option 3	HMMW∨	1,200	1.86	0.81	0.18	0.16	0.63	0.49	596.8	0.000	0.001	0.000	0.000	0.001	0.001	0.789
	West Field to	HMMWV	10	0.16	0.81	0.18	0.16	0.63	0.49	596.8	0.000	0.000	0.000	0.000	0.000	0.000	0.007
l I	Bivouac Area	Bus	40	0.70	2.96	0.73	0.70	10.87	0.34	2342.9	0.000	0.000	0.000	0.000	0.000	0.000	0.103
	Bivouac Area to Ranges	Bus	128	0.70	2.96	0.73	0.70	10.87	0.34	2342.9	0.001	0.000	0.000	0.000	0.002	0.000	0.331
Tinian	Bivouac Area to San Jose	Bus	256	0.70	2.96	0.73	0.70	10.87	0.34	2342.9	0.002	0.001	0.000	0.000	0.003	0.000	0.661
	Range	Heavy Truck	125	0.48	2.01	0.52	0.48	5.84	0.46	1417.8	0.001	0.000	0.000	0.000	0.001	0.000	0.195
1	Maintenance	Light Truck	400	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.004	0.000	0.000	0.000	0.000	0.227
1	Security Patrols	Light Truck	800	0.01	9.34	0.03	0.01	0.81	0.92	513.9	0.000	0.008	0.000	0.000	0.001	0.001	0.453
				Tc	otal						0.258	1.627	0.031	0.026	0.345	0.195	165.62

Where:

- k, a, c, and d are empirical constants
- E = size specific emission factor (lb/VMT)
- s = surface material silt content (%)
- M = surface material moisture content (%)
- S = mean vehicle speed (mph)
- C = emission factor for 1980's vehicle fleet exhaust, brake wear and tire wear.

A material silt content of 3.63% for shoreline soils in Salton Sea, CA, as presented in the AP-42 backup document Analysis of the Fine Fraction of Particulate Matter in Fugitive Dust, (WRAP October 2005), was used for this analysis because the type of soil is similar to what is found in the Guam training area roads. The analysis also assumed average moisture content for public roads of 6.52% and a vehicle speed of 25 mph. The emission factors were then multiplied by the annual vehicle miles traveled for each type of vehicle during the training periods within specific training regions. The training vehicle operational fugitive dust emissions are shown in Table I.3-37.

3.3.6 On Base Vehicle Operational Emissions

On base emissions will occur from commuter vehicles traveling onto each base. The on base vehicle emissions were estimated using the same method described for the training vehicle operational emissions. Only exhaust emissions were analyzed since all roadways will be paved.

Average daily traffic trips were analyzed at each gate for each base. To be conservative, at each base the gate with the maximum amount of daily trips was chosen. Average annual vehicle miles traveled for each type of vehicle were estimated based on a 365 day per year work schedule. The different vehicle types traveling through the gates were analyzed with the following vehicle class mix as summarized in Attachment A in the Guam Implementation Strategy document:

- Class 1, 2, 3 Motorcycles, cars, pickups, cars/pickups with trailers: 91.4%
- Class 4, 5, 6, 7 Single unit trucks including buses: 7.8%
- Class 8 Multi unit truck with four axles: 0.5%
- Class 9 and larger Multi unit trucks with five or more axles: 0.3%

The estimated on base vehicle emissions are shown in Table I.3-38. On base emissions will occur from commuter vehicles traveling onto each base. The on base vehicle emissions were estimated using the same method described for the training vehicle operational emissions. Only exhaust emissions were analyzed since all roadways will be paved.

Table I.3-26: Training	Vehicle Fugitive Dust	Operational Emissions
------------------------	-----------------------	------------------------------

Activity Area	Activity	Vehicle	Annual VMT	Emission Fac	ctors (lb/VMT)	Emission	s (tons/yr)
Activity Alea	Activity	Туре	Annual VIVIT	PM ₁₀	PM _{2.5}	PM ₁₀	PM _{2.5}
Andersen South	MOUT Maintenance	Heavy Truck	5,625	0.297	0.0294	0.835	0.083
Andersen South		Light Truck	36,000	0.297	0.0294	5.346	0.529
	Security Patrols	Light Truck	26,000	0.297	0.0294	3.861	0.382
Guam Range	Range Maintenance	Heavy Truck	11,250	0.297	0.0294	1.671	0.165
Complex	-	Light Truck	72,000	0.297	0.0294	10.691	1.058
	Security Patrols	Light Truck	11,250	0.297	0.0294	1.671	0.165
	Maneuver Area Access	Heavy Truck	19	0.297	0.0294	0.003	0.000
	Option 1	Light Truck	144	0.297	0.0294	0.021	0.002
		HMMWV	192	0.297	0.0294	0.029	0.003
	Maneuver Area Access	Heavy Truck	48	0.297	0.0294	0.007	0.001
NMS Access	Option 2	Light Truck	360	0.297	0.0294	0.053	0.005
		HMMWV	480	0.297	0.0294	0.071	0.007
	Maneuver Area Access	Heavy Truck	120	0.297	0.0294	0.018	0.002
	Option 3	Light Truck	900	0.297	0.0294	0.134	0.013
		HMMWV	1,200	0.297	0.0294	0.178	0.018
	West Field to Bivouac Area	HMMWV	10	0.297	0.0294	0.001	0.000
	West Field to Bivouac Area	Bus	40	0.297	0.0294	0.006	0.001
	Bivouac Area to Ranges	Bus	128	0.297	0.0294	0.019	0.002
Tinian	Range Maintenance	Heavy Truck	125	0.297	0.0294	0.019	0.002
		Light Truck	400	0.297	0.0294	0.059	0.006
	Security Patrols	Light Truck	800	0.297	0.0294	0.119	0.012
		Total				24.812	2.455

Table I.3-27: On Base Vehicle Emissions

Activity	Gate	FHWA Vehicle	Annual VMT			Emissi	on Factor	s (g/mi)					Vehicle	Emissio	ns (tons/y	r)	
Area	Gale	Classification	Annual vivi	SO ₂	CO	PM ₁₀	PM _{2.5}	NOx	VOC	CO ₂	SO ₂	CO	PM ₁₀	PM _{2.5}	NOx	VOC	CO ₂
North ROI		1, 2, 3	36,411,780	0.007	5.13	0.025	0.011	0.23	0.31	368.0	0.273	205.903	0.991	0.450	12.603	9.352	14770.46
Marine	C8	4, 5, 6, 7	3,107,351	1.869	0.37	0.127	0.113	0.11	0.13	598.6	6.401	1.257	0.436	0.388	0.438	0.384	2050.37
Base	Co	8	199,189	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.962	0.061	0.079	0.073	0.062	0.117	309.81
Dase		9 and larger	119,514	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.577	0.037	0.047	0.044	0.037	0.070	185.89
	C1	1, 2, 3	8,241,168	0.007	5.13	0.025	0.011	0.23	0.31	368.0	0.062	46.603	0.224	0.102	2.852	2.117	3343.03
Andersen	C2	4, 5, 6, 7	703,294	1.869	0.37	0.127	0.113	0.11	0.13	598.6	1.449	0.285	0.099	0.088	0.099	0.087	464.06
AFB	C3	8	45,083	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.218	0.014	0.018	0.017	0.014	0.027	70.12
	C8	9 and larger	27,050	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.131	0.008	0.011	0.010	0.008	0.016	42.07
Central ROI	C1	1, 2, 3	2,245,863	0.007	5.13	0.025	0.011	0.23	0.31	368.0	0.017	12.700	0.061	0.028	0.777	0.577	911.04
Andersen	C2	4, 5, 6, 7	191,660	1.869	0.37	0.127	0.113	0.11	0.13	598.6	0.395	0.078	0.027	0.024	0.027	0.024	126.47
South	C3	8	12,286	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.059	0.004	0.005	0.005	0.004	0.007	19.11
oouin	C8	9 and larger	7,372	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.036	0.002	0.003	0.003	0.002	0.004	11.47
	C1	1, 2, 3	10,215,138	0.007	5.13	0.025	0.011	0.23	0.31	368.0	0.077	57.765	0.278	0.126	3.536	2.624	4143.78
Barrigada	C2	4, 5, 6, 7	871,751	1.869	0.37	0.127	0.113	0.11	0.13	598.6	1.796	0.353	0.122	0.109	0.123	0.108	575.22
Damyaua	C3	8	55,882	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.270	0.017	0.022	0.020	0.017	0.033	86.92
	C8	9 and larger	33,529	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.162	0.010	0.013	0.012	0.010	0.020	52.15
Naval Base		1, 2, 3	1,506,249	0.007	5.13	0.025	0.011	0.23	0.31	368.0	0.011	8.518	0.041	0.019	0.521	0.387	611.01
& Polaris	Total	4, 5, 6, 7	128,542	1.869	0.37	0.127	0.113	0.11	0.13	598.6	0.265	0.052	0.018	0.016	0.018	0.016	84.82
Point	TOLAI	8	8,240	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.040	0.003	0.003	0.003	0.003	0.005	12.82
1 Ont		9 and larger	4,944	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.024	0.002	0.002	0.002	0.002	0.003	7.69
South ROI		1, 2, 3	145,120	0.007	5.13	0.025	0.011	0.23	0.31	368.0	0.001	0.821	0.004	0.002	0.050	0.037	58.87
Naval	Total	4, 5, 6, 7	20,641	1.869	0.37	0.127	0.113	0.11	0.13	598.6	0.043	0.008	0.003	0.003	0.003	0.003	13.62
Ordnance	rolai	8	1,852	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.009	0.001	0.001	0.001	0.001	0.001	2.88
Signation		9 and larger	1,429	4.382	0.28	0.360	0.332	0.53	0.28	1411.0	0.007	0.000	0.001	0.001	0.000	0.001	2.22

On base annual commuting vehicle emissions were estimated using the methodology presented above and are summarized in Table I.3-39.

Location			Pollı	tant (TPY)						
Location	SO_2	СО	PM_{10}	<i>PM</i> _{2.5}	NO_x	VOC	CO ₂			
	On l	Base Comm	uting Vehicle	Emissions						
North										
Finegayan	8.2	207.3	1.6	1.0	9.9	13.1	17,316.5			
Andersen AFB	1.9	46.9	0.4	0.2	2.2	3.0	3,919.3			
Sub Total	10.1	254.2	1.9	1.2	12.2	16.1	21,235.8			
Central										
Andersen South	0.5	12.8	0.1	0.1	0.6	0.8	1,068.1			
Barrigada	2.3	58.1	0.4	0.3	2.8	3.7	4,858.1			
Sub Total	2.8	70.9	0.5	0.3	3.4	4.5	5,926.1			
Apra Harbor										
Naval Base & Polaris	0.3	8.6	0.1	0.0	0.4	0.5	716.3			
Point	0.5	0.0	0.1	0.0	0.4	0.5	/10.5			
South										
NMS	0.1	0.8	0.0	0.0	0.0	0.1	77.6			

3.3.7 Off Base On-road Vehicle Operational Emissions and Impact

Air quality impacts would also result from the provision of on-road vehicle operations and roadway constructions associated with the proposed action. Four alternatives, Alternatives 1, 2, 3, and 8, described previously are considered for the proposed development of Marine Corps Main Cantonment Area functions.

Potential air quality impacts associated with on-road vehicle and roadway constructions are analyzed through:

- Microscale carbon monoxide (CO) concentration modeling.
- Potential particulate matter (PM) evaluation.
- Roadway construction emissions forecasts for criteria pollutants.
- Vehicle air toxic pollutants evaluation.
- Mesoscale vehicular emissions forecast for criteria pollutants.

3.3.7.1 METHODOLOGY

Microscale CO Impact Modeling

Carbon monoxide (CO) exhaust is one of the major concerns associated with on-road vehicle operations. CO is considered a site-specific pollutant with higher concentrations found adjacent to roadways, especially near congested, signalized intersections. Mobile source CO air quality impacts are typically evaluated through a microscale analysis of traffic-related emissions at selected intersections. Procedures outlined by USEPA in *A Modeling Methodology for Predicting Pollutant Concentrations Near Roadway Intersections* (USEPA September 1995) and *Mobile6 User's Guide* (USEPA August 2003) were used to perform a microscale analysis of localized traffic-related CO concentrations for this study.

The modeling analysis includes estimates of emission factors and predictions of CO concentrations for selected intersections. A screening evaluation was performed to identify which intersections within the

project area are most congested and would be most affected by the build alternatives. Sites were considered to fail the screening evaluation if the level of service (LOS)ⁱ decreases below D in one of the build alternatives as compared to the no-action alternative, or if the delay and/or volume increase from the no-action to build alternatives scenario along with an LOS below D. CO impacts were estimated for receptor locations during weekday AM and PM peak periods.

Microscale air quality modeling was performed using the most recent version of the USEPA mobile source emission factor model (MOBILE6.2) (USEPA August 2003) and the USEPA's CAL3QHC (Version 2.0) (USEPA November 1992a). These air quality dispersion models were used to estimate future no-action (i.e., without the proposed project) and future build (i.e., with the proposed project) CO levels at selected locations in the project area. CO vehicular emissions were first estimated using the USEPA MOBILE 6.2 vehicular emission factor model (USEPA October 2002) that provides current and future estimates of emissions from highway motor vehicles by incorporating information on basic emission rates, realistic driving patterns, separation of start and running emissions, correction factors, and fleet.

These results were then input into CAL3QHC predict CO from motor vehicles at roadway intersections USEPA November 1992b). This model assumes that the dispersion of pollutants downwind of a pollution source follow a normal distribution from the center of the pollution source.

Different emission rates occur when vehicles are stopped (idling), accelerating, decelerating, and moving at different average speeds. CAL3QHC simplifies these different emission rates into two components:

- Emissions when vehicles are stopped (idling) during the red phase of a signalized intersection.
- Emissions when vehicles are in motion during the green phase of a signalized intersection.

The CAL3QHC air quality dispersion model has undergone extensive testing by USEPA and has been found to provide reliable estimates of inert (nonreactive) pollutant concentrations resulting from motor vehicle emissions.

Particulate Matter

On March 10, 2006, the USEPA issued a Final Rule regarding the localized or "hot-spot" analysis of particulate matter less than 2.5 microns in diameter ($PM_{2.5}$) and particulate matter less than 10 microns in diameter (PM_{10}) (CFR 2006). This rule requires that $PM_{2.5}$ hotspot analysis be performed only for transportation projects with significant diesel traffic in areas not meeting $PM_{2.5}$ air quality standards. The project area is classified as an attainment area for PM_{10} and $PM_{2.5}$.

The first step in this analysis is a determination as to whether the project is classified as one of air quality concern. A PM_{10} and/or $PM_{2.5}$ hot-spot analysis should be conducted if the project is determined to be a project of air quality concern, defined in 40 CFR 93.123(b)(1) as:

(i) New or expanded highway projects that have a significant number of or significant increase in diesel vehicles;

(ii) Projects affecting intersections that are at Level-of-Service (LOS) D, E, or F with a significant number of diesel vehicles, or those that will change to LOS D, E, or F because of increased traffic volumes from a significant number of diesel vehicles related to the project;

(iii) New bus and rail terminals and transfer points that have a significant number of diesel vehicles congregating at a single location;

(iv) Expanded bus and rail terminals and transfer points that significantly increase the number of diesel vehicles congregating at a single location; and

(v) Projects in or affecting locations, areas, or categories of sites which are identified in the PM_{10} or $PM_{2.5}$ applicable implementation plan or implementation plan submission, as appropriate, as sites of violation or possible violation.

Examples of projects of air quality concern that would be covered by 40 CFR 93.123(b)(1)(i) and (ii) include:

- A project on a new highway or expressway that serves a significant volume of diesel truck traffic, such as facilities with greater than 125,000 annual average daily traffic (AADT) where 8% or more of such AADT is diesel truck traffic;
- New exit ramps and other highway facility improvements to connect a highway or expressway to a major freight, bus, or intermodal terminal;
- Expansion of an existing highway or other facility that affects a congested intersection (operated at LOS D, E, or F) that has a significant increase in the number of diesel trucks; and
- Similar highway projects that involve a significant increase in the number of diesel transit buses and/or diesel trucks.

Roadway ADTs and truck percentage were used to determine if the project was one of air quality concern.

Roadway Construction Emissions

In contrast to vehicle operational activities, construction activities are usually of short duration and produce only temporary air quality effects. However, the cumulative impacts of large-scale construction activities occurring over many years could cause adverse localized and regional air quality effects. To determine the temporary air quality impacts arising from roadway construction, a detailed construction emissions analysis was conducted. Using the estimated project schedule, along with typical equipment requirements for specific tasks, emission burden from construction activities were estimated for CO, NOx, PM_{10} , $PM_{2.5}$, SO_2 and GHG emissions in terms of CO_2 Since construction emissions would also result from other proposed activities associated with the proposed action, roadway construction related emissions are addressed separately.

Mobile Source Air Toxics (MSATs)

The USEPA 2001 Mobile Source Air Toxic (MSAT) Rule identified 21 air toxic pollutants as MSATs. USEPA identified six of the 21 pollutants as of greatest concern due to their high relative emissions and risk and because state agencies have indicated that these pollutants are major mobile source pollutants of concern. These six pollutants became known as the "priority MSATs" as designated by the FHWA and include acetaldehyde, acrolein, benzene, 1-3 butadiene, formaldehyde, and diesel particulate matter plus diesel exhaust organic gases (DPM+DEOG). These priority MSATs are subject to change based on improved understanding of ambient levels and health effects (e.g., see the MSAT rule on the Control of Hazardous Air Pollutants from Mobile Sources (Federal Register, Vol. 71, No. 60, page 15813 and 15814, March 29, 2006).

In the 1999 National Air Toxics Assessment (NATA), released in 2006 (USEPA 1999), USEPA identified seven compounds with significant contributions from mobile sources that are among the national and regional-scale cancer risk. These are acrolein, benzene, 1,3- butadiene, diesel particulate matter plus diesel exhaust organic gases (diesel PM), formaldehyde, naphthalene, and polycyclic organic

matter. While FHWA considers these the priority mobile source air toxics, the list is subject to change and may be adjusted in consideration of future USEPA rules.

Health effects data used in this assessment comes from the NATA, which is an ongoing comprehensive evaluation of air toxics in the U.S. NATA assessments use general information about sources to develop estimates of risks which are more likely to overestimate impacts than underestimates them (USEPA 2009d). NATA provides estimates of the risk of cancer and other serious health effects from breathing (inhaling) air toxics in order to inform both national and more localized efforts to identify and prioritize air toxics, emission source types and locations which are of greatest potential concern in terms of contributing to population risk. Assessments include estimates of cancer and non-cancer health effects for diesel PM.

As part of the National Environmental Policy Act (NEPA) process, air toxics require review and evaluation as they could affect the quality of the human environment. The FHWA issued an Interim Guidance Update (FWHA 2009) regarding MSAT analysis for NEPA documentation. In this guidance the FHWA developed a tiered approach, which includes the following three levels:

- Tier 1 No analysis for projects with no potential for meaningful MSAT effects. These projects include:
 - Projects qualifying as a categorical exclusion under 23 CFR 771.117(c)
 - Projects exempt under the CAA Conformity Rule under 40 CFR 93.126
 - Other projects with no meaningful impacts on traffic volumes or vehicle mix
- Tier 2 Qualitative analysis for projects with low potential MSAT effects
- Tier 3 Quantitative analysis to differentiate alternatives for projects with higher potential MSAT effects. These projects include:
 - Projects that would create or significantly alter a major intermodal freight facility that has the
 potential to concentrate high levels of diesel PM in a single location
 - Projects that would create new or add significant capacity to urban highways, such as interstates, urban arterials, or urban collector-distribution routes with traffic volumes where the average annual daily traffic (AADT) is projected to be in the range of 140,000 to 150,000 vehicles or greater by the design year
 - Projects located in proximity to populated areas or in rural areas, in proximity to concentrations of sensitive populations (i.e., schools, nursing homes, hospitals).

Using this approach, an initial MSAT analysis for this project indicated that it would have a low potential for MSAT effects (i.e., Tier 2) (Parsons Brinkerhoff 2010). However, USEPA requested that an MSAT analysis based on the methodology described in the research report "Analyzing, Documenting, and Communicating the Impacts of Mobile Source Air Toxic Emissions in the NEPA Process" prepared for the American Association of State Highway and Transportation Officials (ASHTO) (ICF International 2007) be performed. Given the unusual scale of the proposed relocation as compared to other Navy actions and to accommodate USEPA's request as part of the NEPA disclosure process, this additional MSAT analysis was performed (Parsons Brinkerhoff 2010). As shown in Table I.3-40, the project is predicted to increase daily vehicle miles traveled (VMT) by 18% and associated regional emissions from 18% to 19% under Alternative 1. This is considered a significant increase in traffic for the project area.

			Emission Burden (TP))			
Scenario	VMT	Speed	СО	NOx	VOC	PM ₁₀	PM _{2.5}	SO ₂	CO ₂ 80,498,6 94,687,2		
2030 No-Action Alternative	3,535,224	28.6	13,388	478	801	78	57	562	80,498,6		
2030 Alternative 1	4,160,544	28.0	15,813	566	951	91	67	661	94,687,2		
Percent Chai	nge from No	Action	18%	18%	19%	18%	18%	18%	18%		

Table I.3-29: Daily Regional Emission Burdens (TPY) for Alternative 1

Legend: CO = carbon monoxide; VOC = volatile organic compounds; $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter;

 PM_{10} = particulate matter less than 10 microns in diameter; TPY = tons per year; NOx = nitrogen oxides; VMT = vehicle miles traveled.

FHWA requires quantitative emissions analysis for projects that involve new or additional capacity on roadways where the traffic volume will be 140,000 to 150,000 AADT. The 2030 average daily traffic (ADT) estimates for the three most traveled roadways under Alternative 1 are shown in Table I.3-41Table I.3-30. Since the ADTs are less than 140,000 for the design year, a quantitative MSAT analysis (Tier 3) is not required, but was nonetheless performed, as requested by USEPA (see Attachment B) and as described in this section.

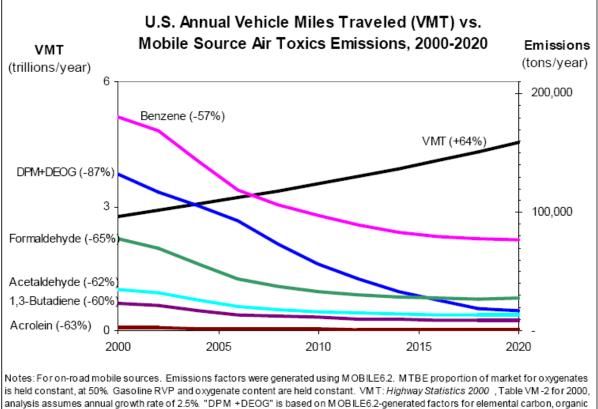
Table I.3-30: Average Daily Traffic for Major Roadways, Alternative 1

	Alternative 1 No	
Roadway	Build	Alternative 1 Build
Route 1	95,600	95,600
Route 8	58,500	58,600
Route 18	70,500	70,500

Information that is Unavailable or Incomplete

Evaluating the environmental and health impacts from MSATs on a proposed roadway project involves several key elements, including emissions modeling, dispersion modeling to estimate ambient concentrations resulting from the estimated emissions, exposure modeling to estimate human exposure to the estimated concentrations, and then a final determination of health impacts based on the estimated exposure. Each of these steps is associated with technical shortcomings or uncertain science that prevents a more complete determination of the MSAT health impacts of the proposed action as follows:

- **Emissions**. The USEPA tools to estimate MSAT emissions from motor vehicles are not sensitive to key variables determining emissions of MSATs in the context of roadway projects.
- **Dispersion**. The tools to predict how MSATs disperse are also limited. USEPA's current regulatory models, CALINE3 and CAL3QHC, were developed and validated more than a decade ago for the purpose of predicting episodic concentrations of CO to determine compliance with the NAAQS. The performance of dispersion models is more accurate for predicting maximum concentrations that can occur at some time at some location within a geographic area. This limitation makes it difficult to predict accurate exposure patterns at specific times at specific roadway project locations across an urban area to assess potential health risk.
- **Exposure Levels and Health Effects**. Finally, even if emission levels and concentrations of MSATs could be accurately predicted, shortcomings in current techniques for exposure assessment and risk analysis preclude reaching meaningful conclusions about project-specific health impacts. Exposure assessments are difficult because it is difficult to accurately calculate annual concentrations of MSATs near roadways and to determine the portion of a year that people are actually exposed to those concentrations at a specific location. These difficulties are magnified for 70-year (lifetime or chronic) cancer assessments, particularly because


unsupportable assumptions would have to be made regarding changes in travel patterns and vehicle technology, which affects emissions rates, over a 70-year period.

Emissions would likely be lower than present levels in the design year as a result of USEPA's national control programs that are projected to reduce MSAT emissions by 57% to 87% between 2000 and 2020 (Figure I.3-4). Local conditions on Guam may differ from these national projections in terms of fleet mix and turnover, VMT growth rates, and local control measures; however, the magnitude of the USEPA-projected reductions is so great that MSAT emissions are likely to be lower in the future in nearly all cases.

Methodology

The methodology for MSAT analysis in the 2007 AASHTO report consists of a decision tree keyed to a set of policy-related questions to identify the appropriate level of analysis based on project information, potential community impact, and the public's level of concern. The policy-related questions are keyed to technical questions which identify the appropriate level of analysis based on health risk considerations. The following summarizes the levels of analysis in this alternate MSAT analysis.

• Level 1 – no review required (Projects that fall under a categorical exclusion)

carbon and SO4 from diesel-powered vehicles, with the particle size cutoff set at 10.0 microns.

Figure I.3-2: Projected MSAT Emissions and Traffic Volumes (2000-2020)

• Level 2 – qualitative analysis recommended (Design activity less than 40,000 AADT for an intersection, or less than 100,000 AADT for an arterial, or less than 750 idling vehicle-hours per day for heavy duty diesel vehicles, or is a new or expanded intermodal facility)

- Level 3 Level 2 plus quantitative emissions analysis (Design activity above those as listed in Level 2; MSAT exposure not identified as a concern during scoping process; no increase in sensitive population in proximity to MSAT emissions)
- Level 4 Level 3 plus dispersion modeling to estimate concentration and risk from proposed action (Design activity above those as listed in Level 2; MSAT exposure identified as a concern during scoping process; increase in sensitive population in proximity to MSAT emissions; insufficient information on nearby population and human activity levels)
- Level 5 Level 4 plus population activity pattern analysis to estimate exposure risk (Design activity above those as listed in Level 2; MSAT exposure identified as a concern during scoping process; increase in sensitive population in proximity to MSAT emissions; available information on nearby population and human activity levels)

To determine the level of analysis required for this project, a Level 4 analysis was performed based on the following decision points:

- The project is not a categorical exclusion (Level 1)
- Several intersections have AADTs over 40,000 under the alternatives (Level 2)
- MSATs were raised as a concern (Level 3).

The Level 4 analysis conducted estimated whether the incremental health-related risk associated with the proposed project would exceed the following cancer and non-cancer thresholds:

- A maximum total incremental carcinogenic risk from the exposure to all identified pollutants of 10 in a million (10⁻⁶) and
- A maximum total incremental non-carcinogenic Hazard Index (HI) risk from the exposure to all identified pollutants of 1.

The analysis focused on operational emissions rather than construction phase emissions, because healthrelated risks for this analysis are based on long-term exposure. As the roadway construction phase of this project is temporary by nature and will be occurring at any given location for a relatively short period of time, the application of lifetime exposure rates are not justified (Parsons Brinkerhoff 2010).

It should be noted that the difference between the FHWA Interim Guidance and the method based on the AASHTO report is the criteria for when a quantitative analysis is required. The method based on the AASHTO report has a lower threshold in terms of traffic volumes and includes consideration of emissions from idling heavy duty diesel trucks.

The traffic forecasts discussed in the Final EIS, Volume 6, Chapter 4.2.2 and the future sensitive land use condition along the roadway network were used to determine the level of the analysis that would be applicable for the alternate analysis based on the AASHTO report as requested by the USEPA. Based on this data, it was determined that a Level 4 analysis would be conducted. As discussed with USEPA and FHWA, the maximum potential adverse effect intersections chosen for detailed CO analysis were analyzed to determine MSAT impacts along with the worst-case freeflow site. MSAT emission factors were estimated using USEPA's MOBILE6.2 emission factor program (USEPA October 2002). CAL3QHC dispersion modeling (USEPA November 1992a) was conducted using maximum potential adverse effect meteorology to estimate acute (short-term) impacts. These 1-hour values were then converted, using conservative traffic and meteorological persistence factors, to annual values in order to estimate annual impacts.

The MSAT analysis predicted the concentration levels at sidewalks near the most congested intersections. The actual neighborhood receptors would be substantially below the levels predicted at these hot spots. Cumulative localized effects from traffic-related mobile sources and power plants are typically negligible since stationary power plants are not usually located immediately adjacent to congested intersections where mobile source impact could be of concern. Therefore, the worst-case condition analyzed in this EIS for respective source categories is both source- and site-specific. The areas with potential exposure to multiple project sources would be unlikely to have impacts exceeding the worst-case levels already predicted around individual source category (i.e., a power plant or a heavily congested traffic intersection).

Human Health Risk Assessment Methodology

The procedures to estimate inhalation exposure concentration, hazard index, and cancer risk of toxic pollutants are outlined in the USEPA Human Health Risk Assessment Protocol (USEPA 2005), which is a guideline that can be used to perform health risk assessment for individual compounds with known health effects to determine the level of health risk posed by an increased ambient concentration of that compound at a potentially sensitive receptor. The derived health risk values from USEPA's Integrated Risk Information System (IRIS) (USEPA 2010) were used in this analysis to determine the total risk posed by the release of multiple MSATs.

Based on the analyses conducted for this project (Parsons Brinkerhoff 2010), none of the alternatives are anticipated to have significant MSAT impacts, as detailed in the following sections. There are several uncertainties associated with the analysis, but due to conservative assumptions, predicted risks are likely overestimated, but still well below target levels. The mesoscale vehicular and roadway construction emissions of criteria pollutants as well as GHG emissions in terms of CO_2 emissions were also considered through an estimate of vehicular emissions on the affected roadway system on Guam and construction equipment emissions during roadway construction. GHG emissions in terms of CO_2 Eq is presented in Volume 7 and in Section 4.4 of this appendix for all proposed alternatives, as these emissions are evaluated on a global or regional, rather than local level.

Mesoscale Emissions for Criteria Pollutants

Vehicular criteria emissions on a meso-scale (regional) basis were estimated using the USEPA MOBILE 6.2 vehicular emission factor model (USEPA October 2002) that provides current and future estimates of emissions from highway motor vehicles by incorporating information on basic emission rates, realistic driving patterns, separation of start and running emissions, correction factors, and fleet. The forecasted roadway traffic VMT under both conditions with and without the proposed action were used in association with Mobile 6.2 predicted emissions factors in order to determine the meso-scale emissions burden under the proposed action and are presented for the four alternatives.

3.3.7.2 ALTERNATIVE 1

Mesoscale Emissions Burden

For Alternative 1, the meso-scale regional emissions are predicted to increase in the range of 18% to 19%, as compared to the no-action alternative. This is primarily due to the estimated 18% increase in VMT under both alternatives as shown in Table I.3-41.

North - Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-42. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million (1 x 10⁻⁵). Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-31: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, North Region

Analysis Site	or Decrease ⁴ at Sidewalk Receptors/Actual Receptors		Cancer Risk Threshold	Estimated Non Hazard Ind Decrease Receptors/Ad	USEPA Hazard Index		
	2014	2030		2014	2030		
Route 1/28	1.60 x10 ⁻⁶ / 0.41 x10 ⁻⁶	1.00 x10 ⁻⁶ / 0.03 x10 ⁻⁶	10 in a million (1 x 10⁻⁵)	0.19 / 0.05	0.12 / 0.00	1	
Route 9/Andersen AFB North Gate	1.53 x10 ⁻⁶	0.32 x10 ⁻⁶	(1 x 10)	0.20	0.04		

¹ Indicates increase or decrease from No Build condition.

The criteria to determine if the project is one of air quality concern regarding particulate matter were applied and evaluated as follows:

• New or expanded highway projects that have a significant number of or significant increase in diesel vehicles.

The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 1 are provided in Table I.3-43. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

The largest increase in AADT for the roadways presented in Table I.3-43 is predicted to occur on Route 3 South of Route 28 in 2030. By applying a 2% truck percentage, the largest daily increase of 13,200 vehicles would result in a daily increase of 264 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

		2014		2030				
Roadway	No Build	Build	% Change	No Build	Build	% Change		
Route 3 and North Commercial Gate	0	66,900	NA	0	45,900	NA		
Route 3 South of Route 28	11,499	53,100	362 %	12,070	34,000	182%		

Table I.3-32: Average Daily Traffic for Major Roadways in North Project Section under Alternative 1

• Projects affecting intersections that are at LOS D, E, or F with a significant number of diesel vehicles, or those that will change to LOS D, E, or F because of increased traffic volumes from a significant number of diesel vehicles related to the project.

The proposed project is expected to affect intersections with a LOS of D, E or F. However, the effect on LOS due to the project options is due to an overall increase in volumes rather than a significant increase in diesel vehicles.

• New bus and rail terminals and transfer points that have a significant number of diesel vehicles congregating at a single location.

The project does not involve bus and rail terminals.

• Expanded bus and rail terminals and transfer points that significantly increase the number of diesel vehicles congregating at a single location.

The project does not involve bus and rail terminals.

• Projects in or affecting locations, areas, or categories of sites which are identified in the PM₁₀ or PM_{2.5} applicable implementation plan or implementation plan submission, as appropriate, as sites of violation or possible violation.

The area is classified as attainment.

Based on the above analysis, the project does not qualify as a project of air quality concern. A detailed discussion is provided in Attachment B.

Microscale CO Impact Analysis and Construction Emissions Estimate

North – Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project examining each ROI.As shown in Table I.3-44, 10 North ROI locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Five of these locations failed the screening criteria. The Route 1/28 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 9/Andersen Air Force Base (AFB) North Gate intersection was also chosen for analysis due to the extremely high delay predicted in the build scenario and the predicted high volumes at this location. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

			No-A	ction					Ви	ild		
Intersection		<i>a.m</i> .			<i>p.m</i> .			<i>a.m</i> .			<i>p.m</i> .	
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/9	1,565	В	15.8	1,650	В	14.6	2,485	С	22.5	3,525	D	52.2
Route 1/29	3,675	F	87.6	2,970	E	60.5	3,550	Е	65.5	3,400	E	67.7
Route 1/28	5,700	F	226.2	6,050	F	157.7	6,600	F	216.8	7,050	F	104.5
Route 3/3A	875	Α	9.5*	880	В	10.1*	910	В	11.6*	2,660	F	79.0*
Route 3/28	1,904	В	17.8	2,070	С	21.4	3,990	С	26.0	4,210	D	36.9
Route 15/29	1,760	F	****	1,575	F	683.5*	1,860	С	27.7	1,830	С	25.4
Route 3/ North (Commercial) Gate**	1,010	С	21.4*	970	С	15.7*	2,455	В	12.5	2,855	с	28.3
Route 3/ South (Main) Gate**	1,260	D	32.1*	1,200	С	20.7*	3,555	С	33.5	4,295	Е	58.6
Route 3/ Control Tree Drive (Residential) Gate	1,300	С	22.1*	2,745	F	51.4*	4,085	С	26.7	4,510	В	18.5
Route 9/ Andersen AFB North Gate**	1,480	Е	39.5*	1,385	D	35.1*	2,035	F	****	2,160	F	****

Notes: **** Delay exceeded maximum calculated value; * Unsignalized intersection.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-45 and Table I.3-46. The values in these tables represent the background CO concentration combined with the modeled results from USEPA's CAL3QHC microscale dispersion model using worst-case meteorological parameters, along with a.m. and p.m. peak traffic data. Emission factors were calculated using USEPA's MOBILE6.2 emission factor program. A background value must be added into the results of the dispersion analysis to account for others sources of CO that are not accounted for in the CAL3QHC modeling. Usually a value from a representative local ambient air quality monitor is used. Guam, however, does not have any local monitoring stations, as discussed earlier. Due to this, values from Hawaii were examined to determine their applicability to Guam. Using the 2006-2008 monitored data from the Punchbowl monitor, (rated as a middle scale monitor) located in Honolulu, Hawaii, the second highest maximum 1-hour reading was 1.7 parts ppm. This value was conservatively rounded to 2.0 ppm and represents the background CO concentration for this analysis. A persistence factor, that accounts for hourly variation of traffic and meteorological conditions, of 0.7, as recommended by USEPA was applied to the 1-hour CO concentrations to obtain 8-hour concentrations. As shown in Table I.3-45 and Table I.3-46, no violations of the applicable NAAQS are predicted.

	Existing			20	14		2030				
Analysis Site	EXIS	sung	No-Action Alternative 1 No-Action				Action	Alternative 1			
	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	р.т.	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	р.т.	
Route 1/28	5.5	6.0	6.2	6.2	6.9	7.3	5.6	5.8	6.0	4.2	
Route 9/Andersen AFB North Gate	3.8	4.5	4.2	4.5	3.6	4.5	3.8	4.5	4.2	4.5	

Table I.3-34: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – North, Alternative 1

Notes: 1-hour CO NAAQS = 35 ppm.

Includes a background concentration of 2 ppm.

Table I.3-35: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North Alternative 1

An aluaia Cita	Estations	2	014	2030		
Analysis Site	Existing	No-Action	Alternative 1	No-Action	Alternative 1	
Route 1/28	4.2	4.3	5.1	4.1	4.2	
Route 9/Andersen AFB North Gate	3.2	3.2	3.2	3.2	3.0	

Notes: 8-hour CO NAAQS = 9 ppm

Includes a background concentration of 1.4 ppm

North – Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed emission construction analysis was conducted. Using the estimated project schedule, along with typical equipment requirements for specific tasks, emission burden estimates of CO, NO_x , PM_{10} , and $PM_{2.5}$ were calculated. Equipment emissions were presumed to be Tier3, with high sulfur fuel as confirmed by the construction management team. Based on the preliminary schedule, the highest emissions levels per year, per month, and the year that these emissions are predicted to occur in North are shown in Table I.3-47

Table I.3-36: Estimated Construction Emission Burden – North, Alternative 1

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Month) (Tons)							
	2011	2011	2011	2011	2011	2011	2011

Central – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-48Table I.3-37. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Analysis Site	Estimated Cancer Risk Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors		Cancer Risk Threshold	Chronic He Increase or Side Recepto	Estimated Non-Cancer Chronic Hazard Index Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors	
	2014	2030		2014	2030	
Route 1/8	1.64 x10 ⁻⁶	0.78 x10 ⁻⁶	10 in a	0.19	0.10	
Route 4/7A	1.22 x10 ⁻⁶ / 0.66 x10 ⁻⁶	0.09 x10 ⁻⁶ / 0.01 x10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.62/0.08	0.00/0.00	1
Route 16/27	2.97 x10 ⁻⁶	1.99 x10⁻ ⁶	10)	0.32	0.20]
Route 1 West of Route 30	0.26 x10 ⁻⁶	0.06 x10 ⁻⁶		0.03	0.01	

Table I.3-37: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, Central Region

¹ Indicates increase or decrease from No Build condition.In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The ADT on the highest volume roadways under the No Build and Build Alternative 1 are provided in Table I.3-49. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

Table I.3-38: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 1

		2014	2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change
Route 1	79,337	100,300	26%	84,935	95,600	13%
Route 8	48,221	65,600	36 %	53,248	58,600	10 %
Route 18	49,196	74,000	50%	59,980	70,500	18%

The largest increase in AADT for the roadways is predicted to occur at Route 18 in 2014. By applying a 2% truck percentage, the largest daily increase of 20,963 vehicles would result in a daily increase of 4,193 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Central - Microscale CO Analysis

A screening analysis was performed to determine which Central ROI intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown Table I.3-50, 34 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Twenty-one (21) of these locations failed the screening criteria. The Route 1/8 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 4/7A intersection has the highest overall delay of any signalized intersection that failed the screening. This site was chosen for detailed analysis. The Route 16/27 intersection fails the screening criteria in other alternatives and was evaluated in this alternative for consistency. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

			No-A	Action					Bı	uild		
Intersection		a.m.			p.m.			a.m.			p.m.	
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/26	5,910	E	75.8	6,060	F	229.8	6,865	E	75.8	7,295	F	156.6
Route 1/27	5,950	F	157.2	5,875	F	533.7	6,860	F	137.4	7,605	F	374.3
Route 1/ 27A	3,195	Е	67.2	3,420	F	189.5	3,925	D	44.4	4,340	Е	75.7
Route 1/3	5,055	F	158.4	5,400	F	306.9	4,970	D	48.5	5,845	D	50.6
Route 1/16	5,905	D	52.2	6,410	F	305.5	6,950	E	65.3	7,490	F	87.5
Route 1/14	0,000		02.2	0,110	<u> </u>	000.0	0,000		00.0	1,100	<u> </u>	01.0
(Upper Tumon)	5,455	F	82.8	6,165	F	361.2	5,900	E	68.0	6,535	F	82.0
Route 1/ 14A (Opposite K-Mart)	5,550	F	124.1	6,170	F	259.9	5,985	F	112.2	6,790	F	131.5
Route 1/ 10A	6,935	F	82.9	7,055	F	117.2	7,485	F	118.1	7,695	F	102.0
Route 1/ 14B	6,120	E	60.5	6,485	F	91.8	6,485	F	83.9	6,775	E	78.2
Route 1/14	6,715	F	93.3	7,705	F	212.5	7,355	F	182.5	8,455	F	275.1
Route 1/30	6,355	F	273.9	6,975	F	440.9	6,825	F	134.7	7,385	F	267.2
Route 1/8	7,255	F	107.6	7,915	F	94.1	8,360	F	97.6	8,970	F	127.5
Route 1/4	7,535	D	43.4	7,470	D	38.6	6,665	С	32.4	8,775	F	140.2
Route 1/6 (Adelup)	3,770	С	24.1	5,125	F	91.7	4,255	D	40.6	6,240	Е	61.8
Route 1/6 (Westerly)	3,080	А	7.8	3,430	В	15.6	3,510	В	18.4	3,905	С	22.0
Route 4/7A	5,040	F	298.8	4,855	F	196.9	4,765	F	607.3	5,515	F	534.1
Route 4/10	4,305	F	95.5	4,365	F	115.9	4,665	F	199.5	4,705	E	65.1
Route 4/17	1,775	D	46.6	1,700	D	48.2	1,810	D	39.6	1,790	E	57.7
Route 4/4A	740	D	27.9*	925	C	21.2*	1,030	E	49.7*	1,790	 F	484.3*
Route 7/7A	1,985	F	77.7*	1,745	E	114.5*	1,935	D	29.2*	2,100	F	105.1*
Route 8/33 (East)	3,655	C	31.2	4,680	F	147.3	4,315	D	54.6	4,910	F	81.7
Route 8/10	6,410	F	122.0	6,295	F	116.5	6,435	F	96.9	7,010	F	172.7
Route 10/ 15	5,550	D	49.7	5,585	F	101.1	6,245	F	196.9	6,270	F	152.3
Route 16/ 27A	2,770	С	24.3	3,130	С	26.4	3,050	С	27.4	3,680	С	34.2
Route 16/ 27	6,590	F	275.1	6,970	F	486.4	7,665	F	345.0	7,790	F	288.7
Route 16/ 10A	6,178	F	874.2	4,880	F	208.7	5,035	F	123.1	5,725	F	123.5
Route 17/ 4A	720	С	17.0*	760	С	17.9*	700	В	13.6*	790	С	18.7*
Route 26/ 25	3,180	F	270.1	3,495	Е	71.7	3,415	С	31.2	3,930	D	41.0
Route 26/ 15	1,680	F	134.8*	1,790	F	2494.6*	2,015	С	27.9	2,115	С	32.1
Route 28/ 27A	2,920	F	353.1*	2,565	F	437.8*	2,735	D	35.6	2,640	D	36.6
Route 1/ Turner Street (Main Gate)	3,375	В	13.5*	3,650	F	458.6*	4,780	С	32.4	5,105	E	79.1
Route 15/ Road 1.16 M east of Route 26 (Second Gate)**	1,040	NA	NA	1,010	NA	NA	1,320	С	22.1*	1,410	С	22.6*
Route 16/ Sabana Barrigada	4,535	F	****	4,960	F	****	4,765	NA	NA	5,150	NA	NA

		No-Action						Build				
Intersection		a.m.			p.m.			a.m.			p.m.	
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 15/ Fadian Point Drive	1,385	E	50.0*	1,625	E	44.4*	1,560	NA	NA	345	NA	NA

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

Legend: NA = Not Applicable At The Time Of Analysis.

The results of the microscale analysis are shown in Table I.3-51 and Table I.3-52. The values in these tables, using the same analysis techniques and parameters as those applied in North, represent the predicted worst-case CO concentrations. As shown in Table I.3-51 and Table I.3-52, no violations of the applicable NAAQS are predicted.

Analysis Site	Existing			2014				2	2030			
			No-A	ction	Altern	ative 1	No-A	ction	Alternative 1			
	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .								
Route 1/8	6.0	6.4	6.1	6.4	7.3	7.6	5.8	5.4	6.2	6.4		
Route 4/7A	5.3	3.8	4.8	5.4	5.1	5.6	4.6	5.0	4.6	5.1		
Route 16/27	8.4	9.4	7.0	7.3	8.1	9.0	6.4	6.8	7.0	7.9		

Notes: 1-hour CO NAAQS = 35 ppm.

Includes a background concentration of 2 ppm.

Table I.3-41: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 1

Analysis Site	Existing		2014		2030
Analysis Sile	Existing	No-Action	Alternative 1 No-Action 5.3 4.1 3.9 3.5	Alternative 1	
Route 1/8	4.5	4.5	5.3	4.1	4.5
Route 4/7A	3.7	3.8	3.9	3.5	3.6
Route 16/27	6.6	5.1	6.3	4.8	5.5

Notes: 8-hour CO NAAQS = 9 ppm.

Includes a background concentration of 1.4 ppm.

Central - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed emission construction analysis was conducted using the same method as described for the North ROI. The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-53.

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)	8.5	13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on Highest		0.65	0.11	.11	0.05	0.48	129
Month) (Tons)							
Year Highest Monthly Emission Burden Predicted to	2012	2012	2012	2012	2012	2012	2012
Occur		&	&	&	&	&	&
		2013	2013	2013	2013	2013	2013

Table I.3-42: Estimated Construction Emission Burden – Central, Alternative 1

Apra Harbor – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-54. Based on these results, the following conclusions can be made:

- Maximum estimated changes in cancer risk at these locations are expected to decrease at the receptors analyzed due to the project. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated changes in the total chronic hazard index are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-43: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index,
Alternative 1, Apra Harbor

Analysis Site	Estimated Cancer Risk Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors 2014 2030		Cancer Risk Threshold	Increase of Chronic Ho Side Recepto	Non-Cancer r Decrease ¹ azard Index walk rs/Actual ptors	USEPA Hazard Index
	2014	2030		2014	2030	
Route 1/2A	-0.82 1 x 10 ⁻⁶	-0.06 1 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	-0.09	0.00	1

¹ Indicates increase or decrease from No Build condition.

PM impacts would be the same as those for the North Region, Alternative 1. The ADT on the highest volume roadways under the No Build and Build Alternative 1 are provided in Table I.3-55. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in Table I.3-55, the largest increase in AADT for the roadways presented is predicted to occur at Route 1 near Route 18 in 2030. By applying a 2% truck percentage, the largest daily increase of 7,158 vehicles would result in a daily increase of 143 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern with respect to $PM_{2.5}$.

Table I.3-44: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 1

		2014		2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 1 near Route 18	46,407	49,800	11%	41,142	48,300	17%	

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Apra Harbor - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-56, three locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. One of these locations failed the screening criteria. The Route 1/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in Table I.3-57 and Table I.3-58. The values in these tables, using the same analysis techniques and parameters as those applied in North, represent the predicted worst-case CO concentrations. As shown in Table I.3-57 and Table I.3-58, no violations of the applicable NAAQS are predicted.

		No-Action							Build					
Intersection		<i>a.m</i> .		<i>p.m</i> .		<i>a.m.</i>			<i>p.m</i> .					
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay		
Route 1/11	3,460	В	18.8	3,615	С	26.8	3,885	С	20.7	4,080	D	43.5		
Route 1/ Polaris Point	3,655	А	4.3	4,680	А	6.2	3,420	А	8.2	3,900	А	7.4		
Route 1/2a	3,790	Е	58.8	4,250	Е	55.5	4,275	Е	66.8	4,780	E	57.2		

Table I.3-45: Screening Analysis Locations – Apra Harbor, Alternative 1

Notes: * Unsignalized intersection;**** = Delay exceeded maximum calculated value

Indicates sites that failed the screening evaluation. Indicates site chosen for detailed CO microscale analysis.

Table I.3-46: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 1

	Existing			2	2014		2030				
Analysis Site			No-Action		Alternative 1		No-Action		Alternative 1		
	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	
Route 1/2A	4.7	4.3	5.6	4.7	5.3	5.1	4.3	3.9	4.3	3.9	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Analysis Site	Existing		2014	2030		
Analysis Sile	Existing	No-Action	Alternative 1	No-Action	Alternative 1	
Route 1/2A	3.3	3.9	3.7	3.0	3.0	

Table I.3-47: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 1

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

Apra Harbor - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for the North. The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table 1.3-59.

Table I.3-48: Estimated Construction Emission Burden – Apra Harbor, Alternative 1

	CO	NO _x	PM ₁₀	PM _{2.5}	VOC	SO ₂	CO ₂
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)	1.6	2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on Highest	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Month) (Tons)							
Year Highest Monthly Emission Burden Predicted to	2011	2011	2011	2011	2011	2011	2011
Occur							

South – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-60. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Table I.3-49: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 1, South Region

Analysis Site	Estimated Cancer Risk Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors		Cancer Risk Threshold	Chronic Ho Increase or Side Recepto	Non-Cancer azard Index Decrease ¹ at walk rs/Actual ptors	USEPA Hazard Index
	2014	2030		2014	2030	
Route 5/2A	0.46 x 10 ⁻⁶	0.08 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.01	0.05	1

¹ Indicates increase or decrease from No Build condition.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

PM impacts would be the same as those for the North Region, Alternative 1. The AADT on the highest volume roadways under the No Build and Build Alternative 1 are provided in Table I.3-61 As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 4 in 2014. By applying a 2% truck percentage, the largest daily increase of 1,767 vehicles would result in a daily increase of 35 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

		2014		2030				
Roadway	No Build	Build	% Change	No Build	Build	% Change		
Route 4	15,833	17,600	11%	21,504	20,100	-7%		

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

South - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-62, four locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. Two of these locations failed the screening criteria. The Route 5/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

Table I.3-51: Screening Analysis Locations – South, Alternative 1

		No-Action							Build					
Intersection		<i>a.m</i> .		<i>p.m</i> .		<i>a.m.</i>			<i>p.m.</i>					
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay		
Route 5/ 2A	2,885	D	53.0	3,115	С	22.7	3,280	F	96.3	3,335	С	26.2		
Route 5/17	3,655	D	28.9*	4,680	E	47.8*	1,035	F	56.8*	1,105	F	149.6*		
Route 2/12	2,245	F	83.1	2,200	С	25.4	2,380	С	27.8	2,350	С	27.1		
Route 5/ Harmon Road	347	А	9.7*	347	А	9.8*	385	А	9.5*	520	А	10.6*		

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation. Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-63 and Table I.3-64. The values in these tables, using the same analysis techniques and parameters as those applied in the North, represent the predicted worst-case CO concentrations. As shown in Table I.3-63 and Table I.3-64 no violations of the applicable NAAQS are predicted.

Table I.3-52: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South, Alternative 1

	Existing				2014		2030				
Analysis Site			No-Action		Alternative 1		No-Action		Altern	ative 1	
	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	р.т.	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	
Route 5/2A	4.2	3.9	4.2	3.9	4.5	4.0	3.5	3.5	4.0	3.7	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-53: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 1

Analysis Site	Existing	2014		2030		
	Existing	No-Action	Alternative 1	No-Action	Alternative 1	
Route 5/2A	2.9	2.9	3.2	2.5	2.8	
	0					

Notes: 8-hour CO NAAQS = 9 ppm.

Includes a background concentration of 1.4 ppm.

South - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North. As shown in Table I.3-65, construction emissions are negligible.

Table I.3-54: Estimated Construction Emission Burden – South, Alternative 1

	СО	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Highest Month) (Tons)							
Year Highest Monthly Emission Burden	2012	2013	2012	2012	2013	2013	2013
Predicted to Occur			&	&			
			2013	2013			

Proposed Mitigation Measures

Because the alternative is not predicted to cause a significant impact on air quality levels, no mitigation is proposed.

3.3.7.3 ALTERNATIVE 2 (PREFERRED ALTERNATIVE)

Mesoscale Emissions Burden

As shown in Table I.3-66, regional emissions are predicted to increase in the range of 18% to 19% under Alternative 2, as compared to the no-action alternative. This is primarily due to the estimated 18% increase in VMT under Alternative 2.

Scenario					Emission Burden (TPY)					
	VMT	Speed	СО	NOx	VOC	PM ₁₀	PM _{2.5}	SO ₂	CO ₂	
2030 No-Action Alternative	3,535,224	28.6	13,388	478	801	78	57	562	80,498,6	
2030 Alternative 2	4,160,544	28.0	15,813	566	951	91	67	661	94,687,2	
Percent Cha	nge from No-A		18%	18%	19%	18%	18%	18%	18%	

Table I.3-55: Daily Regional Emission Burdens (TPY), Alternative 2

Legend: CO = carbon monoxide; VOC = volatile organic compounds; $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter; PM_{10} = particulate matter less than 10 microns in diameter; TPY = tons per year; NOx = nitrogen oxides; VMT = vehicle miles traveled.

North – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-67. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Table I.3-56: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, North Region

Analysis Site	Increase or Side Recepto Reco	Cancer Risk Decrease ¹ at ewalk ors/Actual eptors	Cancer Risk Threshold	Estimated 1 Chronic Ha Increase or Side Recepto Rece	USEPA Hazard Index	
	2014 2030			2014	2030	
Route 1/28	1.6 x 10 ⁻⁶ / 0.41 x10 ⁻⁶	1.00 x 10 ⁻⁶ / 0.03 x 10 ⁻⁶	10 in a million (1 x	0.19 / 0.05	0.12 / 0.00	1
Route 9/Andersen AFB North Gate	0.97 x10 ⁻⁶	0.26 x 10 ⁻⁶	10 ⁻⁵)	0.18	0.07	

¹ Indicates increase or decrease from No Build condition.

In addition, based on proposed EPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 2 are provided in Table I.3-68. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

		2014		2030				
Roadway	No Build	Build	% Change	No Build	Build	% Change		
Route 3 and North Commercial Gate	0	66,900	NA	0	45,900	NA		
Route 3 South of Route 28	11,499	53,100	362 %	12,070	34,000	182%		

Table I.3-57: Average Daily Traffic for Major Roadways in North Project Section under Alternative 2

The largest increase in AADT for the roadways presented in Table I.3-68 is predicted to occur on Route 3 and the North Commercial Gate in 2014. By applying a 2% truck percentage, the largest daily increase of 66,900 vehicles would result in a daily increase of 1,338 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Microscale CO Impact Analysis and Construction Emissions Estimate

North - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-69 10 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Five of these locations failed the screening criteria. The Route 1/28 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 9/Andersen AFB North Gate intersection was also chosen for analysis due to the extremely high delay predicted in the build scenario and the predicted high volumes at this location. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

		Build										
Intersection	<i>a.m</i> .			<i>p.m</i> .			a.m.			<i>p.m</i> .		
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/9	1,565	В	15.8	1,650	В	14.6	2,485	С	22.5	3,525	D	52.2
Route 1/29	3,675	F	87.6	2,970	E	60.5	3,550	E	65.5	3,400	E	67.7
Route 1/28	5,700	F	226.2	6,050	F	157.7	6,600	F	216.8	7,050	F	104.5
Route 3/3A	875	А	9.5*	880	В	10.1*	910	В	11.6*	2,660	F	79.0*
Route 3/28	1,904	В	17.8	2,070	С	21.4	3,990	С	26.0	4,210	D	36.9
Route 15/29	1,760	F	****	1,575	F	683.5*	1,860	С	27.7	1,830	С	25.4
Route 3/ North (Commercial) Gate**	1,010	С	21.4*	970	С	15.7*	2,455	В	12.5	2,855	С	28.3
Route 3/ South (Main) Gate**	1,260	D	32.1*	1,200	С	20.7*	3,555	С	33.5	4,295	Е	58.6
Route 3/ Control Tree Drive (Residential) Gate	1,300	С	22.1*	2,745	F	51.4*	4,085	С	26.7	4,510	В	18.5
Route 9/ Andersen AFB North Gate**	1,480	E	39.5*	1,385	D	35.1*	2,035	F	****	2,160	F	****
Notes: *	Unsignaliz	ed i	intersectio	n; ****	* =	Delay	exceed	led	maximun	n calcu	lated	value.
Indicates	sites		that		failed		the		screenii	ng	eva	aluation.

Table I.3-58: Screening Analysis Locations – North, Alternative 2

Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-70 and Table I.3-71. The values in these tables, using the same analysis techniques and parameters as those applied in North under Alternative 1, represent the predicted worst-case CO concentrations. As shown in Table I.3-70 and Table I.3-71, no violations of the applicable NAAQS are predicted.

	Existing			20	14		2030			
Analysis Site			No-Action		Alternative 2		No-Action		Alternative 2	
	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.
Route 1/28	5.5	6.0	6.2	6.2	6.9	7.3	5.6	5.8	6.0	4.2
Route 9/Andersen AFB North Gate	3.8	4.5	4.2	4.5	3.6	4.5	3.8	4.5	4.2	4.5

Notes: 1-hour CO NAAQS = 35 ppm. Includes a background concentration of 2 ppm.

Table I.3-60: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North Region, Alternative 2

Analysis Site	Existing	20	14	2030		
Analysis Sile	Existing	No-Action	Alternative 2	No-Action	Alternative 2	
Route 1/28	4.2	4.3	5.1	4.1	4.2	
Route 9/Andersen AFB North Gate	3.2	3.2	3.2	3.2	3.2	

Notes: 8-hour CO NAAQS = 9 ppm.

Includes a background concentration of 1.4 ppm.

North - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for the North (Alternative 1). The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-72. These emissions were further combined with those from other project components and discussed in Volume 7 to determine the potential impact significance.

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Month) (Tons)							
Year Highest Monthly Emission Burden Predicted to	2011	2011	2011	2011	2011	2011	2011
Occur							

Table I.3-61: Estimated Construction Emission Burden – North, Alternative 2

Central - Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-73. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Table I.3-62: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, Central Region

Analysis Site	Estimated Cancer Risk Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors		Cancer Risk Threshold	Estimated Non-Cancer Chronic Hazard Index Increase or Decrease ¹ and Sidewalk Receptors/Actual Receptors		USEPA Hazard Index
	2014	2030		2014	2030	
Route 1/8	1.64 x 10 ⁻⁶	0.78 x 10 ⁻⁶	10 in a	0.19	0.10	
Route 4/7A	1.22 x 10 ⁻⁶ / 0.66 x 10 ⁻⁶	-0.09 x 10 ⁻⁶ / 0.01 x 10 ⁻⁶	10 in a million (x	0.62/0.08	0.00/0.00	1
Route 16/27	2.97 x 10 ⁻⁶	1.99 x 10 ⁻⁶	10 ⁻⁵)	0.32	0.20	
Route 1 West of Route 30	0.26 x 10 ⁻⁶	0.06 x 10 ⁻⁶		0.03	0.01	

¹ Indicates increase or decrease from No Build condition.

In addition, based on proposed EPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 2 are provided in Table I.3-74. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

		2014		2030			
Roadway	No	Build	%	No	Build	%	
	Build	Бина	Change	Build	Бина	Change	
Route 1	79,337	100,300	26%	84,935	95,600	13%	
Route 8	48,221	65,600	36 %	53,248	58,600	10 %	
Route 18	49,196	74,000	50%	59,980	70,500	18%	

Table I.3-63: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 2

The largest increase in AADT for the roadways presented in Table I.3-74 is predicted to occur under Route 8 in 2014. By applying a 2% truck percentage, the largest daily increase of 20,963 vehicles would result in a daily increase of 4,193 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Central - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-75, 34 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Twenty-one (21) of these locations failed the screening criteria. The Route 1/8 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 4/7A intersection has the highest overall delay of any signalized intersection fails the screening criteria in other alternatives and was evaluated in this alternative for consistency. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

			No-A	Action					Βι	uild		
Intersection	a.m.			p.m.			a.m.			p.m.		
	Volume	LOS	Delay									
Route 1/26	5,910	E	75.8	6,060	F	229.8	6,865	E	75.8	7,295	F	156.6
Route 1/27	5,950	F	157.2	5,875	F	533.7	6,860	F	137.4	7,605	F	374.3
Route 1/27A	3,195	E	67.2	3,420	F	189.5	3,925	D	44.4	4,340	E	75.7
Route 1/3	5,055	F	158.4	5,400	F	306.9	4,970	D	48.5	5,845	D	50.6
Route 1/16	5,905	D	52.2	6,410	F	305.5	6,950	E	65.3	7,490	F	87.5
Route 1/14 (Upper Tumon)	5,455	F	82.8	6,165	F	361.2	5,900	E	68.0	6,535	F	82.0
Route 1/14A (Opposite K-Mart)	5,550	F	124.1	6,170	F	259.9	5,985	F	112.2	6,790	F	131.5
Route 1/10A	6,935	F	82.9	7,055	F	117.2	7,485	F	118.1	7,695	F	102.0
Route 1/14B	6,120	E	60.5	6,485	F	91.8	6,485	F	83.9	6,775	E	78.2
Route 1/14	6,715	F	93.3	7,705	F	212.5	7,355	F	182.5	8,455	F	275.1
Route 1/30	6,355	F	273.9	6,975	F	440.9	6,825	F	134.7	7,385	F	267.2

Table I.3-64: Screening Analysis Locations – C	Central, Alternative 2
--	------------------------

			No-A	Action					Βι	uild		
Intersection		a.m.			p.m.			a.m.			p.m.	
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/8	7,255	F	107.6	7,915	F	94.1	8,360	F	97.6	8,970	F	127.5
Route 1/4	7,535	D	43.4	7,470	D	38.6	6,665	С	32.4	8,775	F	140.2
Route 1/6 (Adelup)	3,770	С	24.1	5,125	F	91.7	4,255	D	40.6	6,240	Е	61.8
Route 1/6 (Westerly)	3,080	А	7.8	3,430	В	15.6	3,510	В	18.4	3,905	С	22.0
Route 4/7A	5,040	F	298.8	4,855	F	196.9	4,765	F	607.3	5,515	F	534.1
Route 4/10	4,305	F	95.5	4,365	F	115.9	4,665	F	199.5	4,705	E	65.1
Route 4/17	1,775	D	46.6	1,700	D	48.2	1,810	D	39.6	1,790	E	57.7
Route 4/4A	740	D	27.9*	925	С	21.2*	1,030	E	49.7*	1,790	F	484.3*
Route 7/7A	1,985	F	77.7*	1,745	E	114.5*	1,935	D	29.2*	2,100	F	105.1*
Route 8/33 (East)	3,655	С	31.2	4,680	F	147.3	4,315	D	54.6	4,910	F	81.7
Route 8/10	6,410	F	122.0	6,295	F	116.5	6,435	F	96.9	7,010	F	172.7
Route 10/15	5,550	D	49.7	5,585	F	101.1	6,245	F	196.9	6,270	F	152.3
Route 16/ 27A	2,770	С	24.3	3,130	С	26.4	3,050	С	27.4	3,680	С	34.2
Route 16/ 27	6,590	F	275.1	6,970	F	486.4	7,665	F	345.0	7,790	F	288.7
Route 16/ 10A	6,178	F	874.2	4,880	F	208.7	5,035	F	123.1	5,725	F	123.5
Route 17/4A	720	С	17.0*	760	С	17.9*	700	В	13.6*	790	С	18.7*
Route 26/25	3,180	F	270.1	3,495	E	71.7	3,415	С	31.2	3,930	D	41.0
Route 26/15	1,680	F	134.8*	1,790	F	2494.6*	2,015	С	27.9	2,115	С	32.1
Route 28/27A	2,920	F	353.1*	2,565	F	437.8*	2,735	D	35.6	2,640	D	36.6
Route 1/ Turner Street (Main Gate)	3,375	В	13.5*	3,650	F	458.6*	4,780	С	32.4	5,105	Е	79.1
Route 15/ Road 1.16 M east of Route 26 (Second Gate)**	1,040	NA	NA	1,010	NA	NA	1,320	С	22.1*	1,410	С	22.6*
Route 16/ Sabana Barrigada	4,535	F	****	4,960	F	****	4,765	NA	NA	5,150	NA	NA
Route 15/ Fadian Point Drive	1,385	E	50.0*	1,625	E	44.4*	1,560	NA	NA	345	NA	NA

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value. Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

Legend: NA = Not Applicable At The Time Of Analysis.

The results of the microscale analysis are shown in Table I.3-76 and Table I.3-77. The values in these tables, using the same analysis techniques and parameters as those applied in the North Region (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-76 and Table I.3-77, no violations of the applicable NAAQS are predicted.

Analysis Site	Evic	Existing			2014		2030				
	Existing		No-Action		Alternative 2		No-Action		Alternative 2		
	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	
Route 1/8	6.0	6.4	6.1	6.4	7.3	7.6	5.8	5.4	6.2	6.4	
Route 4/7A	5.3	3.8	4.8	5.4	5.1	5.6	4.6	5.0	4.6	5.1	
Route 16/27	8.4	9.4	7.0	7.3	8.1	9.0	6.4	6.8	7.0	7.9	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-66: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 2

Analysis Site	Existing		2014	2030		
Analysis Site	LAIStilly	No-Action	Alternative 2	No-Action	Alternative 2	
Route 1/8	4.5	4.5	5.3	4.1	4.5	
Route 4/7A	3.7	3.8	3.9	3.5	3.6	
Route 16/27	6.6	5.1	6.3	4.8	5.5	

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

Central - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed emission construction analysis was conducted using the same method as described for North (Alternative 1). The highest emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-78. These emissions were further combined with those from other project components and discussed in Volume 7 to determine the potential impact significance.

Table I.3-67: Estimated Construction Emission Burden – Central, Alternative 2

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)	8.5	13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on	0.42	0.65	0.11	.11	0.05	0.48	129
Highest Month) (Tons)							
Year Highest Monthly Emission Burden	2012	2012	2012	2012	2012	2012	2012
Predicted to Occur		&	&	&	&	&	&
		2013	2013	2013	2013	2013	2013

Apra Harbor – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-79Table I.3-68. Based on these results, the following conclusions can be made:

- Maximum estimated changes in cancer risk at these locations are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated changes in the total chronic hazard index are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed EPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Analysis Site	Estimated Cancer Risk Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors		Cancer Risk Threshold	Chronic H Increase or Side Recepto	Estimated Non-Cancer Chronic Hazard Index Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors	
	2014	2030		2014	2030	
Route 1/2A	-0.82 x 10 ⁻⁶	-0.16 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	-0.09	-0.02	1

Table I.3-68: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2 Apra Harbor

¹ Indicates increase or decrease from No Build condition.Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 2 are provided in Table I.3-80. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 1 near Route 18 in 2030. By applying a 2% truck percentage, the largest daily increase of 7,158 vehicles would result in a daily increase of 143 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Table I.3-69: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 2

		2014		2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 1 near Route 18	46,407	49,800	11%	41,142	48,300	17%	

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Apra Harbor - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-81, three locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. One of these locations failed the screening criteria. The Route 1/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

		ction	Build									
Intersection	<i>a.m</i> .			<i>p.m</i> .			<i>a.m.</i>			<i>p.m</i> .		
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/11	3,460	В	18.8	3,615	С	26.8	3,885	С	20.7	4,080	D	43.5
Route 1/ Polaris Point	3,655	А	4.3	4,680	А	6.2	3,420	А	8.2	3,900	А	7.4
Route 1/2A	3,790	Е	58.8	4,250	E	55.5	4,275	Е	66.8	4,780	Е	57.2
Notes: *	Unsignal	ized	intersect	ion; **	** =	= Dela	ay exce	eded	maximu	ım calc	ulated	value
Indicates	site	s	tha	ıt	faile	d	the		screen	ing	eva	aluation.
Indicates site	chosen for	detailed	CO mici	roscale ana	lysis.							

Table I.3-70: Screening Analysis Locations – Apra Harbor, Alternative 2

The results of the microscale analysis are shown in Table I.3-71 and Table I.3-72. The values in these tables, using the same analysis techniques and parameters as those applied in the North Region (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-71 and Table I.3-72, no violations of the applicable NAAQS are predicted.

	Existing				2014		2030				
Analysis Site			No-Action		Alternative 2		No-Action		Alternative 2		
	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	р.т.	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	
Route 1/2A	4.7	4.3	5.6	4.7	5.3	5.1	4.3	3.9	4.3	3.9	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-72: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2

Analysis Site	Existing		2014	2030			
Analysis Sile	Existing	No-Action	Alternative 2	No-Action	Alternative 2		
Route 1/2A	3.3	3.9	3.7	3.0	3.0		

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

Apra Harbor - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-84. These emissions were further combined with those from other project components and discussed in Volume 7 to determine the potential impact significance.

Table I.3-73:Estimated Construction Emission Burden – Apra Region, Alternative 2

	СО	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)	1.6	2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Highest Month) (Tons)							
Year Highest Monthly Emission Burden	2011	2011	2011	2011	2011	2011	2011
Predicted to Occur							

South – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-85. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed EPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-74: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2, South Region

				Estimated	Non-Cancer	USEPA
Analysis Site	Estimated Cana	er Risk Increase or		Chronic H	Hazard	
		at Sidewalk	Cancer Risk	Increase or	Index	
			Threshold	Sid		
	Kecepiors/Ad	ctual Receptors		Receptors/Actual		
				Rec	eptors	
	2014	2030		2014	2030	
Route 5/2A	0.46 x 10 ⁻⁶	0.08 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.05	0.01	1

¹ Indicates increase or decrease from No Build condition.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 2 are provided in Table I.3-86. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 4 in 2014. By applying a 2% truck percentage, the largest daily increase of 1,767 vehicles would result in a daily increase of 35 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Table I.3-75: Average Daily Traffic for Major Roadways in South Project Section	n under Alternative 2
---	-----------------------

		2014		2030				
Roadway	No Build	Build	% Change	No Build	Build	% Change		
Route 4	15,833	17,600	11%	21,504	20,100	-7%		

South -Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-87, four locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. Two of these locations failed the screening criteria. The Route 5/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in Table I.3-88 and Table I.3-89. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-88 and Table I.3-89, no violations of the applicable NAAOS are predicted.

Table I.3-76: Screening Analysis Lo	ocations – South, Alternative 2
-------------------------------------	---------------------------------

		ction		Build								
Intersection	<i>a.m.</i>			<i>p.m</i> .			<i>a.m.</i>			<i>p.m</i> .		
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 5/ 2A	2,885	D	53.0	3,115	С	22.7	3,280	F	96.3	3,335	С	26.2
Route 5/17	3,655	D	28.9*	4,680	E	47.8*	1,035	F	56.8*	1,105	F	149.6*
Route 2/12	2,245	F	83.1	2,200	С	25.4	2,380	С	27.8	2,350	С	27.1
Route 5/ Harmon Road	347	A	9.7*	347	А	9.8*	385	A	9.5*	520	A	10.6*
Notes: *	Unsigna	lized	intersect	tion; **	***	= Del	ay exce	eded	maximu	ım calc	ulated	value.
Indicates	site	s	tha	at	faile	ed	the		screen	ing	ev	valuation.
Indicates site	chosen for	detailed	1 CO mic	roscale ana	alvsis.							

Analysis Site	Existing				2014		2030				
			No-Action		Alternative 2		No-Action		Alternative 2		
	a.m.	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	
Route 5/2A	4.2	3.9	4.2	3.9	4.5	4.0	3.5	3.5	4.0	3.7	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-78: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 2

Analysis Site Existing			2014	2030		
Analysis Sile	Existing	No-Action	Alternative 2	No-Action	Alternative 2	
Route 5/2A	2.9	2.9	3.2	2.5	2.8	
Nieme August 00						

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

South - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). As shown in Table I.3-90, construction emissions are negligible.

	СО	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Year Highest Monthly Emission Burden Predicted to Occur	2012	2013	2012 & 2013	2012 & 2013	2013	2013	2013

Table I.3-79: Estimated Construction Emission Burden – South, Alternative 2

Proposed Mitigation Measures

Because the alternative is not predicted to cause a significant impact on air quality levels, no mitigation is proposed.

3.3.7.4 ALTERNATIVE 2 CONSTRAINED

As of February 2010, a limited number of off base roadway projects had been identified as having funding or reasonable expectation of being funded. Additional traffic analysis was completed for the 17 roadways and 42 intersections, assuming that only a limited number of projects would be funded. These projects are either DAR-certified or determined to be DAR-eligible at this time (see Volume 1, Section 1.1.4 Project Location, Funding, and Setting). The evaluation of the remaining road projects for DAR eligibility and certification is continuing. The additional analysis that was performed for Alternative 2 (the preferred alternative) included only the following off base roadway and intersection projects:

- Route 3, Route 28 to Route 9; widen to five lanes
- Route 9, Route 3 to AAFB North gate; widen to five lanes
- Route 9, AAFB to Route 1; widen to three lanes
- Route 1/3 Intersection
- Route 1/8 Intersection
- Route 1/11 Intersection
- Route 3/3A Intersection
- Access points as described for preferred alternative (Alternative 2)

The purpose of analyzing the impacts of only these roadway improvements is to determine the impact of the housing and additional military base traffic on air quality with only a select number of roadway improvement projects. Since the majority of the relocated military population will be residing in the Finegayan area, the roadways adjacent to this area, Routes 3 and 9, will receive the majority of the new traffic and consequent localized air quality impacts. The majority of the roadway projects that are expected to be funded are in the Finegayan area.

The methodology for assessing air quality impacts is the same as described in this Chapter for the off base roadway alternatives. Impacts for both 2014 and 2030 were analyzed in the models. The results are reported for all of the roadways included in the full Alternative 2 analysis, however, only the roadway improvements listed above were included in the modeling of the impacts.

Mesoscale Emissions Burden

The mesoscale emissions burden under Alternative 2 Constrained is shown in Table I.3-91 and the overall emissions predicted would increase in the range of 18% to 19% above No Build condition and they are the same as compared to Alternative 1 and Alternative 2. This is primarily due to the estimated 18% increase in VMT under Alternative 2 Constrained.

Table I.3-80: Regional Annual Emission Burdens, Alternative 2 Constrained

			Emission Burden (TPY)						
Scenario	VMT	Speed	CO	NO_x	VOC	PM_{10}	<i>PM</i> _{2.5}	SO_2	CO_2
2030 Alternative 2 Constrained	4,160,544	28.0	15,813	566	951	91	67	661	94,687,2

Legend: CO = carbon monoxide; CO₂ = carbon dioxide; NOx = nitrogen oxides; $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter; PM_{10} = particulate matter less than 10 microns in diameter; SO_2 = sulfur dioxide; TPY = tons per year; VMT = vehicle miles traveled; VOC = volatile organic compound.

North

MSATs and PM

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-92. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk (Table I.3-92) at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Table I.3-81: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2 Constrained, North Region

	Estimated Cancer Risk Increase or Decrease at			Chronic H	Non-Cancer azard Index Decrease at	
	Sidewalk Receptors/Actual		Cancer	Sidewalk Receptors/Actual		USEPA
	Receptors $(x10^{-6})$		Risk	*	ptors	Hazard
Analysis Site	2014	2030	Threshold	2014	2030	Index
Route 1/28	1.14 / 0.29	1.00 / 0.14	10	0.15 / 0.04	0.07 / 0.02	1
Route 9/Andersen AFB North Gate	0.99	0.26	10	0.23	0.23	I

Legend: AFB = Air Force Base; USEPA = United States Environmental Protection Agency.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build (i.e., no-action alternative) and Build (i.e., Alternative 2 Constrained) conditions are less than existing risks in most cases.

PM impacts would be the same as those for the North Region, Alternative 1. The ADT on the highest volume roadways under the No Build and Build Alternative 2 Constrained are provided in Table I.3-93. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

	2014			2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 3 and North Commercial Gate	0	66,900	NA	0	45,900	NA	
Route 3 South of Route 28	11,499	53,100	362 %	12,070	34,000	182%	

 Table I.3-82: Average Daily Traffic for Major Roadways in North Project Section under Alternative 2

 Constrained

The largest increase in AADT for the roadways presented in Table I.3-94 is predicted to occur on Route 3 and the North Commercial Gate in 2014. By applying a 2% truck percentage, the largest daily increase of 66,900 vehicles would result in a daily increase of 1,338 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern with respect to $PM_{2.5}$.

Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. 10 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Five of these locations failed the screening criteria. The Route 1/28 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 9/Andersen AFB North Gate intersection was also chosen for analysis due to the extremely high delay predicted in the build scenario and the predicted high volumes at this location. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in Table I.3-94 and Table I.3-95. The values in these tables, using the same analysis techniques and parameters as those applied in the North Region under Alternative 1, represent the predicted worst-case CO concentrations and no violations of the applicable NAAQS are predicted.

Construction Emissions Analysis. Alternative 2 Constrained would involve less construction activity than proposed for Alternative 2. As such, construction emissions for this alternative are expected to lower than those predicted for Alternative 2.

	Existing		2014		2030		
Analysis Site	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	
Route 1/28	5.5	6.0	7.0	7.5	5.8	6.2	
Route 9/Andersen AFB North Gate	3.8	4.5	4.2	4.4	3.6	4.5	
Notes 1 hour CO NAAOC 25 nmm Includes a heat/ground concentration of 2 nmm							

Notes: 1-hour CO NAAQS = 35 ppm. Includes a background concentration of 2 ppm.

Legend: AFB = Air Force Base; CO = carbon monoxide; NAAQS - National Ambient Air Quality Standards, ppm = parts per million.

Table I.3-84: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North Region, Alternative 2 Constrained

Analysis Site	Existing	2014	2030
Route 1/28	4.2	5.3	4.3
Route 9/Andersen AFB North Gate	3.2	3.1	3.2

Notes: 8-hour CO NAAQS = 9 ppm. Includes a background concentration of 1.4 ppm.

Legend: AFB = Air Force Base; CO = carbon monoxide; NAAQS - National Ambient Air Quality Standards, ppm = parts per million.

Central

MSATs and PM

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-96. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-85: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 2 Constrained, Central Region

	Increase or Side Recepto	Cancer Risk Decrease at walk rs/Actual rs (x10 ⁻⁶)	Cancer Risk	Chronic Ha Increase or Sidewalk	Non-Cancer azard Index Decrease at Receptors Receptors	USEPA Hazard
Analysis Site	2014	2030	Threshold	2014	2030	Index
Route 1/8	2.60	1.21		0.27	0.11	
Route 4/7A	1.56/0.81	1.21/0.27	10	0.66/0.10	0.01/0.01	4
Route 16/27	1.58	0.69	10	0.20	0.09	I
Route 1 West of Route 30	0.26	0.06		0.03	0.01	

Legend: USEPA = United States Environmental Protection Agency.

PM impacts would be the same as those for the North Region, Alternative 1. The ADT on the highest volume roadways under the No Build and Build Alternative 2 Constrained are provided in Table I.3-97. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

The largest increase in AADT for the roadways presented in Table I.3-97 is predicted to occur under Route 8 in 2014. By applying a 2% truck percentage, the largest daily increase of 20,963 vehicles would result in a daily increase of 4,193 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Table I.3-86: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 2 Constrained

	2014			2030			
			%			%	
Roadway	No Build	Build	Change	No Build	Build	Change	
Route 1	79,337	100,300	26%	84,935	95,600	13%	
Route 8	48,221	65,600	36 %	53,248	58,600	10 %	
Route 18	49,196	74,000	50%	59,980	70,500	18%	

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern with respect to $PM_{2.5}$.

Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. 34 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Twenty-one (21) of these locations failed the screening criteria. The Route 1/8 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 4/7A intersection has the highest overall delay of any signalized intersection that failed the screening. This site was chosen for detailed analysis. The Route 4/7A intersection has the highest overall delay of any signalized intersection fails the screening criteria in other alternatives and was evaluated in this alternative for consistency. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in Table I.3-98 and Table I.3-99Table I.3-88. The values in these tables, using the same analysis techniques and parameters as those applied in the North Region (Alternative 1), represent the predicted worst-case CO concentrations and no violations of the applicable NAAQS are predicted.

Table I.3-87: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 2 Constrained

	Existing		20	14	2030	
Analysis Site	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.
Route 1/8	6.0	6.4	6.7	7.6	5.6	6.2
Route 4/7A	5.3	3.8	6.0	6.1	5.4	5.3
Route 16/27	8.4	9.4	7.9	8.4	6.7	7.3

Notes: 1-hour CO NAAQS = 35 ppm. Includes a background concentration of 2 ppm.

Legend: CO = carbon monoxide; NAAQS - National Ambient Air Quality Standards, ppm = parts per million.

Table I.3-88: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 2 Constrained

Analysis Site	Existing	2014	2030
Route 1/8	4.5	5.3	4.3
Route 4/7A	3.7	4.3	3.8
Route 16/27	6.6	5.9	5.1
Names O Marine OO N			

NOTES: 8-HOUR CO NAAQS = 9 PPM. INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

 $\label{eq:legend: CO = Carbon Monoxide; NAAQS - National Ambient Air Quality Standards, \ ppm = parts \ per \ million.$

Construction Emissions Analysis

Alternative 2 Constrained would involve less construction activity than proposed for Alternative 2. As such, construction emissions for this alternative are expected to lower than those predicted for Alternative 2.

Apra Harbor

MSATs and PM

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-100. Based on these results, the following conclusions can be made:

- Maximum estimated changes in cancer risk at these locations are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated changes in the total chronic hazard index are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-89: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index,
Alternative 2 Constrained Apra Harbor

				Estimated 1	Von-Cancer	
	Estimated	Cancer Risk		Chronic H		
	Increase of	r Decrease at		Increase or		
	Sid	ewalk		Side		
	Receptors/Actual		Cancer	Receptors/Actual		USEPA
	Receptors $(x10^{-6})$		Risk	Receptors		Hazard
Analysis Site	2014	2030	Threshold	2014	2030	Index
Route 1/2A	-0.82	-0.06	10	-0.09	-0.00	1

Legend: USEPA = United States Environmental Protection Agency.

PM impacts would be the same as those for the North Region, Alternative 1. The ADT on the highest volume roadways under the No Build and Build Alternative 2 Constrained are provided in Table I.3-101 As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 1 near Route 18 in 2030. By applying a 2% truck percentage, the largest daily increase of 7,158 vehicles would result in a daily increase of 143 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project

is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Table I.3-90: Average Daily Traffic for Major Roadways in Apra Harbor Project Section under Alternative 2 Constrained

	2014			2030		
			%			%
Roadway	No Build	Build	Change	No Build	Build	Change
Route 1 near Route 18	46,407	49,800	11%	41,142	48,300	0.0%

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern with respect to $PM_{2.5}$.

Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. Three locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. One of these locations failed the screening criteria. The Route 1/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in Table I.3-102 and Table I.3-103. The values in these tables, using the same analysis techniques and parameters as those applied in the North Region (Alternative 1), represent the predicted worst-case CO concentrations and no violations of the applicable NAAQS are predicted.

Table I.3-91: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2 Constrained

	Existing		20	14	2030	
Analysis Site	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
Route 1/2A	4.7	4.3	5.3	5.1	4.3	3.9

NOTES: 1-HOUR CO NAAQS = 35 PPM. INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

LEGEND: CO = CARBON MONOXIDE; NAAQS - NATIONAL AMBIENT AIR QUALITY STANDARDS, PPM = PARTS PER MILLION.

Table I.3-92: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 2 Constrained

Analysis Site	Existing	2014	2030
Route 1/2A	3.3	3.7	3.0

NOTES: 8-HOUR CO NAAQS = 9 PPM. INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

LEGEND: CO = CARBON MONOXIDE; NAAQS - NATIONAL AMBIENT AIR QUALITY STANDARDS, PPM = PARTS PER MILLION.

Construction Emissions Analysis

Alternative 2 Constrained would involve less construction activity than proposed for Alternative 2. As such, construction emissions for this alternative are expected to lower than those predicted for Alternative 2.

South

MSATs and PM

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-104. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-93: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index,
Alternative 2 Constrained, South Region

				Estimated 1	Non-Cancer	
	Estimated	Cancer Risk		Chronic H		
	Increase of	r Decrease at		Increase or		
	Sid	ewalk		Sidewalk		
	Receptors/Actual		Cancer	Receptors/Actual		USEPA
	Receptors $(x10^{-6})$		Risk	Receptors		Hazard
Analysis Site	2014	2030	Threshold	2014	2030	Index
Route 5/2A	0.46	0.08	10	0.05	0.01	1

Legend: USEPA = United States Environmental Protection Agency.

PM impacts would be the same as those for the North Region, Alternative 1. The ADT on the highest volume roadways under the No Build and Build Alternative 2 Constrained are provided in Table I.3-105. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 4 in 2014. By applying a 2% truck percentage, the largest daily increase of 1,767 vehicles would result in a daily increase of 35 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

 Table I.3-94: Average Daily Traffic for Major Roadways in South Project Section under Alternative 2

 Constrained

	2014			2030		
Roadway	No Build	Build	% Change	No Build	Build	% Change
Route 4	15,833	17,600	11%	21,504	20,100	-7%

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern with respect to $PM_{2.5}$.

Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. Four locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Two of these locations failed the screening criteria. The Route 5/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in Table I.3-106 and Table I.3-107. The values in these tables, using the same analysis techniques and parameters as those applied for the North Region (Alternative 1), represent the predicted worst-case CO concentrations and no violations of the applicable NAAQS are predicted.

Table I.3-95 Predicted Worst-Case 1-Hour CO Concentrations (ppm) – South, Alternative 2 Constrained

Existing		20	14	2030	
<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
4.2	3.9	4.5	4.0	4.0	3.7
	<i>a.m</i> .	a.m. p.m.	<i>a.m. p.m. a.m.</i>	<i>a.m. p.m. a.m. p.m.</i>	a.m. p.m. a.m. p.m. a.m.

Notes: 1-hour CO NAAQS = 35 ppm. Includes a background concentration of 2 ppm.

Legend: CO = carbon monoxide; NAAQS - National Ambient Air Quality Standards, ppm = parts per million.

Table I.3-96: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 2 Constrained

Analysis Site	Existing	2014	2030
Route 5/2A	2.9	3.2	2.8

Notes: 8-hour CO NAAQS = 9 ppm. Includes a background concentration of 1.4 ppm.

Legend: CO = carbon monoxide; NAAQS - National Ambient Air Quality Standards, ppm = parts per million.

Construction Emissions Analysis

Alternative 2 Constrained would involve less construction activity than proposed for Alternative 2. As such, construction emissions for this alternative are expected to lower than those predicted for Alternative 2.

Proposed Mitigation Measures

Because the alternative is not predicted to cause a significant impact on air quality levels, no mitigation is proposed.

3.3.7.5 ALTERNATIVE 3

Mesoscale Emissions Burden

As shown in Table I.3-108, regional emissions are predicted to increase in the range of 20% to 23% under Alternative 3, as compared to the no-action alternative. This is primarily due to the estimated 20% increase in VMT under Alternative 3.

Scenario	Speed	Emission Burden (TPY)							
scenario	VMT	Speed	СО	NOx	VOC	PM ₁₀	PM _{2.5}	SO ₂	CO ₂
2030 No-Action Alternative	3,535,224	28.6	13,388	478	801	78	57	562	80,498,6
2030 Alternative 2	4,249,190	27.4	16,211	580	982	93	68	675	96,704,7
Percent Chang	ge from No-A	ction	21%	21%	23%	20%	20%	20%	20%

Table I.3-97: Daily Regional	Emission	Burdens	(TPY).	Alternative 3
			··· · /,	

Legend: CO = carbon monoxide; VOC = volatile organic compounds; $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter; PM_{10} = particulate matter less than 10 microns in diameter; TPY = tons per year; NOx = nitrogen oxides; VMT = vehicle miles traveled.

North – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-109. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-98: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index,
Alternative 3, North Region

Analysis Site	Increase on Sid Recepte	Cancer Risk C Decrease ¹ at ewalk prs/Actual prs (x10 ⁻⁶)	Cancer Risk Threshold	Chronic H Increase or Side Recepto	Non-Cancer azard Index Decrease ¹ at walk rs/Actual ptors	USEPA Hazard Index
	2014	2030		2014	2030	
Route 1/28	2.36 x 10 ⁻⁶ / 0.46 x 10 ⁻	0.89 x 10 ⁻⁶ / 0.09 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.27 /0.06	0.11 / 0.01	1
Route 9/Andersen AFB North Gate	0.97 x 10 ⁻⁶	0.26 x 10 ⁻⁶	,	0.18	0.07	

¹ Indicates increase or decrease from No Build condition.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 3 are provided in Table I.3-99. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

		2014		2030				
Roadway	No Build	Build	% Change	No Build	Build	% Change		
Route 3 and North Commercial Gate	0	24,300	NA%	0	18,800	2.7%		
Route 3 South of Route 28	11,499	56,600	392%	12,070	43,000	13%		

Table I.3-99: Average Daily Traffic for Major Roadways in North Project Section under Alternative 3

The largest increase in AADT for the roadways presented in Table I.3-93 is predicted to occur on Route 3 South of Route 28 in 2030. By applying a 2% truck percentage, the largest daily increase of 45,101 vehicles would result in a daily increase of 902 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Microscale CO Impact Analysis and Construction Emissions Estimate

North – Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-111 10 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Nine of these locations failed the screening criteria. The Route 1/28 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 9/Andersen AFB North Gate intersection was also chosen for analysis due to the extremely high delay predicted in the build scenario and the predicted high volumes at this location. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

			No-A	ction					Ви	vild		
Intersection		<i>a.m</i> .			<i>p.m</i> .			<i>a.m</i> .			<i>p.m</i> .	
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/9	1,565	В	15.8	1,650	В	14.6	2,540	С	24.4	3,525	D	53.0
Route 1/29	3,675	F	87.6	2,970	E	60.5	4,025	F	85.3	3,895	F	90.5
Route 1/28	5,700	F	226.2	6,050	F	157.7	6,885	F	198.5	7,390	F	139.5
Route 3/3A	875	Α	9.5*	880	В	10.1*	2,225	Е	47.2*	2,340	F	100.7*
Route 3/28	1,904	В	17.8	2,070	С	21.4	5,680	F	90.2	6,025	D	53.9
Route 15/ 29*	1,760	F	****	1,575	F	683.5*	1,945	F	161.4	1,985	С	26.2
Route 3/ North (Commercial) Gate	1,010	С	21.4*	970	С	15.7*	3,935	F	91.6	3,375	D	39.9
Route 3/ South (Main) Gate	1,260	D	32.1*	1,200	С	20.7*	5,945	D	51.6	6,275	F	149.6
Route 3/ Control Tree Drive (Residential) Gate	1,300	С	22.1*	2,745	F	51.4*	5,525	F	114.6	5,680	F	87.3
Route 9/ Andersen AFB North Gate	1,480	E	39.5*	1,385	D	35.1*	2,035	F	1031.0*	2,160	F	9051.1*
Notes: * Indicates	Unsignali sites		intersect tha	ion,	** faile	= Del ed	ay exc the	eeded	maximu screen		ulated e [.]	value.

Table I.3-100: Screening Analysis Locations – North, Alternative 3

Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-112 and Table I.3-10213. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-112 and Table I.3-113, no violations of the applicable NAAQS are predicted.

	Enia	tin a		20)14		2030			
Analysis Site	Existing		No-Action		Alternative 3		No-Action		Alternative 3	
	<i>a.m</i> .	p.m	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
Route 1/28	5.5	6.0	6.2	6.2	7.1	7.5	5.6	5.8	5.6	5.9
Route 9/Andersen AFB North Gate	3.8	4.5	3.8	4.5	4.2	4.5	3.8	4.5	3.6	4.5

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-102 Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North, Alternative 3

Analysis Site	Evictina		2014	2030		
Analysis Site	Existing	No-Action	Alternative 3	No-Action	Alternative 3	
Route 1/28	4.2	4.3	5.3	4.1	4.1	
Route 9/Andersen AFB North Gate	3.2	3.2	3.2	3.2	3.2	

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

North - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North under Alternative 1. The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-114.

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Month) (Tons)							
Year Highest Monthly Emission Burden Predicted to	2011	2011	2011	2011	2011	2011	2011
Occur							

Table I.3-103: Estimated Construction Emission Burden – North, Alternative 3

Central – Mobile Source Air Toxics

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-115. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-104: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 3, Central Region

Analysis Site	Increase or Side Recepto	Cancer Risk Decrease ¹ at walk rs/Actual ptors	Cancer Risk Threshold	Estimated I Chronic Ha Increase or Side Recepto Rece	USEPA Hazard Index	
	2014	2030		2014	2030	
Route 1/8	3.54 x 10 ⁻⁶	1.01 x 10⁻⁵	10	0.38	0.09	
Route 4/7A	1.24 x 10 ⁻ ⁶ /1.49 x 10 ⁻⁶	0.15 x 10 ⁻ ⁶ /0.64 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.62/0.17	0.02/0.09	1
Route 16/27	4.31 x 10 ⁻⁶	2.12 x 10 ⁻⁶	10)	0.46	0.22	
Route 1 West of Route 30	0.24 x 10 ⁻⁶	0.04 x 10 ⁻⁶		0.03	0.01	

¹ Indicates increase or decrease from No Build condition.Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 3 are provided in Table I.3-116. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

Table I.3-105: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 3

		2014		2030				
Roadway	No Build	Build	% Change	No Build	Build	% Change		
Route 1	79,337	97,400	23%	84,935	93,100	10%		
Route 8	48,221	68,000	41%	53,248	60,400	13%		
Route 18	49,196	92,800	89%	59,980	89,200	49%		

The largest increase in AADT for the roadways presented in Table I.3-117 is predicted to occur under Route 18 in 2014. By applying a 2% truck percentage, the largest daily increase of 43,604 vehicles would result in a daily increase of 872 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Central - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-117, 34 locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. Twenty-eight (28) of these locations failed the screening criteria. The Route 16/27 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 4/7A intersection has the highest overall delay of any signalized intersection that failed the screening. This site was chosen for detailed analysis. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

The results of the microscale analysis are shown in. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-118 and Table I.3-119 no violations of the applicable NAAQS are predicted.

			No-Ac	tion					Bu	uild		
Intersection		a.m.			p.m.			a.m.			p.m.	
	Volume	LOS	Delay									
Route 1/26	5,910	Е	75.8	6,060	F	229.8	7,120	F	89.4	7,615	F	209.1
Route 1/27	5,950	F	157.2	5,875	F	533.7	6,705	F	151.1	7,625	F	399.6
Route 1/27A	3,195	E	67.2	3,420	F	189.5	4,160	F	120.2	4,435	F	157.1
Route 1/3	5,055	F	158.4	5,400	F	306.9	7,815	F	341.3	8,030	F	474.4
Route 1/16	5,905	D	52.2	6,410	F	305.5	8,270	F	232.2	8,540	F	340.3
Route 1/14 (Upper Tumon)	5,455	F	82.8	6,165	F	361.2	5,775	E	66.6	6,355	E	71.5
Route 1/ 14A (Opposite K-Mart)	5,550	F	124.1	6,170	F	259.9	5,860	E	71.0	6,435	F	112.3
Route 1/10A	6,935	F	82.9	7,055	F	117.2	7,515	F	129.6	8,170	F	193.6
Route 1/14B	6,120	E	60.5	6,485	F	91.8	6,480	Е	79.8	6,965	E	78.5
Route 1/14	6,715	F	93.3	7,705	F	212.5	7,355	F	176.8	8,635	F	315.8
Route 1/30	6,355	F	273.9	6,975	F	440.9	6,795	F	148.5	7,475	F	253.3
Route 1/8	7,255	F	107.6	7,915	F	94.1	7,835	F	102.7	8,965	F	155.5
Route 1/4	7,535	D	43.4	7,470	D	38.6	6,565	С	30.5	7,440	F	107.2
Route 1/6 (Adelup)	3,770	С	24.1	5,125	F	91.7	4,265	С	29.7	7,850	F	958.7

Table I.3-106: Screening Analysis Locations – Central, Alternative 3

			No-Ac	tion					Bu	ild		
Intersection		a.m.			p.m.			a.m.			p.m.	
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 1/6 (Westerly)	3,080	А	7.8	3,430	В	15.6	3,945	С	27.4	3,910	С	23.0
Route 4/7A	5,040	F	298.8	4,855	F	196.9	4,830	F	586.7	5,240	F	339.2
Route 4/10	4,305	F	95.5	4,365	F	115.9	4,705	F	199.7	4,700	E	65.9
Route 4/17	1,775	D	46.6	1,700	D	48.2	1,785	D	39.6	1,785	E	55.9
Route 4/ 4A*	740	D	27.9*	925	С	21.2*	1,005	Е	44.3*	960	С	21.9*
Route 7/ 7A*	1,985	F	77.7*	1,745	D	28.3*	1,920	D	28.3*	2,085	F	87.7*
Route 8/33 (East)	3,655	С	31.2	4,680	Е	64.3	4,335	D	52.9	2,250	С	29.1
Route 8/10	6,410	F	122.0	6,295	F	265.3	6,495	F	137.9	7,090	F	171.9
Route 10/ 15	5,550	D	49.7	5,585	F	197.9	6,230	F	197.9	6,245	F	147.2
Route 16/ 27A	2,770	С	24.3	3,130	F	99.9	4,905	D	44.9	5,405	F	80.6
Route 16/ 27	6,590	F	275.1	6,970	F	587.3	9,380	F	455.3	9,825	F	470.0
Route 16/ 10A	6,178	F	874.2	4,880	F	459.9	5,570	F	210.3	7,710	F	524.0
Route 17/ 4A*	720	С	17.0*	760	С	16.5*	710	С	16.5*	785	С	18.5*
Route 26/ 25*	3,180	F	270.1	3,495	F	369.5	4,125	F	85.4	4,365	Е	62.3
Route 26/ 15	1,680	F	134.8*	1,790	F	3450.7*	2,235	С	30.2	2,375	С	25.4
Route 28/ 27A	2,920	F	353.1*	2,565	F	528.0*	3,075	D	41.4	3,390	E	65.2
Route 1/ Turner Street (Main Gate)	3,375	В	13.5*	3,650	С	32.4	4,780	С	32.4	5,105	E	79.5
Route 15/ Road 1.16 M east of Route 26 (Second Gate)	1,040	NA	NA	1,010	С	22.1*	1,320	С	22.1*	1,410	С	21.1*
Route 16/ Sabana Barrigada	4,535	F	****	4,960	D	48.1	7,230	D	48.1	7,740	F	94.2
Route 15/ Fadian Point Drive	1,385	E	50.0*	1,625	E	44.4*	1,795	E	73.5	2,125	F	209.1

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

Legend: NA = Not Applicable At The Time Of Analysis.

Table I.3-107: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 3

Analysis Site	Existing				2014		2030				
	EXIS	ung	No-A	No-Action Alternative 3			No-A	ction	Altern	ernative 3	
	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	
Route 1/8	6.0	6.4	6.1	6.4	7.3	7.6	5.8	5.4	6.2	6.4	
Route 4/7A	5.3	3.8	4.8	5.4	5.1	5.6	4.6	5.0	4.6	5.1	
Route 16/27	8.4	9.4	7.0	7.3	8.1	9.0	6.4	6.8	7.0	7.9	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-108: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 3

Analysis Site	Existing		2014	2030		
Analysis Sile	Existing	No-Action	Alternative 3 No-Action Alter		Alternative 3	
Route 1/8	4.5	4.5	5.3	4.1	4.5	
Route 4/7A	3.7	3.8	3.9	3.5	3.6	
Route 16/27	6.6	5.1	6.3	4.8	5.5	

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

Central - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-120.

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)	8.5	13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on	0.42	0.65	0.11	.11	0.05	0.48	129
Highest Month) (Tons)							
Year Highest Monthly Emission Burden	2012	2012	2012	2012	2012	2012	2012
Predicted to Occur		&	&	&	&	&	&
		2013	2013	2013	2013	2013	2013

Apra Harbor – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-121. Based on these results, the following conclusions can be made:

• Maximum estimated changes in cancer risk at these locations are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and

• Maximum estimated changes in the total chronic hazard index are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Table I.3-110: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 3 Apra Harbor

Analysis Site	Estimated Cancer Risk Increase or Decrease ¹ at Sidewalk Receptors/Actual Receptors 2014 2030		Cancer Risk Threshold	Chronic Ho Increase or Side Recepto	Non-Cancer azard Index Decrease ¹ at walk rs/Actual ptors	USEPA Hazard Index
	2014	2030		2014	2030	
Route 1/2A	-0.88 x 10 ⁻	-0.06 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	-0.09	-0.00	1

¹ Indicates increase or decrease from No Build condition.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 3 are provided in Table I.3-122 As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 1 near Route 18 in 2030. By applying a 2% truck percentage, the largest daily increase of 7,258 vehicles would result in a daily increase of 145 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

		2014		2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 1 near Route 18	46,407	49,800	7%	41,142	48,400	18%	

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Apra Harbor - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-123, three locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. One of these locations failed the screening criteria. The Route 1/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

		No-Action							Bu	ild						
Intersection	<i>a.m</i> .				<i>p.m</i> .			<i>a.m</i> .			<i>p.m</i> .					
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay				
Route 1/11	3,460	В	18.8	3,615	С	26.8	3,710	В	18.4	4,080	D	40.1				
Route 1/ Polaris Pt	3,655	А	4.3	4,680	А	6.2	3,530	А	5.8	3,900	А	7.4				
Route 1/2A	3,790	E	58.8	4,250	E	55.5	4,270	Е	67.5	4,755	D	54.1				

Table I.3-112: Screening Analysis Locations – Apra Harbor, Alternative 3

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-124 and Table I.3-125. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-124 and Table I.3-125 no violations of the applicable NAAQS are predicted.

Table I.3-113: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 3

Analysis Site	Existing				2014		2030			
	EXIS	ung	No-Action Alternative 3				No-A	ction	ction Alternative 3	
	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
Route 1/2A	4.7	4.3	5.6	4.7	5.3	5.1	4.3	3.9	4.3	3.8

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-114: Predicted Worst-Case 8-Hour CO Concentrations (ppm) –

Apra Harbor, Alternative 3

Analysis Site	Existing		2014	2030		
Analysis Sile	Site Existing N		Alternative 3	No-Action	Alternative 3	
Route 1/2A	33	39	37	3.0	3.0	
	5.5	5.7	5.7	5.0	5.0	

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

Apra Harbor - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-126.

Table I.3-115: Estimated Construction Emission Burden – Apra Harbor, Alternative 3

	СО	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)	1.6	2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Highest Month) (Tons)							
Year Highest Monthly Emission Burden	2011	2011	2011	2011	2011	2011	2011
Predicted to Occur							

South – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-127. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-116: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 3, South Region

Analysis Site		er Risk Increase at Sidewalk ual Receptors 2030	Cancer Risk Threshold	Chronic H Increase or Side Recepto	Non-Cancer azard Index Decrease ¹ at walk rs/Actual ptors 2030	USEPA Hazard Index
Route 5/2A	0.39 x 10 ⁻⁶	0.00 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.05	0.00	1

¹ Indicates increase or decrease from No Build condition.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 3 are provided in Table I.3-128. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 4 in 2014. By applying a 2% truck percentage, the largest daily increase of 1,767 vehicles would result in a daily increase of 35 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Table I.3-117: Average Daily	y Traffic for Major Roadways in	South Project Section under Alternative 3
------------------------------	---------------------------------	---

		2014		2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 4	15,833	17,600	11%	21,504	20,000	-7%	

South - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-129, four locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Two of these locations failed the screening criteria. The Route 5/2A

intersection has the highest overall volume of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

			No-A	ction			Build					
Intersection		<i>a.m</i> .			<i>p.m</i> .			<i>a.m</i> .		<i>p.m.</i>		
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay
Route 5/2A	2,885	D	53.0	3,115	С	22.7	2,960	Е	55.1	3,235	С	22.8
Route 5/17*	3,655	D	28.9*	4,680	Е	47.8*	1,045	Е	42.5*	1,080	F	128.5*
Route 2/12	2,245	F	83.1	2,200	С	25.4	2,385	С	30.6	2,355	С	24.9
Route 5/ Harmon	347	А	9.7*	347	А	9.8*	385	А	9.5*	520	А	10.6*
Road*												

Notes: * Unsignalized intersection; NA = Not Applicable At The Time Of Analysis; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-130 and Table I.3-131. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations As shown in Table I.3-130 and Table I.3-131, no violations of the applicable NAAQS are predicted.

Analysis Site	Existing				2014		2030				
			No-Action		Altern	ative 3	No-Action		Alternative 3		
	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	
Route 5/2A	4.2	3.9	4.2	3.9	4.5	3.9	3.5	3.5	3.8	3.5	

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-120: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South, Alternative 3

Anghaig Site	Existing		2014		2030
Analysis Site	Existing	No-Action	Alternative 3	No-Action	Alternative 3
Route 5/2A	2.9	2.9	3.2	2.5	2.7

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

South - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). As shown in Table I.3-133 construction emissions are negligible.

	СО	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Month) (Tons)							
Year Highest Monthly Emission Burden Predicted to	2012	2013	2012	2012	2013	2013	2013
Occur			&	&			
			2013	2013			

Table I.3-121: Estimated Construction Emission Burden – South, Alternative 3

Proposed Mitigation Measures

Because the alternative is not predicted to cause a significant impact on air quality levels, no mitigation is proposed.

3.3.7.6 ALTERNATIVE 8

Mesoscale Emissions Burden

As shown in Table I.3-133 regional emissions are predicted to increase in the range of 20% to 21% under Alternative 8, as compared to the no-action alternative. This is primarily due to the estimated 20% increase in VMT under Alternative 8.

 Table I.3-122: Daily Regional Emission Burdens (TPY), Alternative 8

Scenario VM	VMT	Speed	Emission Burden (TPY)							
	V IVI I	Speeu	СО	NOx	VOC	PM ₁₀	PM _{2.5}	SO ₂	CO ₂	
2030 No-Action Alternative	3,535,224	28.6	13,388	478	801	78	57	562	80,498,6	
2030 Alternative 8	4,247,334	28.0	16,143	578	971	93	68	675	96,662,4	
Percent Change from No-Action			21%	21%	21%	20%	20%	20%	20%	

Legend: CO = carbon monoxide; VOC = volatile organic compounds; $PM_{2.5}$ = particulate matter less than 2.5 microns in diameter; PM_{10} = particulate matter less than 10 microns in diameter; TPY = tons per year; NOx = nitrogen oxides; VMT = vehicle miles traveled.

North – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-123. Based on these results, the following conclusions can be made:

- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.
- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

Analysis Site	Estimated C Increase or L Sidewalk Rece Receptor	Decrease ¹ at eptors/Actual	Cancer Risk Threshold	Estimated i Chronic H Increase or Side Recepto Rece	USEPA Hazard Index	
	2014	2030		2014	2030	
Route 1/28	2.50 x 10 ⁻⁶ / 0.39 x 10 ⁻⁶	0.32 x 10 ⁻⁶ / 0.11 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.28 /0.05	0.05 / 0.01	1
Route 9/Andersen AFB North Gate	0.96 x 10 ⁻⁶	0.26 x 10 ⁻⁶	10 ⁻⁵)	0.17	0.047	

Table I.3-123: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 8, North Region

¹ Indicates increase or decrease from No Build condition.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 8 are provided in Table I.3-136. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

The largest increase in AADT for the roadways presented in Table I.3-135 is predicted to occur on Route 3 South of Route 28 in 2030. By applying a 2% truck percentage, the largest daily increase of 65,500 vehicles would result in a daily increase of 1,310 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

		2014		2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 3 and North Commercial Gate	0	65,500	NA	0	45,200	NA	
Route 3 South of Route 28	11,499	57,000	15.9%	12,070	25,000	107%	

Microscale CO Impact Analysis and Construction Emissions Estimate

North - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-136, 10 locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. Five of these locations failed the screening criteria. The Route 1/28 intersection has the highest overall volume of all the intersections that failed the screening. This site was chosen for detailed analysis. The Route 9/Andersen AFB North Gate intersection was also chosen for analysis due to the extremely high delay predicted in the build scenario and the predicted high volumes at this location. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

	No-Action	1					Build						
Intersection	a.m.			p.m.	p.m.			a.m.			p.m.		
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	
Route 1/9	1,565	В	15.8	1,650	В	14.6	2,540	С	24.4	3,525	D	53.0	
Route 1/29	3,675	F	87.6	2,970	E	60.5	4,025	F	85.3	3,895	F	90.5	
Route 1/28	5,700	F	226.2	6,050	F	157.7	6,885	F	198.5	7,390	F	139.5	
Route 3/3A	875	А	9.5*	880	В	10.1*	2,020	D	27.0*	2,550	F	140.7*	
Route 3/28	1,904	В	17.8	2,070	С	21.4	4,635	С	33.2	4,595	D	47.5	
Route 15/29*	1,760	F	****	1,575	F	683.5*	1,915	С	32.9	1,880	С	30.0	
Route 3/ North (Commercial) Gate	1,010	с	21.4*	970	с	15.7*	3,310	с	31.3	3,090	D	42.0	
Route 3/ South (Main) Gate	1,260	D	32.1*	1,200	С	20.7*	5,085	E	58.7	4,950	F	81.7	
Route 3/ Control Tree Drive (Residential) Gate	1,300	с	22.1*	2,745	F	51.4*	4,525	D	41.4	4,750	с	30.3	
Route 9/ Andersen AFB North Gate	1,480	E	39.5*	1,385	D	35.1*	2,035	с	24.4	2,160	F	***	

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

The results of the microscale analysis are shown in Table I.3-137 and Table I.3-138. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-137 and Table I.3-138 no violations of the applicable NAAQS are predicted.

	Eni	adin a		20	014		2030			
Analysis Site	Existing		No-Action		Alternative 8		No-Action		Alternative 8	
	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
Route 1/28	5.5	6.0	6.2	6.2	7.1	7.4	5.6	5.8	5.8	5.7
Route 9/Andersen AFB North Gate	3.8	4.5	3.8	4.5	4.2	4.5	3.8	4.5	3.6	4.5

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Anghaig Site	Enistina		2014	2030		
Analysis Site	Existing	No-Action	Alternative 8	No-Action	Alternative 8	
Route 1/28	4.2	4.3	5.2	4.1	4.1	
Route 9/Andersen AFB North Gate	3.2	3.2	3.2	3.2	3.2	

Table I.3-127: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – North, Alternative 8

Route 9/Andersen AFB North Gate

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

North - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted. Using the estimated project schedule along with typical equipment requirements for specific tasks, emission burden estimates of CO, NOx, PM10, and PM2.5 were calculated. Equipment emissions were presumed to be Tier3, with high sulfur fuel as confirmed by the construction management team. Based on the preliminary schedule, the highest emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-139.

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Month) (Tons)							
Year Highest Monthly Emission Burden Predicted to	2011	2011	2011	2011	2011	2011	2011
Occur							

Central – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-140. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Analysis Site	Estimated Cancer RiskIncrease or Decrease ¹ atSidewalkReceptors/ActualReceptors20142030 3.56×10^{-6} 1.31×10^{-6} 0.63×10^{-6} 0.08×10^{-6}		Cancer Risk Threshold	Chronic Ho Increase or Side Recepto	Non-Cancer azard Index Decrease ¹ at walk rs/Actual ptors	USEPA Hazard Index
	2014	2030		2014	2030	
Route 1/8	3.56 x 10 ⁻⁶	1.31 x 10 ⁻⁶	10 -	0.31	0.13	
Route 4/7A	0.63 x 10 ⁻ ⁶ /1.74 x 10 ⁻⁶	0.08 x 10 ⁻ ⁶ /0.80 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.55/0.20	0.00/0.09	1
Route 16/27	3.70x 10 ⁻⁶	3.37 x 10⁻ ⁶	10)	0.42	0.29	
Route 1 West of Route 30	0.29 x 10 ⁻⁶	0.05 x 10 ⁻⁶		0.04	0.01	

Table I.3-129: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 8, Central Region

¹ Indicates increase or decrease from No Build condition.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 8 are provided in Table I.3-141. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options.

The largest increase in AADT for the roadways presented in Table I.3-141 is predicted to occur under Route 18 in 2014. By applying a 2% truck percentage, the largest daily increase of 30,904 vehicles would result in a daily increase of 618 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

		2014				
Roadway	No Build	Build	% Change	No Build	Build	% Change
Route 1	79,337	100,500	27%	84,935	95,300	12%
Route 8	48,221	66,800	39%	53,248	59,700	12%
Route 18	49,196	80,100	63%	59,980	75,100	25%

Table I.3-130: Average Daily Traffic for Major Roadways in Central Project Section under Alternative 8

Central - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-142, 34 locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. Twenty (20) of these locations failed the screening criteria. The Route 16/27 intersection has the third highest overall volume and the worst delay of the three highest volume intersections. This site was chosen for detailed analysis. The Route 4/7A intersection has the highest overall delay of any signalized intersection that failed the screening. This site was chosen for detailed analysis. These intersections represent the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from these sites represent the worst-case microscale CO impacts expected from the project.

	No-Action						Build						
Intersection		a.m.			p.m.			a.m.			p.m.		
D / //00	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	
Route 1/26 Route 1/27	5,910 5,950	E F	75.8 157.2	6,060 5,875	F	229.8 533.7	7,845 7,640	F F	145.9 178.8	8,010 7,540	F F	250.6 329.4	
Route 1/27 27A	3,195	E	67.2	3,420	F	189.5	4,775	D	53.9	4,900	D	51.2	
Route 1/3	5,055	F	158.4	5,400	F	306.9	5,455	E	70.5	6,335	E	64.7	
Route 1/16	5,905	D	52.2	6,410	F	305.5	7,070	E	57.0	7,785	F	103.9	
Route 1/14	- /		-				1			1			
(Upper Tumon)	5,455	F	82.8	6,165	F	361.2	5,855	E	69.6	6,465	E	77.6	
Route 1/ 14A (Opposite K-Mart)	5,550	F	124.1	6,170	F	259.9	5,860	E	74.2	6,460	F	126.0	
Route 1/10A	6,935	F	82.9	7,055	F	117.2	7,565	F	126.1	8,340	F	186.0	
Route 1/14B	6,120	E	60.5	6,485	F	91.8	6,545	F	90.4	7,160	E	79.5	
Route 1/14	6,715	F	93.3	7,705	F	212.5	7,430	F	113.6	8,830	F	267.2	
Route 1/30	6,355	F	273.9	6,975	F	440.9	6,915	F	146.3	7,715	F	285.3	
Route 1/8 Route 1/4	7,255 7,535	F D	107.6 43.4	7,915 7,470	F D	94.1 38.6	8,060 6,665	E C	77.8 33.6	9,545 7,605	F D	150.4 35.5	
Route 1/6 (Adelup)	3,770	C	24.1	5,125	F	91.7	4,245	D	38.1	4,835	D	44.9	
Route 1/6 (Westerly)	3,080	A	7.8	3,430	В	15.6	3,510	В	18.4	3,905	С	22.0	
Route 4/7A	5,040	F	298.8	4,855	F	196.9	4,915	F	372.9	5,680	F	654.2	
Route 4/10	4,305	F	95.5	4,365	F	115.9	4,655	F	198.7	4,695	E	71.0	
Route 4/17	1,775	D	46.6	1,700	D	48.2	1,790	D	40.1	1,775	E	56.2	
Route 4/ 4A*	740	D	27.9*	925	С	21.2*	1,020	E	47.4*	950	С	24.0*	
Route 7/ 7A*	1,985	F	77.7*	1,745	D	28.3*	2,325	F	174.7*	2,520	F	300.8*	
Route 8/33 (East)	3,655	С	31.2	4,680	Е	64.3	4,220	D	45.5	4,820	Е	77.8	
Route 8/10	6,410	F	122.0	6,295	F	265.3	6,890	F	177.3	7,530	F	218.4	
Route 10/ 15	5,550	D	49.7	5,585	F	197.9	6,170	F	197.9	6,500	F	178.1	
Route 16/ 27A	2,770	С	24.3	3,130	F	99.9	3,490	С	31.4	4,120	D	35.5	
Route 16/ 27	6,590	F	275.1	6,970	F	587.3	8,105	F	361.1	8,470	F	336.6	
Route 16/ 10A	6,178	F	874.2	4,880	F	459.9	7,085	F	582.9	7,655	F	488.7	
Route 17/ 4A*	720	С	17.0*	760	С	16.5*	695	С	16.1*	785	С	18.6*	
Route 26/ 25*	3,180	F	270.1	3,495	F	369.5	5,045	F	113.1	5,045	F	119.3	
Route 26/ 15	1,680	F	134.8*	1,790	F	3450.7*	3,215	F	154.9	3,155	F	168.2	
Route 28/ 27A	2,920	F	353.1*	2,565	F	528.0*	2,765	С	31.3	3,010	E	59.6	
Route 1/ Turner Street (Main Gate)	3,375	В	13.5*	3,650	С	32.4	4,780	С	32.4	5,105	E	78.8	
Route 15/ Road 1.16 M east of Route 26 (Second Gate)	1,040	NA	NA	1,010	С	22.1*	1,320	С	22.1*	1,410	С	22.6*	

Table I.3-131: Screening Analysis Locations – Central, Alternative 8
--

	No-Action							Build						
Intersection		a.m.			p.m.			a.m.			p.m.			
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay		
Route 16/ Sabana Barrigada	4,535	F	****	4,960	D	48.1	4,765	NA	NA	5,830	NA	NA		
Route 15/ Fadian Point Drive	1,385	E	50.0*	1,625	E	44.4*	1,560	NA	NA	2,350	NA	NA		

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis.

Legend: NA = Not Applicable At The Time Of Analysis

The results of the microscale analysis are shown in Table I.3-143 and Table I.3-144. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-143 and Table I.3-144, no violations of the applicable NAAQS are predicted.

Table I.3-132: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Central, Alternative 8

Analysis Site	Existing		2014				2030			
			No-Action		Alternative 8		No-Action		Alternative 8	
	a.m.	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
Route 1/8	6.0	6.4	6.1	6.4	7.3	7.4	5.8	5.4	5.6	6.0
Route 4/7A	5.3	3.8	4.8	5.4	5.2	5.3	4.6	5.0	4.6	5.0
Route 16/27	8.4	9.4	7.0	7.3	8.3	9.4	6.4	6.8	7.1	8.0

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-133: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Central, Alternative 8

Analysis Site	Existing		2014	2030		
		No-Action	Alternative 8	No-Action	Alternative 8	
Route 1/8	4.5	4.5	5.2	4.1	4.2	
Route 4/7A	3.7	3.8	3.7	3.5	3.5	
Route 16/27	6.6	5.1	6.6	4.8	5.6	

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

Central - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-145.

Table I.3-134: Estimated Construction Emission Burden – Central, Alternative 8

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)		13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on	0.42	0.65	0.11	0.11	0.05	0.48	129
Highest Month) (Tons)							
Year Highest Monthly Emission Burden	2012	2012	2012	2012	2012	2012	2012
Predicted to Occur		&	&	&	&	&	&
		2013	2013	2013	2013	2013	2013

Apra Harbor – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-146. Based on these results, the following conclusions can be made:

- Maximum estimated changes in cancer risk at these locations are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated changes in the total chronic hazard index are expected to decrease at any of the receptors analyzed due to the project. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-135: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 8 Apra Harbor

				Estimated Non-Cancer Chronic Hazard Index		USEPA Hazard
	Estimated Cancer H		Cancer Risk	Increase or Decrease ¹ at		Index
Analysis Site Decrease ¹ at Sidew Receptors/Actual Rec			Threshold	Sidewalk		
	Receptors/Actua	Receptors/Actual Receptors		Receptors/Actual		
				Receptors		
	2014 2030			2014	2030	
Route 1/2A	-0.82 x 10 ⁻⁶	-0.06 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	-0.09	0.0	1

¹ Indicates increase or decrease from No Build condition.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 8 are provided in Table I.3-147.

The largest increase in AADT for the roadways presented in Table I.3-148 is predicted to occur under Route 1 near Route 18 in 2030. By applying a 2% truck percentage, the largest daily increase of 7,458 vehicles would result in a daily increase of 149 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Table I.3-136: Average Daily	v Traffic for Maior Roadway	s in Apra Harbor Projec	t Section under Alternative 8
Tuble no Too. Average Bung	y manno ion major noaamay	o in <i>A</i> pra na bor i rojec	

		2014		2030			
Roadway	No Build	Build	% Change	No Build	Build	% Change	
Route 1 near Route 18	46,407	49,800	7%	41,142	48,600	18%	

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Delay 43.3 7.5

57.5

Apra Harbor - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-148, three locations were screened based on changes in intersection volumes, delay, and LOS between the noaction and build alternatives. One of these locations failed the screening criteria. The Route 1/2A intersection has the highest overall volume and highest delay of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

			-	-		-							
	Intersection			No-A	ction			Build					
			a.m.			p.m.			a.m.			p.m.	
		Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	
	Route 1/11	3,460	В	18.8	3,615	С	26.8	3,695	В	14.3	4,165	D	
	Route 1/ Polaris Pt	3,655	А	4.3	4,680	А	6.2	3,605	А	6.8	3,910	А	

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value. Indicates sites that failed the screening evaluation. Indicates site chosen for detailed CO microscale analysis.

58.8

E

4,250

The results of the microscale analysis are shown in Table I.3-138 and Table I.3-139. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-138 and Table I.3-139, no violations of the applicable NAAQS are predicted.

55 5

4.285

67 5

4.785

Table I.3-138: Predicted Worst-Case 1-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 8

	Existing			2	2014		2030				
Analysis Site			No-A	ction	Alterr	native 8	No-A	ction	Altern	ernative 8	
	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	a.m.	p.m.	
Route 1/2A	4.7	4.3	5.6	4.7	5.3	5.1	4.3	3.9	4.3	3.9	

Notes: 1-hour CO NAAQS = 35 ppm.

3,790

Route 1/2A

Includes a background concentration of 2 ppm.

Table I.3-139: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – Apra Harbor, Alternative 8

Analysis Site	Existing		2014	2030		
Analysis Sile	Existing	No-Action	Alternative 8	No-Action	Alternative 8	
Route 1/2A	3.3	3.9	3.7	3.0	3.0	

Notes: 8-hour CO NAAQS = 9 ppm.

Includes a background concentration of 1.4 ppm.

Apra Harbor - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed construction emissions analysis was conducted using the same method as described for North (Alternative 1). The highest predicted construction emissions per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-151.

	CO	NO _x	PM ₁₀	PM _{2.5}	VOC	SO ₂	CO ₂
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)	1.6	2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Table I.3-140:Estimated Construction Emission Burden – Apra Harbor, Alternative 8

South – Mobile Source Air Toxics and Particulate Matter

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Table I.3-141. Based on these results, the following conclusions can be made:

- Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSATs are considered acceptable; and
- Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSATs are considered acceptable.

In addition, based on proposed USEPA regulations to reduce air toxics, future cancer and non-cancer risks, under both No Build and Build conditions are less than existing risks in most cases.

Table I.3-141: Estimated Project Related Impacts Compared to Cancer Risk Threshold and Hazard Index, Alternative 8, South Region

Analysis Site	Increase or Sidewalk Re	Cancer Risk Decrease ¹ at eceptors/Actual eeptors	Cancer Risk Threshold	Estimated Chronic Ha Increase or Sidewalk Rec Rece	USEPA Hazard Index	
	2014	2030		2014	2030	
Route 5/2A	0.50 x 10 ⁻⁶	0.09 x 10 ⁻⁶	10 in a million (1 x 10 ⁻⁵)	0.046	0.01	1

¹ Indicates increase or decrease from No Build condition.

Particulate matter impacts would be the same as those for the North Region, Alternative 1. The average daily traffic (ADT) on the highest volume roadways under the No Build and Build Alternative 8 are provided in Table I.3-142. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2% for both the No Build and Build options. As shown in this table, the largest increase in AADT for the roadways presented is predicted to occur at Route 4 in 2014. By applying a 2% truck percentage, the largest daily increase of 1,767 vehicles would result in a daily increase of 35 trucks. This is substantially below the FHWA example for a new highway project of 125,000 AADT with 8% trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be a project of air quality concern (i.e., an expanded highway with a significant number of or significant increase in diesel vehicles).

Based on this and the discussion in the North Region Alternative 1, the project does not qualify as a project of air quality concern.

Table I.3-142: Average Daily	Traffic for Major Roadways in South	Project Section under Alternative 8
Tuble ne Till / trendge Dully	inalie iei majei neuaraje m eeam	

		2014			2030		
Roadway	No	Build	%	No	Build	%	
	Build	Бина	Change	Build	Бина	Change	
Route 4	15,833	17,600	11%	21,504	19,900	-1.0%	

South - Microscale CO Analysis

A screening analysis was performed to determine which intersections could potentially degrade air quality levels due to increased delay, volume, or worsening LOS due to the project. As shown in Table I.3-143 four locations were screened based on changes in intersection volumes, delay, and LOS between the no-action and build alternatives. One of these locations failed the screening criteria. The Route 5/2A intersection has the highest overall volume of all the signalized intersections that failed the screening. This site was chosen for detailed analysis. This intersection represents the worst-case combination of volumes, LOS, and delay of the intersections screened. As such, the predicted CO levels from this site represent the worst-case microscale CO impacts expected from the project.

Table I.3-143: Screening Analysis Locations – South Region, Alternative 8

			No-A	ction					Βι	iild							
Intersection	a.m.				p.m.			a.m.			p.m.	Delay 25.9					
	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay	Volume	LOS	Delay					
Route 5/ 2A	2,885	D	53.0	3,115	С	22.7	3,115	E	79.9	3,335	С	25.9					
Route 5/ 17*	3,655	D	28.9*	4,680	E	47.8*	1,040	В	14.8*	1,100	Е	42.4*					
Route 2/12	2,245	F	83.1	2,200	С	25.4	2,380	С	30.7	2,355	С	27.0					
Route 5/																	
Harmon	347	Α	9.7*	347	Α	9.8*	385	Α	9.5*	520	Α	10.6*					
Road*																	

Notes: * Unsignalized intersection; **** = Delay exceeded maximum calculated value.

Indicates sites that failed the screening evaluation.

The results of the microscale analysis are shown in Table I.3-144 and Table I.3-145. The values in these tables, using the same analysis techniques and parameters as those applied for North (Alternative 1), represent the predicted worst-case CO concentrations. As shown in Table I.3-144 and Table I.3-145, no violations of the applicable NAAQS are predicted.

	Exic	tina			2014		2030			
Analysis Site	EXIS	ting	No-A	ction	Altern	ative 8	No-A	ction	Alternative 8 a.m. p.m.	
	<i>a.m</i> .	р.т.	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .	<i>a.m</i> .	<i>p.m</i> .
Route 5/2A	4.2	3.9	4.2	3.9	4.5	4.0	3.5	3.5	3.9	3.7

NOTES: 1-HOUR CO NAAQS = 35 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 2 PPM.

Table I.3-145: Predicted Worst-Case 8-Hour CO Concentrations (ppm) – South Region, Alternative 8

Anglusis Site	Existing		2030		
Analysis Site	Existing	No-Action	Alternative 8	No-Action	Alternative 8
Route 5/2A	2.9	2.9	3.2	2.5	2.7

NOTES: 8-HOUR CO NAAQS = 9 PPM.

INCLUDES A BACKGROUND CONCENTRATION OF 1.4 PPM.

South - Construction Emissions Estimate

To determine the temporary air quality impacts arising from construction of the project, a detailed emission construction analysis was conducted using the same method as described for North (Alternative 1). As shown in Table I.3-146, construction emissions are negligible.

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Year Highest Monthly Emission Burden Predicted to Occur	2012	2013	2012 & 2013	2012 & 2013	2013	2013	2013

Table I.3-146: Estimated Construction Emission Burden – South, Alternative 8

Proposed Mitigation Measures

Because the alternative is not predicted to cause a significant impact on air quality levels, no mitigation is proposed.

3.4 CONSTRUCTION ACTIVITY EMISSIONS

Construction-related emissions were estimated for each component of the proposed action. The different construction activities associated with different components of the proposed action are described below:

Marine Corps Relocation to Guam (Volume 2 of EIS) proposes the following five land use functions: Airfield Operations, Waterfront Operations, Main Cantonment, Family Housing, and Training. For the training function, the facilities can be further divided into three categories: firing ranges, non-fire maneuver ranges, and aviation training ranges. Among the four alternatives, these proposed training facilities vary depending on the land use function, location, and quantity of non-DoD land to be acquired. Most project components that would affect potential air quality conditions remain the same for each alternative including:

- The scale of construction
- Airfield operations
- Waterfront operations
- Aviation training operations
- The scale of ground training

The construction effort for all airfield, waterfront, and training projects is assumed to be the same, regardless of location. Therefore, the air emissions for these projects calculated for Alternative 1 are assumed to be representative of the other three alternatives (i.e., Alternatives 2, 3, and 8). Although the total building space does not vary by alternative for the main cantonment project component, the total size of earth disturbance under each alternative does vary slightly. As a result, the pollutant emissions associated with the main cantonment construction activity were estimated individually for each alternative.

Construction activities, including the operation of construction equipment, trucks, and workers' commuting vehicles, may have short-term air quality impacts. In estimating construction-related criteria pollutants and CO2 emissions, the usage of equipment, the likely duration of each activity, and manpower estimates for the construction were based on the information described in the EIS Volume 2 (U.S. Navy and Joint Guam Program Office in progress) for future project-associated construction activities. It is assumed for the emissions estimate purposes that major construction activities would begin in 2011 and last through 2014 with minimal effort during 2010 for all projects except for the construction of main

cantonment. The construction of main cantonment is assumed to occur from 2011 to 2016 based on the construction cost profile projected for the proposed action.

Marine Corps Relocation - Training on Tinian (Volume 3 of EIS) would require the construction of a Range Training Area (RTA) under each alternative considered which consists of four proposed live-fire ranges (platoon battle course, automated combat pistol range, rifle known distance range, and field firing range). Construction activities such as the operation of construction equipment and trucks may have short-term air quality impacts. Although the emissions from construction workers' commuting vehicles are considered part of the overall construction emissions, it is anticipated they are negligible given the scale of construction activities and the relatively low level of emissions as compared to trucks. As such, the emission component from workers' commuting vehicles is not considered here, as it is relatively small and cannot be reasonably predicted.

Aircraft Carrier Berthing (Volume 4 of EIS) focuses on the proposed construction of a new deep-draft wharf with shoreside infrastructure improvements, creating the capability to support a transient nuclear powered aircraft carrier in Apra Harbor, Guam. Under the proposed action with a transient-capable port, there would be approximately three visits per year for up to approximately 21 days per visit, or combination thereof, for a total of approximately 63 days in port. The longer transient visits would interfere with existing munitions operations and therefore require a new deep-draft wharf that can accommodate the transient aircraft carrier.

Estimates on construction activities were calculated to identify equipment, material, and manpower requirements for the construction associated with the proposed aircraft carrier berthing project at Polaris Point. Assumptions were made to develop a list of major construction items, necessary equipment, and productivity levels necessary for the completed construction of Polaris Point or Former Ship Repair Facility (SRF) including, but not limited to: shoreside structure prototypes, a bermed fuel tank, an electric substation, stormwater management, the Morale, Welfare and Recreation (MWR) area, a sewer pump station, a Bilge Oily Waste Treatment System (BOWTS) pump station, a BOWTS pump station prototype, and the wharf and related dredging activities.

Army Air and Missile Defense Task Force (Volume 5 of EIS) proposes the following three missile components: The Terminal High Altitude Area Defense (THAAD) system is a long-range, land based theater defense weapon which acts as the upper tier of defense against ballistic missiles; Patriot Missiles target short-range ballistic missiles which threaten the THAAD or other civilian or military assets on Guam; and Surface-Launched Advanced Medium-Range Air-to-Air Missile (SLAMRAAM) engages targets to beyond line-of-sight and defends against the air threat from unmanned aerial vehicles and cruise missiles.

Three key elements of the proposed action include personnel, facilities, and operations requiring construction of the administration and maintenance facilities, bachelor housing, family housing, and roads associated with facilities at the proposed sites. Assumptions were made to develop a list of major construction items, necessary equipment, and productivity levels necessary for the completed installation of the Army AMDTF within the Marine Corps site on Guam. This list includes prototype structures for administration and maintenance components, and prototypes including unique elements for munitions storage and the weapons emplacement components. The calculated total construction emissions from equipment and trucks with potential to occur between 2011 and 2014 are assumed to be evenly distributed among those years.

Related Actions – Utilities and Off Base Roadway Projects on Guam (Volume 6 of EIS) would increase the demand on power, water, wastewater and solid waste utilities as part of the proposed military buildup on Guam associated with the relocation of the Marine Corps, the Navy aircraft carrier berthing, and Army

Air and Missile Defense Task Force (AMDTF). The Navy conducted utility studies for power, water, wastewater, and solid waste that assumed that the construction workforce would reside off base and would be served by Guam public utilities at their place of residence. Construction activities involving the operation of construction equipment, trucks, and workers' commuting vehicles may have short-term air quality impacts. Given the lack of a specific construction schedule for each applicable project during the early planning stage, the overall length of utility construction for each project is assumed to be four years from 2011 through 2014.

To determine the temporary air quality impacts arising from the construction of off base roadway projects a detailed emission construction analysis was conducted. Using the estimated project schedule, along with typical equipment requirements for specific tasks, emission burden estimates of criteria pollutants and GHG emissions in terms of CO_2 emissions were calculated. Emission equipment emissions have been regulated to be Tier 3 or better as discussed in section 3.3.7. Based on the preliminary schedule, the highest emissions levels per year, per month, and the year that these emissions are predicted to occur are shown in Table I.3-174 through Table I.3-177.

Because no specific information regarding sizes or types of construction is provided in the case of certain components, a series of construction prototypes was developed to represent these components. Estimates were developed for those components for which adequate specific information is available; however when the construction was considered similar to one of the prototypes, the prototype and scaling method were used.

Each prototype is designed to be general enough to accommodate the more traditional development types specified in the Military's planning facility codes or Command Code Numbers (CCN), and the diverse facilities required to implement the proposed action and associated action components. The prototypes used include:

- **Office Building** Buildings of this type generally have a masonry envelope, decorative exterior veneer, and glazing. There is significant subdivision of the interior space by drywall partitions into finished areas to provide offices and/or classroom facilities. Significant mechanical systems are associated with this building type, primarily heating, ventilation, and air-conditioning (HVAC), electrical systems, and water/sewerage service.
- Commercial Building Buildings of this type are generally of steel frame construction with masonry envelope and decorative exterior veneer, providing large, high, clear areas for both merchandise display and inventory storage. There is generally minimal glazing (except for the entrance areas). The main retail and storage areas typically have minimal finishes along the exterior walls only. A relatively small (~10%) portion of the overall floor area is finished in an office-type manner, providing space for administrative and support functions (store manager's office, restrooms, etc.). Significant mechanical systems are associated with this building type, primarily HVAC systems. Water/sewerage systems are of relatively small scale, as they only support the limited amount of office-type space.
- **Pre-Engineered Structures** Buildings of this type are generally light-weight steel-frame and sheet metal-clad structure, often providing enclosed storage areas. Minimal mechanical systems are usually provided, generally just enough to provide adequate lighting and protection against temperature or humidity extremes. Given the climate on Guam, it is assumed that protection against temperature extremes is not required.
- **Industrial Building** Buildings of this type are generally of single-level steel frame construction (to allow for roof-mounting of lifting equipment) with masonry envelope and lightweight cladding as veneer, minimal glazing, and large, high, clear spaces to allow for the installation of heavy equipment. A relatively small (~10%) portion of the overall floor area would be finished in

an office-type manner, providing space for administrative and support functions. Significant mechanical systems are associated with this building type, primarily HVAC, high-capacity electricity supply, and often additional mechanical systems such as steam and compressed air. Water/sewerage systems are generally of a smaller scale, sufficient to service the administration area only.

- **Hangar** Buildings of this type are generally of tall, single-level steel frame construction with masonry envelope and lightweight cladding as veneer, and have one open side to permit aircraft entry, no glazing, and large, high, clear interior spans provided through the use of a truss-type lightweight roof. A small office-type administration area (~10% of the overall floor space) is usually provided. Significant mechanical systems are associated with this building type, primarily HVAC, high-capacity electricity supply, and often additional mechanical systems such as steam and compressed air. Water/sewerage systems are generally of a smaller scale to service the administration area only.
- Warehouse Building Buildings of this type are generally large-footprint, single-level construction with masonry envelope and lightweight cladding as veneer, and large, high, clear interior spans provided through the use of a truss-type lightweight roof. Minimal mechanical systems are usually provided, often sufficient only to provide adequate lighting and protection against temperature or humidity extremes.
- **Residential (Multiple Unit) Building** Buildings of this type are generally of multi-level, steel frame construction with masonry envelope, decorative exterior veneer, and glazing, with significant subdivision of the interior space by drywall partition into finished areas to provide enclosed living quarters. There are significant mechanical systems associated with this building type, including HVAC systems designed to support a residential building use, and electricity, natural gas and water/sewerage service provided to each unit.
- **Residential (Single-family Units) Building** These are assumed to be two-story single-family residences, without basement facilities, of wood-frame construction on on-grade slab. Each unit is assumed to be 1,735 square feet (ft²) (161 square meters). There are significant mechanical systems associated with this building type, including HVAC systems designed to support a residential building use, and electricity, natural gas and water/sewerage service.
- Site Preparation It is assumed that typical site clearing and rough and fine grading would be done as a single zone-wide job, with the specific needs of individual structures reflected in the final overall grading plans. It is also assumed that none of the structures constructed in the Main Cantonment incorporate basement levels, so no mass excavation would be required.
- Utility and Road/Sidewalk Installation Because site construction, including grading, is expected to be done on a zone-wide basis in the Main Cantonment, an underground utility infrastructure can be economically installed during road construction without the need for separate trenching and backfilling. Zone-wide utilities to be installed would include electricity, water, natural gas, sanitary and storm sewerage, and telecommunications infrastructure. It is assumed that any covered site area outside of building footprint can be treated as a finished roadway. This roadway is assumed to be a 50-foot (15-meter) wide flexible asphalt pavement with curbs, gutters and an 8-foot (2.4-meter) wide concrete sidewalk on either side (66-foot [20-meter] total average width), with three manholes (one each for sanitary sewer, storm sewer, and energy/communications infrastructure access), eight storm drains, and four fire hydrants every 1,000 linear feet (305 linear meters) of roadway.
- Vehicle Pavement This type of pavement is used for parking areas and access roads intended for general automotive use (including large, wheel mounted maintenance and military

equipment). Generally, this would include rough grading, a 6" thick base course and a 3" thick asphalt wearing course.

• Aircraft Pavement – This type of pavement is associated with airfield developments, and is used to handle the higher loads associated with aircraft traffic. Generally, this would include rough grading, an 8"-thick sub-base course, a 6"-thick base course, a 4"-thick asphalt binder course, and a 3"-thick asphalt wearing course.

To complete the construction estimate, the CCN Code data and planning area specifications provided for each alternative in the EIS were used to determine the distinct structural elements required in the proposed action. Accordingly, each element was then extrapolated on a square-footage basis and associated with one of the 12 prototypes described above.

The 2003 RSMeans Facilities Construction Cost Data (RS Means 2003a) manual was used to assign construction materials, equipment use and duration and manpower requirements to each prototype. The manual provides planning level estimates for construction materials, equipment use and duration information, and manpower requirements for construction and development. If construction material information, equipment use and duration, and manpower requirements were available then that information was used.

For illustrative purposes, the following paragraphs detail the assumptions made in 1) developing one prototype, the Office Building prototype and 2) forecasting CVN berthing project activity. Other prototypes and activities were developed in similar manners.

Construction Activity Assumptions for Office Building Prototype

First, the dimensions of the buildings were estimated. In this case, the prototype office building would be 100 ft by 200 ft (units are only provided in the U.S. customary system for ease), for a total surface area of 20,000 ft². 40% of the space would be subdivided into offices (assumed to be 20 ft by 20 ft each) and the remainder would be divided into larger, 60 ft by 40 ft. "open" workspaces. Thus, there would be a total of 20 offices with 80 linear feet (LF) of wall each, and 5 common areas with 200 LF of wall each. The total wall length, therefore, would 2,600 LF. This in turn should be divided by two to account for double-sided walls, so the total wall length to be installed would be 1,300 LF.

Next, assumptions for construction materials, equipment use and duration, and manpower requirements were developed using the *RSMeans* data, as presented below.

- Foundation:
 - Footprint site preparation: assumes gravel placed over entire building footprint, 12" thick lift x 20,000 ft² = 741 cy, use gravel, bank run, compacted, 12" deep
 - Assumes base slab concrete is formed in 40-ft by 20-ft sections, creating 25 "panels" to be laid, with 1,200 LF (6 x 200 LF) of forming along long edges and 600 LF (6 x 100 LF) of forming along short edges for a total of 1,800 LF forms. Wood edge forms to be used for depressed slabs to 24" high
 - Add rebar, assumes 8 LF of #8 rebar per ft^2 of slab = 21.36 lb/SF; total = 427,200 lb = 214 tons. Use typical in place rebar over 50 ton lots
 - For concrete, assumes 15" thick slab. 20,000 ft^2 x 15 in. = 25,000 CF = 926 CY. Use slab on grade over 6" thick, pumped
- Enclosure:

- Primary enclosure square footage is $2 \times (200 \text{ LF} + 100 \text{ LF}) \times 20 \text{ ft}$ (assumed building. height) = 12,000 ft²; use concrete block 3,500 psi, high strength, 8"x16", 8" thick
- External finish, use standard red bricks, running bond, 12,000 ft²
- Windows; assumes one every 6.25-ft O.C. = 96 windows, use solid vinyl, premium quality, double-insulated glass
- Roof:
 - Steel framing, SLH spans to 200', 80SLH20, 75 lb/f, assumes spans are 8.5-ft O.C. along long dimension, so 27 lines x 100 LF = 2,700 LF
 - Steel roofing on steel frame, flat profile, 1-3/4" standing seams 10" wide, 22 gallons (ga)., 20,000 ft²
- Mechanical systems:
 - Hot water: commercial gas fired 260 MBH input 250 gph
 - Boiler for heating system: Gas boiler, hot water, 2,856 BTUs in thousands (MBH) output
 - Air conditioning: rooftop, 300 ton unit Heat & AC distribution assumes forced air, assumes 4 lb per LF of duct, 5 lines of ductwork along long dimension = 5 x (200 LF + 20 LF riser) = 1,100 LF x 4 pounds (lb)/LF = 4,400 lbs. Use galvanized steel ductwork, over 5,000 lb
 - Sprinkler system: assumes 5 lines along 200-ft length of building. 5 lines x (200 ft per line + 20 ft. riser) = 1,100. Use schedule 40 steel pipe with couplings and hangars, 2" diameter
- Interior construction and finishes:
 - Interior wall assembly, use 1/2" interior gypsum, taped both sides, 25 ga metal studs, assumes 1,300 LF x 15' high walls (remainder for mechanical space) = 19,500 ft²
 - Door assemblies assumes 2 per office x 20 offices = 40 doors, birch solid core pre-hung door
 - Subfloor use $\frac{1}{2}$ " thick plywood, CDX, pneumatic nailed, 20,000 ft²
 - Flooring use vinyl tile, $12" \times 12"$, 0.050" thick, 20,000 ft²
 - Ceiling use suspended ceiling, regular 2' x 2' x 5/8" tile on 9/16" grid, 20,000 ft²
- Interior utility DoD lands (for those based on wall length, already calculated at 1,300 LF):
 - Electrical wiring, use 600 volt BX cable, 3 conductor, solid, wall length
 - Assumes one electrical outlet every 3 LF of wall, round to 433 electrical outlets, use square
 4" outlet box for Romex (brand of insulated wire) or BX cable (armored cable with flexible steel or aluminum sheath over conductors), with bracket as equivalent measure
 - Assumes lighting provided on 10-ft centers along long axis of building, thus 9 lines of 200-ft each = 1,800 LF plus (2) 100-ft long transverse lines + (2) 20 ft risers = 2,040 LF total
 - Conduit, use 1-1/2" galvanized steel
 - Electrical wiring, use 600 volt BX cable, 3 conductor, solid
 - Fixtures Use pendent mounted industrial, 4' long 2-60 watt HO, 50 per line (450 total), 450 units
 - Category (Cat) 5 unshielded twisted pair (UTP) (telecom), assumes 5 lines per office and 25 per common area, average run of 150 LF; total = 33,750 LF

- Cat 5 UTP jacks, RJ-45, assumes 5 per office and 25 per common area = 225 jacks
- Coaxial cable, RG 59, fire rated, 75 ohm
- Assumes 4 plumbed rooms (kitchen, restrooms, utility closet), 20 fixture DoD lands per restroom and 5 each in the kitchen and utility room = 50 fixtures, use lavatories, white trim, 20"x 18" as equivalent measure
- Internal water plumbing, 2,600 LF (cold & hot water) Type L tubing, couplings & hangers 10' O.C., 1"
- Internal sanitary plumbing, PVC pipe, 4", hangers & couplings 10' O.C., schedule 40

Given the aggregate floor area ratios (1.56 for the entire Main Cantonment, exclusive of the Family Housing Areas), it was assumed that all structures except residential structures are single-story. The floor area ratio of 1.56 includes several multiple-unit type residential structures that are described as being three or four stories in height. Although some non-residential spaces are described as multi-story, the aggregate numbers suggest that the floor area ratio for non-residential structures is closer to 1.0 than to 1.56. However, the prototypes were pro-rated on the basis of entire building area (not just the building footprint), thereby capturing the materials and effort necessary to construct the entire project. Any error introduced by the assumption of single-story construction (such as productivity losses from working above ground) are expected to be minimal, because only 5 of the 150 proposed buildings classified as non-residential in the Main Cantonment are three-story structures (i.e., there are no buildings taller than three stories).

CVN Berthing Project including Dredging Activity Assumptions

Detail estimate to identify equipment, material and manpower requirements for the construction associated with the proposed CVN berthing project in Guam are described below:

Shoreside Structures

An approximately 6-acre area is required adjacent to the proposed wharf for shoreside support structures. This entire area requires clearing, grubbing, grading, utility installation and pavement. Within this area, five separate buildings (Port Operations, Air Compressor, Water Treatment, Boiler House, Guard Booth), an unspecified number of watch towers, a 13,210-gallon bermed fuel tank, an electrical substation, a bilge oily-waste pump station, and a bilge oily-waste treatment system (BOWTS) would be provided within the main shoreside area. In addition, a morale, welfare and recreation (MWR) area would be provided away from the immediate shoreside support area. For the purposes of this estimate, it is assumed that the prototype structures developed for the Main Cantonment described previously can be used for the buildings, general site preparation, and installation of site-wide utilities and pavement in the immediate shoreside and MWR areas.

Utilities

Specific utility elements not estimated by use of the site-wide utilities prototype identified in the shoreside structures section are included in this section. Utility piping associated with the berth itself is included in the wharf construction section. The items considered include:

- Electrical substation
- Stormwater management assume that creation of swale occurs during sitewide grading. The additional stormwater management item is the cyclonic separator use item 11310-100-0600, oil/water separator.

- MWR area estimated at approximately 0.5 acres. It is assumed that the general site preparation and utility & roadway installation prototypes can be used for this element. Since the services to be provided on the MWR pad will be of a temporary nature, it is assumed that pre-packaged units will be deployed to the MWR pad, and that no additional construction estimates are required.
- Sewer pump station
- BOWTS assume BOWTS pump station is identical to sewage pump station, and that BOWTS piping is included in on-wharf utilities estimated in the wharf construction section.

Wharf

This section covers the construction of the physical wharf, including installation of utility piping and other wharf appurtenances. Since Nimitz-class carriers are 1,115-ft long, it was assumed that the wharf will be 1,500 ft by 90 ft to provide docking flexibility. The items considered include:

- Foundations
- Deck assuming 18" concrete deck poured on q-deck.
- Fendering/Mooring Systems
- Utility runs assuming that the utility trench is formed into deck during pouring of slab. Utilities to be provided in trench include steam, compressed air, pure water, potable water, wastewater, electricity and communications. Number of utility mounds to be installed based on quantities provided for prior CVN berth estimate (NAS North Island).

Dredging

Approximately 608,000 Cubic Yard (CY) of dredging is required and it is assumed that all dredging work will be done using mechanical dredging method. The assumptions used include:

- A barge with 90-ton crane, 2,000 HP of installed power and a 15-CY bucket would be used with an average productivity of 200 CY per hour.
- One 8-hour shift per day and 5 days per week.
- Total working weeks are evenly split into 2014 and 2015.

Therefore, an average of 38 weeks per year of dredging would occur over two dredging years based on:

• Total dredging weeks = 608,000 CY/(200 CY/hour x 8 hour/day x 5 day/week) = 76 weeks (over 2 years)

The weekly duration for each activity was assumed to be eight hours per day, five days per week. All construction equipment was assumed to be diesel powered unless otherwise noted. The emissions estimate assumes for only one piece of equipment because the same amount of construction activities can be accomplished by using one piece of equipment for one week, or can be shortened to half a week by using two pieces simultaneously. The key input in the emissions calculations is the total number of equipment hours required to complete the work. Therefore, the input of one piece of equipment used in the calculations is only for the purposes of completing them and does not reflect the actual number of pieces equipment that will be used on site during construction.

Pieces of equipment to be used for the construction and demolition activities include, but are not limited to:

- Backhoe loaders
- Chain saws
- Chipping machines
- Compressors
- Concrete pumps
- Cranes
- Drill rig and augurs
- Dozers
- Dump trucks
- Excavators
- Front end loaders
- Gas engine vibrators
- Gas welding machines
- Generators
- Gradalls
- Graders
- Hammers
- Pavement removers
- Pavement breakers
- Pavers
- Pumps
- Rammers/tampers
- Rollers
- Trenchers
- Tug boats

Equipment Emission Estimate

Estimates of the operational emissions from construction equipment were developed based on the estimated hours of equipment use and the emission factors for each type of equipment. Emission factors for VOC, NO_x , and CO were taken from USEPA's NONROAD emission factor model and the national default model inputs for nonroad engines, equipment, and vehicles of interest provided with the model (USEPA December 2008). Emission factors for SO₂ and PM were based on USEPA's NONROAD emission factor model incorporating the use of high sulfur content (i.e., 0.5 %). The average equipment horsepower (hp) values and equipment power load factors were obtained in association with the NONROAD emission factors.

A maximum sulfur content of 0.5% was used based on USEPA's Heavy-Duty Standards/Diesel Fuel Regulatory Impact Analysis (RIA) (USEPA 2000). Based on the RIA, data observed in 1992 shows that

No. 2 diesel fuel imports actually had sulfur content ranging from 0.39% to 0.5%. Therefore, using the actual highest sulfur content observed in 1992 (0.5%) for vehicles in this analysis is considered appropriate and conservative and is also coincident with the highest sulfur content fuel input available in the NONROAD model. It should also be noted that with the introduction of the Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements (40 CFR Parts 69, 80, and 86) in 2006, refiners were required to start producing diesel fuel for use in highway vehicles with a sulfur content of no more than 15 ppm. Therefore, the sulfur content of fuels since 1992 has decreased in general although Guam has been granted an exemption from using low sulfur fuel (see Volume 6, Section 7.2). DoD is currently examining the potential use of ultra low sulfur fuel on Guam, so that the actual sulfur content used may be far lower than the results provided here.

Because the operational activity data presented in RSMeans' cost data books are generated based on the overall length of equipment presence duration on site, an actual running time factor (i.e., actual usage factor) was employed to determine actual equipment usage hours for the purpose of estimating equipment emissions. The usage factor for each equipment type was obtained fromFHWA *Roadway Construction Noise Model User's Guide* (FHWA January 2006). Emission factors related to construction-associated delivery trucks were obtained using the USEPA Mobile6 emission factor model (USEPA October 2002) which provides an emission factor database for various truck classifications.

Emission factors (in grams of pollutant per hour per horsepower) were multiplied by the estimated running time and equipment average horsepower to calculate the total grams of pollutant from each piece of equipment. Finally, the total grams of pollutant were converted to tons of pollutant.

The USEPA recommends the following formula to calculate hourly emissions from nonroad engine sources including cranes, backhoes, etc.:

$$M_i = N \ x \ HP \ x \ LF \ x \ EF_i$$

Where:

 M_i = mass of emissions of *i*th pollutants during inventory period;

N = source population (units);

HP = average rated horsepower;

LF = typical load factor; and

 EF_i = average emissions of *i*th pollutant per unit of use (e.g., grams per horsepower-hour).

Typical load factor values were obtained from *Nonroad Engine Emissions Model Worksheet* (USEPA December 2008). Equipment running times were estimated based on an 8 hour per day schedule. A sample calculation for NO_x emissions from a 90-ton crane engine during the Marine Corps installation to Guam follows:

Operational Hours = 90 hours (1 crane x 14.1 weeks x 5 days x 8 hr/day) Operational Emissions = 90 hours x 231 hp x 43% x 5.14 grams/hp-hr = 0.051 tons Table I.3-147 provides the emissions estimates associated with Marine Corps for Airfield/North.

	Num		Usa		Hor	Loa				2 .										
	ber		ge ge		поr se	Loa d		Emiss	ion Fac	ctor ² (g	rams/h	p-hour)		E	mission	Rate (1	tons/yea	ır)	
Equipment Type/Activity	of Unit s	We eks	Fact or ¹ %	Ho urs	pow er ² (hp)	Fact or ² (%)	$S \\ O_2$	СО	P M ₁ 0	P M _{2.} 5	$N O_x$	VO C	<i>CO</i> ₂	SO 2	C O	P M ₁ 0	P M _{2.} 5	$N O_x$	VO C	CO 2
Construction																				
Asphalt paver, 130 HP	1	9.2	50	183	130	59	1. 68	2.0 7	0.4 6	0.4 5	4. 59	0.3 8	550. 19	0.0 26	0.0 32	0.0 07	0.0 07	0.0 71	0.0 06	8.5 05
Compressor, 250 cfm	1	23. 2	40	371	83	43	1. 76	2.4 0	0.5 7	0.5 6	5. 42	0.5 4	573. 27	0.0 26	0.0 35	0.0 08	0.0 08	0.0 79	0.0 08	8.3 49
Concrete pump, small	1	7.7	50	153	53	43	1. 74	3.0 3	0.7 4	0.7 2	6. 18	0.7 5	567. 14	0.0 07	0.0 12	0.0 03	0.0 03	0.0 24	0.0 03	2.1 67
Crane, 90-ton	1	14. 1	16	90	231	43	1. 63	1.3 0	0.3	0.3	5. 14	0.3	532. 78	0.0 16	0.0 13	0.0 03	0.0 03	0.0 51	0.0 03	5.2 57
Crane, SP, 12 ton	1	9.1	16	58	231	43	1. 63	1.3 0	0.3 2	0.3	5. 14	0.3	532. 78	0.0	0.0 08	0.0 02	0.0 02	0.0	0.0 02	3.3 74
Diesel hammer, 41k ft-lb	1	4.2	40	34	200	59	1. 64	1.9 3	0.5	0.4	4. 72	0.3	539. 34	0.0 12	0.0 20	0.0 04	0.0 03	0.0 40	0.0 03	3.8 53
Dozer, 300 HP	1	6.2	40	98	300	59	1. 65	1.9 3	0.3 8	0.3 7	4. 72	0.3	539. 34	0.0 32	0.0 37	0.0 07	0.0 07	0.0 91	0.0 06	10. 345
Front end loader, 1.5 cy	1	6.2	40	98	93	21	2. 03	6.4 2	1.3 1	1.2 7	6. 80	1.4 7	662. 28	0.0 04	0.0 14	0.0 03	0.0 03	0.0 14	0.0 03	1.4 09
Gas engine vibrator	1	15. 3	20	122	6	55	0. 22	696 .11	0.1 8	0.1 7	2. 78	26. 08	109 3.00	0.0 00	0.2 89	0.0 00	0.0 00	0.0 01	0.0 11	0.4 54
Gas welding machine	1	5.6	40	90	17	68	0. 21	642 .74	0.1	0.1	3. 24	11. 35	996. 20	0.0	0.7 47	0.0	0.0 00	0.0 04	0.0 13	1.1 57
Grader, 30,000 lb	1	13. 4	40	214	204	59	1. 64	1.4	0.3	0.3	4. 26	0.3	537. 25	0.0	0.0	0.0	0.0	0.1 21	0.0	15. 243
Pneumatic wheel roller	1	9.2	50	183	92	59	1. 71	2.4 9	0.5	0.5	4. 77	0.4	558. 97	0.0	0.0	0.0	0.0	0.0	0.0	6.1 33
Roller, vibratory	1	6.2	20	49	92	59	1. 71	2.4	0.5	0.5	4. 77	0.4	558. 97	0.0	0.0	0.0	0.0	0.0	0.0	1.6 49
Rollers, steel wheel	1	9.7	20	78	92	59	1. 71	2.4 9	0.5	0.5	4. 77	0.4	558. 97	0.0	0.0	0.0 02	0.0 02	0.0	0.0	2.6 00
Tandem roller, 10 ton	1	4.3	20	34	92	59	1. 71	2.4 9	0.5	0.5	4. 77	0.4 2	558. 97	0.0	0.0	0.0 01	0.0 01	0.0	0.0 01	1.1 53
Total Annual Co	nstructio	n Emiss	ions Bet	ween 20	011-201	4		-						0.2	1.2 98	0.0	0.0	0.6	0.0	71. 647

Table I.3-147: Marine Corps Construction Equipment Emissions – Airfield / North

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Vehicle Emission Estimate

Truck and commuting vehicle operations also would result in indirect emissions. Emission factors for trucks (including dump, delivery, tractor, and tractor trucks that were modeled as heavy-duty diesel vehicles) for years 2011-2014 using the USEPA Mobile 6.2 Emission Factor model (USEPA October 2002). Statewide default input parameters for the summer and winter seasons for San Diego, California were used, as these were considered the most similar parameters available. The modeled emission factors were then multiplied by the vehicle operation hours to determine total emissions. Total trucks were estimated based on a round trip assumption of 20 miles. Table I.3-148 provides estimates of Marine Corps truck emissions for Airfield/North.

Asphalt Curing Emission Estimate

Asphalt curing-related VOC emissions were calculated based on the amount of paving anticipated. The following assumptions were used:

• Hot Mix Emulsified emission factor of 0.040 lbs/ton (California Air Resources Board). The Emulsified Emission Factor used for primary and tack coats was 17.9 lbs/ton.

- Hot Mix application rate of 0.060 gal/SY. (USACE 2000).
- Primary and Tack Coat Application rates of 0.25 gal/SY and 0.30 gal/SY. (FHWA, Guideline for Using Prime and Tack Coats July 2005).
- The density of asphalt (8.34 lb/gal) was obtained from: USEPA's Emission Inventory Improvement Program (EIIP), (USEPA January 2001).
- Conservative 4-inch paving thickness (RS Means 2006).

The calculation of asphalt concrete paving VOC emissions is provided below:

Pavement area $= 473826 \text{ yd}^2$

Asphalt concrete density = 8.34 lb/gal

Total VOC = $473826 \text{ yd}^2 \text{ x} ((0.040 \text{ lbs/ton x } 0.060 \text{ gal/yd}^2) + (17.9 \text{ lbs/ton x } 0.25 \text{ gal/yd}^2) + (17.9 \text{ lbs/ton x } 0.30 \text{ gal/yd}^2) \text{ x } 8.34 \text{ lb/gal } /2000/2000$

= 2.432 tons per year (Table I.3-149)

The following Subchapters present the worksheets used for estimating construction emissions associated with the actions described in each EIS volume using the above methodologies.

- Section 3.4.1 Marine Corps Relocation Guam: Table I.3-148 through Table I.3-173
- Section 3.4.2 Marine Corps Relocation CNMI: Table I.3-174 through Table I.3-177
- Section 3.4.3 Marine Corps Relocation Aircraft Carrier Berthing: Table I.3-178 through Table I.3-183
- Section 3.4.4 Marine Corps Relocation –Army Air and Missile Defense Task: Table I.3-184 through Table I.3-198
- Section 3.4.5 Marine Corps Relocation Related Actions/Utilities Projects: Table I.3-199 through Table I.3-232.

3.4.1 **Construction Emissions: Marine Corps Relocation – Guam**

Table I.3-148: Marine Corps Van & Truck Emissions – Airfield / North

Commuter V	an (LDGT)				Emissie	on Facto	r ¹ (lb/hr)					Emissio	n Rate (t	ons/year)	
Stage	Total VMT	Speed in miles/ho ur	Hour s	SO_2	CO	<i>PM</i> ₁ 0	<i>PM</i> _{2.}	NO _x	VO C	CO ₂	SO ₂	со	<i>PM</i> ₁ 0	<i>PM</i> _{2.}	NO _x	VO C	CO ₂
Constructi on	43194	25	432	0.00	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											6.117	
Trucks (HDI	OV)					Emissi	on Facto	r ¹ (lb/hr)					Emissio	n Rate (t	ons/year)	
Constructi on	22588 3	25 2,25 0.24 0.11 0.02 0.02 0.32 0.02 78.1 9 3 1 9 6 2 5 4									0.27 4	0.12 5	0.03	0.03	0.36 4	0.02 9	88.21 2
	tal Annual Motor Vehicle Emissions, Between 2011-2014											0.23 6	0.03 3	0.03 0	0.37 3	0.04 0	94.32 9

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-149: Marine Corps Pavement Emissions – Airfield / North

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
473,826	0.04	17.90	0.06	0.25	0.30	2.1E-05	9.73	4	2.432
Total Annua	l Paving VOCs E	Between 2011-2014							2.432

otal Annual Paving VOC s Between 2011-

Source: 1. California Air Resources Board. 2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.

3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-150: Marine Corps Total Construction Emissions - Airfield / North

				Pollutant			
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO ₂
Total Annual Emissions (TPY)	0.5	1.5	0.1	0.1	1.0	2.5	166.0

	Number		Usage		Horse 2	Load 2		E	Emission Fa	ctor ² (grams	hp-hou	r)				Emissi	ion Rate (tor	ıs/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	CO	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO ₂
Construction																				
Asphalt paver, 130 HP	1	138	50	2755	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.392	0.481	0.108	0.105	1.069	0.089	128.048
Backhoe loader, 48hp	1	927	40	14831	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.334	1.058	0.215	0.209	1.120	0.241	109.040
Compressor, 250 cfm	1	11,026	40	176410	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	12.147	16.596	3.973	3.854	37.498	3.771	3967.747
Centrif. water pump, 6"	1	4	50	80	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.003	0.006	0.001	0.001	0.012	0.002	1.130
Chain saws, 36"	1	766	20	6129	48	59	2.00	349.18	12.63	11.62	0.91	69.87	686.61	0.378	66.104	2.391	2.199	0.172	13.227	129.985
Chipping machine	1	383	50	7661	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.880	1.283	0.303	0.294	3.120	0.309	287.436
Concrete pump, small	1	577	50	11537	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.500	0.873	0.213	0.207	1.780	0.217	163.416
Crane, 90-ton	1	408	16	2613	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.466	0.370	0.092	0.090	1.470	0.101	152.203
Crane, SP, 12 ton	1	2,789	16	17848	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	3.183	2.529	0.631	0.612	10.040	0.690	1039.739
Drill rig & augers	1	4	20	32	176	43	1.65	2.36	0.56	0.54	6.68	0.57	539.15	0.004	0.006	0.001	0.001	0.018	0.002	1.431
Dozer, 300 HP	1	203	40	3246	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.000	1.221	0.000	0.000	2.987	0.206	341.245
Front end loader, 1.5 cy	1	586	40	9374	93	21	1.65	6.42	0.38	0.37	6.80	1.47	662.28	1.045	1.302	0.242	0.235	1.378	0.297	134.195
Gas engine vibrator	1	1,343	20	10744	6	55	2.03	696.11	1.31	1.27	2.78	26.08	1093.00	0.411	25.368	0.265	0.257	0.101	0.951	39.832
Gas welding machine	1	600	40	9596	17	68	0.22	642.74	0.18	0.17	3.24	11.35	996.20	0.008	79.961	0.007	0.006	0.404	1.412	123.934
Gradall, 3 ton, 1/2 cy	1	344	40	5510	171	59	0.21	1.64	0.11	0.10	4.25	0.32	541.49	0.026	1.006	0.014	0.013	2.605	0.196	331.929
Grader, 30,000 lb	1	942	40	15070	204	59	1.66	1.45	0.38	0.37	4.26	0.32	537.25	1.016	2.909	0.232	0.225	8.525	0.639	1075.393
Pneumatic wheel roller	1	138	50	2755	92	59	1.64	2.49	0.36	0.35	4.77	0.42	558.97	3.292	0.411	0.721	0.699	0.788	0.070	92.331
Roller, vibratory	1	203	20	1623	92	59	1.76	2.49	0.59	0.57	4.77	0.42	558.97	0.000	0.242	0.000	0.000	0.464	0.041	54.385
Rollers, steel wheel	1	275	20	2201	92	59	1.76	2.49	0.59	0.57	4.77	0.42	558.97	0.000	0.328	0.000	0.000	0.630	0.056	73.752
Tandem roller, 10 ton	1	0.2	20	1.7	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.283	0.000	0.088	0.085	0.000	0.000	0.056
Total Annual Construction	Emissions	Between 2	011 – 2016,	Alternative	e 1									24.761	202.055	9.618	9.209	74.181	22.516	8247.229
Total Annual Construction	Emissions	Between 2	011 – 2016,	Alternative	e 2 (1.9% in	ncrease)								25.232	205.904	9.801	9.384	75.594	22.945	8404.319
Total Annual Construction	Emissions	Between 2	011 – 2016,	Alternative	e 3 (4.8% in	ncrease)								25.940	211.677	10.076	9.647	77.714	23.588	8639.954
Total Annual Construction	Emissions	Between 20	011 – 2016,	Alternative	e 8 (2.9% in	ncrease)								25.468	207.829	9.893	9.472	76.301	23.159	8482.864

Table I.3-151: Marine Corps Construction Equipment Emissions – Main Cantonment / North and Central

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Commuter W	an (LDGT))				Emissio	n Facto	r ¹ (lb/hr)					Emissio	on Rate (tons/year	·)	
Stage	Total VMT	Speed in miles/h our	Hours	SO ₂	со	PM 10	PM 2.5	NO _x	VO C	CO ₂	SO ₂	СО	PM 10	PM 2.5	NO _x	VO C	CO ₂
Alternativ e 1	1,703,6 86	25	68,14 7	0.00 1	0.51 5	0.00 1	0.00 1	0.04 5	0.05 1	28.3 24	0.01 8	17.5 40	0.04 7	0.02 2	1.52 9	1.72 4	965.100
Alternative 2 (no increase)											0.01 8	17.5 40	0.04 7	0.02 2	1.52 9	1.72 4	965.100
Alternative	Alternative 3 (1.0% increase)											17.7 12	0.04 8	0.02 2	1.54 4	1.74 1	974.562
Alternative 8 (no increase)											0.01 8	17.5 40	0.04 7	0.02 2	1.52 9	1.72 4	965.100
Trucks (HD	Frucks (HDDV) Emission Factor ¹ (lb/hr)												Emissio	on Rate ((tons/year	r)	
Alternativ e 1	6,676,6 76	25	267,0 67	0.24 3	0.11 1	0.02 9	0.02 6	0.32 2	0.02 5	78.1 04	32.3 95	14.8 01	1.55 8	1.26 1	42.9 88	3.40 0	10429.5 37
Alternative	2 (1.0% inc	rease)									32.7 06	14.9 43	1.57 3	1.27 3	43.4 02	3.43 3	10529.8 21
Alternative	3 (2.9% inc	rease)									33.3 29	15.2 27	1.60 3	1.29 7	44.2 28	3.49 8	10730.3 89
Alternative	8 (1.0% inc	rease)									32.7 06	14.9 43	1.57 3	1.27 3	43.4 02	3.43 3	10529.8 21
Total Annua	ıl Motor Ve	hicle Emissi	ons, Betw	een 2011	-2016, 2	Alternati	ve 1				32.4 16	32.3 41	1.60 5	1.28 3	44.5 17	5.12 4	11394.6 37
Total Annua	Total Annual Motor Vehicle Emissions, Between 2011-2016, Alternative 2 (1.0% increase)												1.62 0	1.29 5	44.9 30	5.15 7	11494.9 21
Total Annua	ıl Motor Ve	hicle Emissi	ons, Betw	een 201	-2016, 4	Alternati	ve 3 (2.	9% incre	ase)		33.3 47	32.9 40	1.65 1	1.31 9	45.7 72	5.23 9	11704.9 51
Total Annua	l Motor Ve	hicle Emissi	ons, Betw	een 2011	-2016, .	Alternati	ve 8 (1.	0% incre	ase)		32.7 24	32.4 83	1.62 0	1.29 5	44.9 30	5.15 7	11494.9 21

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-153: Marine Corps Pavement Emissions – Main Cantonment / North and Central

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	Emissions Rate VOC (tons/year)					
3,153,937	0.04	2.1E-05	64.76	64.756									
Total Annual Pav	3,153,937 0.04 17.90 0.06 0.25 0.30 2.1E-05 64.76 Fotal Annual Paving VOCs Between 2011-2016, Alternative 1												
Total Annual Pav	ing VOCs Between	n 2011-2016, Alterna	tive 2 (1.9% incre	ase)				65.990					
Total Annual Pav	ing VOCs Between	n 2011-2016, Alterna	tive 3 (4.8% incre	ease)				67.840					
	ing VOCs Between	n 2011-2016, Alterna	tive 8 (2.9% incre	ase)				66.606					

Source: 1. California Air Resources Board.2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-154: Marine Corps Total Construction Emissions – Main Cantonment / North and Central

	Construction Activity				Pollutar	ıt		
	Total Annual Emissions (TPY)	SO_2	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO_2
	2011 (11%)	6.3	25.8	1.5	1.4	13.1	10.2	2,160.6
	2012 (18%)	10.3	42.2	2.4	2.3	21.4	16.6	3,535.5
Alternative 1, North	2013 (23%)	13.1	53.9	3.1	2.9	27.3	21.3	4,517.6
Anternative 1, North	2014 (23%)	13.1	53.9	3.1	2.9	27.3	21.3	4,517.6
	2015 (17%)	9.7	39.8	2.3	2.2	20.2	15.7	3,339.1
	2016 (8%)	4.6	18.8	1.1	1.0	9.5	7.4	1,571.3
Alternative 2, North	2011 (11%)	6.4	26.2	1.5	1.4	13.3	10.4	2,188.9

	Construction Activity				Pollutar	ıt		
	Total Annual Emissions (TPY)	SO ₂	CO	PM10	PM _{2.5}	NO_x	VOC	<i>CO</i> ₂
	2012 (18%)	10.4	42.9	2.5	2.3	21.7	16.9	3,581.9
	2013 (23%)	13.3	54.8	3.2	3.0	27.7	21.6	4,576.8
	2014 (23%)	13.3	54.8	3.2	3.0	27.7	21.6	4,576.8
	2015 (17%)	9.9	40.5	2.3	2.2	20.5	16.0	3,382.9
	2016 (8%)	4.6	19.1	1.1	1.0	9.6	7.5	1,591.9
	2011 (11%)	4.3	17.6	1.0	1.0	8.9	6.9	1,461.4
	2012 (18%)	7.0	28.8	1.7	1.6	14.5	11.4	2,391.3
Alternative 2 North	2013 (23%)	8.9	36.7	2.1	2.0	18.5	14.5	3,055.6
Alternative 3, North	2014 (23%)	8.9	36.7	2.1	2.0	18.5	14.5	3,055.6
	2015 (17%)	6.6	27.2	1.6	1.5	13.7	10.7	2,258.5
	2016 (8%)	3.1	12.8	0.7	0.7	6.5	5.0	1,062.8
	2011 (11%)	2.3	9.3	0.5	0.5	4.7	3.7	776.6
	2012 (18%)	3.7	15.3	0.9	0.8	7.7	6.0	1,270.7
Alternative 3, Central	2013 (23%)	4.7	19.5	1.1	1.1	9.9	7.7	1,623.7
Alternative 5, Central	2014 (23%)	4.7	19.5	1.1	1.1	9.9	7.7	1,623.7
	2015 (17%)	3.5	14.4	0.8	0.8	7.3	5.7	1,200.1
	2016 (8%)	1.6	6.8	0.4	0.4	3.4	2.7	564.8
Alternative Q. Marth	2011 (11%)	5.2	21.3	1.2	1.2	10.7	8.4	1,769.0
Alternative 8, North	2012 (18%)	8.4	34.8	2.0	1.9	17.6	13.8	2,894.8
	2013 (23%)	10.8	44.5	2.6	2.4	22.4	17.6	3,698.9
	2014 (23%)	10.8	44.5	2.6	2.4	22.4	17.6	3,698.9
	2015 (17%)	8.0	32.9	1.9	1.8	16.6	13.0	2,734.0
	2016 (8%)	3.7	15.5	0.9	0.8	7.8	6.1	1,286.6
	2011 (11%)	1.2	5.2	0.3	0.3	2.6	2.0	428.5
	2012 (18%)	2.0	8.4	0.5	0.5	4.3	3.3	701.2
Alternative 8, Central	2013 (23%)	2.6	10.8	0.6	0.6	5.4	4.3	896.0
Anernative o, Central	2014 (23%)	2.6	10.8	0.6	0.6	5.4	4.3	896.0
	2015 (17%)	1.9	8.0	0.5	0.4	4.0	3.1	662.3
	2016 (8%)	0.9	3.7	0.2	0.2	1.9	1.5	311.7

	Numbe	Week	Usage Factor	Hour	Horse	Load Easter		Em	ission Fac	ctor ² (gra	ms/hp-h	our)				Emissic	on Rate (to	ons/year)		
Equipment Type/Activity	r of Units	s	1 <i>1</i>	s	power ² (hp)	Factor 2 (%)	SO_2	СО	PM10	PM _{2.}	NO _x	VOC	CO_2	SO_2	СО	PM10	PM _{2.}	NO _x	VOC	CO ₂
Construction																				
Asphalt paver, 130 HP	1	1.4	50	27	130	59	1.68	2.07	0.46	0.45	4.5 9	0.38	550.19	0.00 4	0.00 5	0.00	0.00	0.01 0	0.00	1.255
Backhoe loader, 48hp	1	2.4	40	38	48	21	2.03	6.42	1.31	1.27	6.8 0	1.47	662.28	0.00	0.00	0.00	0.00	0.00	0.00	0.282
Chain saws, 36"	1	1.0	20	8	48	59	2.00	349.1 8	12.6 3	11.6 2	0.9 1	69.8 7	686.61	0.00 0	0.08 6	0.00	0.00	0.00 0	0.01 7	0.170
Chipping machine	1	0.5	50	10	144	43	1.69	2.46	0.58	0.56	5.9 8	0.59	550.61	0.00	0.00	0.00	0.00	0.00 4	0.00 0	0.375
Compressor, 250 cfm	1	6.7	40	106	83	43	1.76	2.40	0.57	0.56	5.4 2	0.54	573.27	0.00 7	0.01 0	0.00	0.00	0.02	0.00	2.393
Concrete pump, small	1	2.0	50	40	53	43	1.74	3.03	0.74	0.72	6.1 8	0.75	567.14	0.00	0.00	0.00	0.00	0.00 6	0.00	0.567
Crane, 90-ton	1	16.8	16	107	231	43	1.63	1.30	0.32	0.31	5.1 4	0.35	532.78	0.01 9	0.01 5	0.00 4	0.00	0.06 0	0.00 4	6.245
Crane, SP, 12 ton	1	12.7	16	81	231	43	1.63	1.30	0.32	0.31	5.1 4	0.35	532.78	0.01 4	0.01	0.00	0.00	0.04 6	0.00	4.716
Vibratory hammer and generator	1	5.6	50	112	50	43	1.74	3.02	0.72	0.70	6.1 4	0.80	567.43	0.00 5	0.00 8	0.00	0.00	0.01 6	0.00	1.492
Diesel hammer, 41k ft-lb	1	0.3	20	2	329	59	1.64	2.75	0.50	0.48	5.6 0	0.42	537.08	0.00	0.00	0.00 0	0.00	0.00	0.00 0	0.275
Dozer, 75 HP	1	0.5	40	8	75	59	1.65	1.93	0.38	0.37	4.7 2	0.33	539.34	0.00	0.00	0.00	0.00	0.00	0.00 0	0.210
Dozer, 300 HP	1	1.4	40	22	300	59	1.65	1.93	0.38	0.37	4.7 2	0.33	539.34	0.00 7	0.00 8	0.00	0.00	0.02 0	0.00	2.271
Front end loader, 1.5 cy	1	3.5	40	56	93	21	2.03	6.42	1.31	1.27	6.8 0	1.47	662.28	0.00	0.00 8	0.00	0.00	0.00 8	0.00	0.802
Gas engine vibrator	1	5.9	20	47	6	55	0.22	696.1 1	0.18	0.17	2.7 8	26.0 8	1093.0 0	0.00 0	0.11 1	0.00	0.00	0.00 0	0.00 4	0.174
Gas welding machine	1	2.8	40	45	17	68	0.21	642.7 4	0.11	0.10	3.2 4	11.3 5	996.20	0.00 0	0.37 3	0.00	0.00	0.00	0.00 7	0.579
Gradall, 3 ton, 1/2 cy	1	0.1	40	1	171	59	10.67	1.22	0.37	0.36	3.3 8	0.25	536.04	0.00	0.00	0.00	0.00	0.00	0.00	0.048
Grader, 30,000 lb	1	3.9	40	62	204	59	1.64	1.45	0.36	0.35	4.2 6	0.32	537.25	0.01	0.01	0.00	0.00	0.03 5	0.00	4.396
Hydraulic excavator, 3.5 cy	1	1.9	40	30	62	43	1.76	2.43	0.59	0.57	5.4 1	0.56	576.01	0.00	0.00	0.00	0.00	0.00 5	0.00 0	0.513
Pneumatic wheel roller	1	1.4	50	27	92	59	1.71	2.49	0.53	0.51	4.7 7	0.42	558.97	0.00	0.00 4	0.00	0.00	0.00 8	0.00	0.905
Roller, vibratory	1	1.4	20	11	92	59	1.71	2.49	0.53	0.51	4.7 7	0.42	558.97	0.00	0.00	0.00 0	0.00	0.00	0.00 0	0.362
Rollers, steel wheel	1	2.5	20	20	92	59	1.71	2.49	0.53	0.51	4.7 7	0.42	558.97	0.00 2	0.00	0.00	0.00	0.00	0.00	0.670
Tandem roller, 10 ton	1	0.1	20	1	92	59	1.71	2.49	0.53	0.51	4.7 7	0.42	558.97	0.00 0	0.00	0.00	0.00	0.00	0.00	0.027
Tug boat, 500 HP	1	1.8	50	36	500	30	140.6 2	0.78	0.25	0.24	7.9 2	0.01	524.78	0.83 6	0.00	0.00	0.00	0.04 7	0.00	3.121
Total Annual Construction Emissi	ions Betwee	en 2011 –	2014			-				•	•	-		0.92 3	0.67 3	0.02 7	0.02 6	0.30 7	0.05 0	31.84 6

Table I.3-155: Marine Corps Construction Equipment Emissions – Waterfront / Apra Harbor

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-156: Marine Corps Van & Truck Emissions – Waterfront / Apra Harbor

Commuter V	an (LDGT)				Emissio	on Facto	r ¹ (lb/hr)					Emissio	n Rate (t	ons/year,)	
Stage	Total VMT	Speed in miles/ho ur	Hour s	SO_2	CO	PM ₁ 0	РМ _{2.} 5	NO _x	VO C	CO ₂	SO_2	CO	PM ₁ 0	PM _{2.}	NO _x	VO C	CO_2
Constructi on	20417	25	204	0.00	0.51 5	0.00	0.00 1	0.04 5	0.05 1	28.32 4	0.00 0	0.05 3	0.00 0	0.00 0	0.00 5	0.00 5	2.891
Trucks (HDI	OV)					Emissi	on Facto	r ¹ (lb/hr)					Emissio	n Rate (t	ons/year))	
Constructi on													0.01 7	0.01 5	0.18 7	0.01 5	45.40 3
Total Annual	l Motor Ve	hicle Emissi	ons, Betw	veen 201	1-2014						0.14 1	0.11 7	0.01 7	0.01 5	0.19 2	0.02 0	48.29 4

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-157: Marine Corps Pavement Emissions - Waterfront / Apra Harbor

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
62,611	0.04	17.90	0.06	0.25	0.30	2.1E-05	1.29	4	0.321
Total Annua	al Paving VOCs H	Between 2011-2014							0.321

Total Annual Paving VOCs Between 2011-2014

Source: 1. California Air Resources Board.

2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.

3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-158: Marine Corps Total Construction Emissions – Waterfront / Apra Harbor

				Pollutant			
Construction Activity	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO ₂
Total Annual Emissions (TPY)	1.1	0.8	0.0	0.0	0.5	0.4	80.1

Table I.3-159: Marine Corps Construction Equipment Emissions – Training / South & North

	Num ber		Usa		Hor se	Loa d		Emiss	ion Fac	ctor ² (g	rams/h	p-hour)		Er	nission	Rate (t	ons/yea	r)	
Equipment Type/Activity	of Unit s	We eks	ge Fac tor ¹ %	Ho urs	se pow er ² (hp)	a Fac tor ² (%)	$S \\ O_2$	со	P M1 0	P M _{2.} 5	$N \\ O_x$	VO C	CO ₂	SO 2	C O	P M1 0	P M _{2.} 5	$N O_x$	VO C	$\begin{array}{c} C\\ O_2 \end{array}$
Construction																				
Compressor, 250 cfm	1	0.3	40	4	83	43	1. 76	2.4 0	0.5 7	0.5 6	5. 42	0.5 4	573. 27	0.0 00	0.0 00	0.0 00	0.0 00	0.0 01	0.0 00	0.1 00
Concrete pump, small	1	1.7	50	34	53	43	1. 74	3.0 3	0.7 4	0.7 2	6. 18	0.7 5	567. 14	0.0 01	0.0 03	0.0 01	0.0 01	0.0 05	0.0 01	0.4 80
Crane, 90-ton	1	0.5	16	3	231	43	1. 63	1.3 0	0.3 2	0.3 1	5. 14	0.3 5	532. 78	0.0 01	0.0 00	0.0 00	0.0 00	0.0 02	0.0 00	0.1 70
Crane, SP, 12 ton	1	0.1	16	1	231	43	1. 63	1.3 0	0.3 2	0.3 1	5. 14	0.3 5	532. 78	0.0 00	0.0 00	0.0 00	0.0 00	0.0 01	0.0 00	0.0 55
Dozer, 75 HP	1	0.1	40	2	75	59	1. 65	1.9 3	0.3 8	0.3 7	4. 72	0.3 3	539. 34	0.0 00	0.0 00	0.0 00	0.0 00	0.0 01	0.0 00	0.0 62
Dozer, 300 HP	1	0.0	40	1	300	59	1. 65	1.9 3	0.3 8	0.3 7	4. 72	0.3 3	539. 34	0.0 00	0.0 00	0.0 00	0.0 00	0.0 01	0.0 00	0.0 82
Front end loader, 1.5 cy	1	0.0	40	1	93	21	2. 03	6.4 2	1.3 1	1.2 7	6. 80	1.4 7	662. 28	0.0 00	0.0 00	0.0 00	0.0 00	0.0 00	0.0 00	0.0 11
Gas engine vibrator	1	2.2	20	18	6	55	0. 22	696 .11	0.1 8	0.1 7	2. 78	26. 08	109 3.00	0.0 00	0.0 42	0.0 00	0.0 00	0.0 00	0.0 02	0.0 65
Gas welding machine	1	0.5	40	9	17	68	0. 21	642 .74	0.1 1	0.1 0	3. 24	11. 35	996. 20	0.0 00	0.0 72	0.0 00	0.0 00	0.0 00	0.0 01	0.1 11
Grader, 30,000 lb	1	0.0	40	1	204	59	1. 64	1.4 5	0.3 6	0.3 5	4. 26	0.3 2	537. 25	0.0 00	0.0 00	0.0 00	0.0 00	0.0 00	0.0 00	0.0 56
Hydraulic excavator, 3.5 cy	1	0.3	40	5	62	43	1. 76	2.4 3	0.5 9	0.5 7	5. 41	0.5 6	576. 01	0.0 01	0.0 01	0.0 00	0.0 00	0.0 03	0.0 00	0.3 01
Roller, vibratory	1	0.0	20	0	92	59	1. 71	2.4 9	0.5 3	0.5 1	4. 77	0.4 2	558. 97	0.0 00	0.0 00	0.0 00	0.0 00	0.0 00	0.0 00	0.0 13
		Total A	Annual C	Construc	tion Em	issions l	Betwee	en 2011	- 2014					0.0 04	0.1 19	0.0 01	0.0 01	0.0 14	0.0 04	1.5 06

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA , Dec. 31, 2008.

Table I.3-160: Marine Corps Van & Truck Emissions – Training / South & North

Commuter Va	an (LDGT	")				Emissio	on Facto	r ¹ (lb/hr)					Emission	n Rate (to	ons/year)		
Stage	Total VMT	Speed in miles/ho ur	Hour s	SO_2	CO	<i>PM</i> ₁ 0	PM _{2.}	NO _x	VO C	CO ₂	SO ₂	СО	<i>PM</i> ₁ 0	<i>PM</i> _{2.}	NO _x	VO C	CO ₂
Constructi on 3871 25 19 0.00 0.51 0.00 0.00 0.04 0.05 28											0.00 0	0.00 5	0.00 0	0.00 0	0.00 0	0.00 0	0.27 4
Trucks (HDD	DV)					Emissi	on Facto	r ¹ (lb/hr)					Emissio	n Rate (to	ons/year)		
Constructi on													0.00	0.00	0.02	0.00 2	5.63 9
Total Annual		ehicle Emissi	,		1-2014						0.01 8	0.01 3	0.00 2	0.00 2	0.02 4	0.00 2	5.91 3

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-161: Marine Corps Total Construction Emissions – Training / South & North

				Pollutant			
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	0.0	0.1	0.0	0.0	0.0	0.0	7.4

	Number		Usage		Horse	Load		En	ission Fa	ctor ² (gran	ns/hp-ho	our)				Emissic	on Rate (to	ns/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Asphalt paver, 130 HP	1	0.5	50	10	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.001	0.002	0.000	0.000	0.004	0.000	0.465
Backhoe loader, 48hp	1	17.6	40	281	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.006	0.020	0.004	0.004	0.021	0.005	2.064
Chain saws, 36"	1	11.5	20	92	48	59	2.00	349.18	12.63	11.62	0.91	69.87	686.61	0.006	0.992	0.036	0.033	0.003	0.199	1.951
Chipping machine	1	5.8	50	115	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.013	0.019	0.005	0.004	0.047	0.005	4.315
Compressor, 250 cfm	1	3.2	40	50	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.003	0.005	0.001	0.001	0.011	0.001	1.134
Concrete pump, small	1	1.1	50	21	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.001	0.002	0.000	0.000	0.003	0.000	0.297
Crane, 90-ton	1	37.3	16	239	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.043	0.034	0.008	0.008	0.134	0.009	13.906
Crane, SP, 12 ton	1	14.4	16	92	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.016	0.013	0.003	0.003	0.052	0.004	5.369
Dozer, 200 HP	1	40.1	40	641	200	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.138	0.161	0.032	0.031	0.393	0.027	44.914
Dozer, 300 HP	1	0.6	40	9	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.003	0.003	0.001	0.001	0.008	0.001	0.925
Front end loader, 1.5 cy	1	12.1	40	193	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.008	0.027	0.005	0.005	0.028	0.006	2.760
Gas engine vibrator	1	2.1	20	17	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.040	0.000	0.000	0.000	0.001	0.062
Gas welding machine	1	0.8	40	13	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.000	0.107	0.000	0.000	0.001	0.002	0.165
Gradall, 3 ton, 1/2 cy	1	1.2	40	19	183	59	10.67	1.22	0.37	0.36	3.38	0.25	536.04	0.024	0.003	0.001	0.001	0.008	0.001	1.224
Grader, 30,000 lb	1	11.7	40	187	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.041	0.036	0.009	0.009	0.106	0.008	13.359
Pneumatic wheel roller	1	0.5	50	10	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.003	0.000	0.335
Roller, vibratory	1	0.6	20	4	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.001	0.000	0.000	0.001	0.000	0.147
Rollers, steel wheel	1	1.0	20	8	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.002	0.000	0.268
Total Annual Construction	Emissions	Between 2	2011 - 2014											0.306	1.466	0.107	0.102	0.825	0.269	93.662

Table I.3-162: Guam Military Relocation Construction Equipment Emissions - Firing Training Option A / Central

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-163: Guam Military Relocation Truck Emissions - Firing Training Option A / Central

Commuter Van (LDC	GT)					Emiss	ion Factor ⁱ	(lb/hr)					Emiss	sion Rate (te	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
Construction	13121	25	131	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.034	0.000	0.000	0.003	0.003	1.858
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	110956	25	1110	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.135	0.061	0.016	0.016	0.179	0.014	43.331
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.135	0.095	0.016	0.016	0.182	0.017	45.189

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-164: Guam Military Relocation Pavement Emissions - Firing Training Option A / Central

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
45,494	0.04	17.90	0.06	0.25	0.30	2.1E-05	0.93	4	0.234
Total Annual Pavir	ng VOCs Between 2011-	2014							0.234

Total Annual Paving VOCs Between 2011-2014

Source: 1. California Air Resources Board. 2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.

3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-165: Guam Military Relocation Total Construction Emissions - Firing Training Option A / Central

				Pollutant			
Construction Activity	SO ₂	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO ₂
Total Annual Emissions (TPY)	0.4	1.6	0.1	0.1	1.0	0.5	138.9

Table I.3-166: Guam Military Relocation Construction Equipment Emissions - Firing Training Option B / Central

E T (A i. i.	Number	W. J.	Usage	11	Horse 2	Load		En	ission Fa	ctor ² (gra	ms/hp-h	our)				Emissi	on Rate (t	ons/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Asphalt paver, 130 HP	1	0.1	50	2	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.000	0.000	0.000	0.000	0.001	0.000	0.093
Backhoe loader, 48hp	1	2.2	40	35	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.001	0.003	0.001	0.000	0.003	0.001	0.259
Chain saws, 36"	1	10.4	20	83	48	59	2.00	349.18	12.63	11.62	0.91	69.87	686.61	0.005	0.897	0.032	0.030	0.002	0.180	1.765
Chipping machine	1	5.2	50	104	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.012	0.017	0.004	0.004	0.042	0.004	3.902
Compressor, 250 cfm	1	3.2	40	50	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.003	0.005	0.001	0.001	0.011	0.001	1.134
Concrete pump, small	1	1.1	50	21	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.001	0.002	0.000	0.000	0.003	0.000	0.297
Crane, 90-ton	1	6.4	16	41	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.007	0.006	0.001	0.001	0.023	0.002	2.386
Crane, SP, 12 ton	1	1.8	16	12	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.002	0.002	0.000	0.000	0.006	0.000	0.671
Dozer, 200 HP	1	69.7	40	1115	200	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.239	0.280	0.055	0.054	0.684	0.047	78.165
Dozer, 300 HP	1	0.2	40	2	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.001	0.001	0.000	0.000	0.002	0.000	0.252
Front end loader, 1.5 cy	1	8.4	40	134	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.006	0.019	0.004	0.004	0.020	0.004	1.924
Gas engine vibrator	1	2.1	20	17	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.040	0.000	0.000	0.000	0.001	0.062
Gas welding machine	1	0.8	40	13	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.000	0.107	0.000	0.000	0.001	0.002	0.165
Gradall, 3 ton, 1/2 cy	1	0.2	40	2	183	59	10.67	1.22	0.37	0.36	3.38	0.25	536.04	0.003	0.000	0.000	0.000	0.001	0.000	0.153

F	Number	W. J.	Usage	Hours	Horse ₂	Load		En	ission Fa	ctor ² (gra	ms/hp-h	our)				Emissi	on Rate (t	ons/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Grader, 30,000 lb	1	10.2	40	163	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.036	0.032	0.008	0.008	0.092	0.007	11.646
Pneumatic wheel roller	1	0.1	50	2	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.001	0.000	0.067
Roller, vibratory	1	0.2	20	1	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.000	0.000	0.040
Rollers, steel wheel	1	0.2	20	2	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.000	0.000	0.054
			Total Ann	ual Constr	uction Emi	issions Betw	veen 2011	- 2014						0.317	1.410	0.108	0.103	0.893	0.250	103.036

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-167: Guam Military Relocation Van & Truck Emissions - Firing Training Option B / Central

Commuter Van (LDC	GT)					Emiss	tion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
Construction	25997	25	260	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.067	0.000	0.000	0.006	0.007	3.682
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	403596	25	4036	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.490	0.224	0.058	0.053	0.650	0.051	157.613
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.490	0.291	0.058	0.053	0.655	0.058	161.295

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-168: Guam Military Relocation Pavement Emissions - Firing Training Option B / Central

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
5,287	0.04	17.90	0.06	0.25	0.30	2.1E-05	0.11	4	0.027
Total Annual Pavin	ng VOCs Between 2011-	2014							0.027

Fotal Annual Paving VOCs Between 2011-2014

Source: 1. California Air Resources Board.

2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.

3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-169: Guam Military Relocation Total Construction Emissions - Firing Training Option B / Central

														Pollutan	t					
	C	Constructio	n Activity					Se	<i>D</i> ₂	CO		PM ₁₀		PM _{2.5}		NO_x	1	/0C		CO_2
Construction Activity Construction Activity Construction Activity Construction Activity Construction Activity Construction Activity Construction Construction Equipment Emissions - C3 & Non Firing Training / North & Central Table 1.3-170: Guam Military Relocation Construction Equipment Emissions - C3 & Non Firing Training / North & Central Equipment Type/Activity Number of Units Weeks Factor of % Load Factor of (%) Emission Factor of (grams/hp-hour) Emission Rate (tons/year) Construction Number of Units Weeks 50 68 130 59 1.68 2.07 0.46 0.45 4.59 0.38 550.19 0.010 0.012 0.003 0.003 0.026 0.002 3.1 Backhoe loader, 48hp 1 11.5 40 92 48 21 2.03 6.42 1.31 1.27 6.80 1.47 662.28 0.002 0.01 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010													264.3							
Table I.3-170: Guam	Military	Relocat	ion Cor	nstruct	ion Equ	uipment	Emis	sions -	C3 & I	Non Fi	ring	Frainin	g / Nort	h & Ce	ntral					
	Number	14/0 0/10		1.1				Emis	sion Fa	ctor ² (gr	ams/h	p-hour)			E	missio	n Rate (′tons/ye	ar)	
Equipment Type/Activity	of Units	vveeks		Hours			SO ₂	CO	PM ₁₀	PM _{2.5}	NOx	VOC	CO ₂	SO ₂	CO	PM ₁₀	PM _{2.5}	NOx	VOC	CO ₂
Construction																				
Asphalt paver, 130 HP	1	6.8	50	68	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.010	0.012	0.003	0.003	0.026	0.002	3.137
Backhoe loader, 48hp	1	11.5	40	92	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.002	0.007	0.001	0.001	0.007	0.001	0.673
Chain saws, 36"	1	8.6	20	34	48	59	2.00	349.18	12.63	11.62	0.91	69.87	686.61	0.002	0.371	0.013	0.012	0.001	0.074	0.730
Chipping machine	1	4.3	50	43	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.005	0.007	0.002	0.002	0.018	0.002	1.613
Compressor, 250 cfm	1	5.1	40	40	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.003	0.004	0.001	0.001	0.009	0.001	0.909
Concrete pump, small	1	1.8	50	18	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.001	0.001	0.000	0.000	0.003	0.000	0.248
Crane, 90-ton	1	7.8	16	25	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.004	0.004	0.001	0.001	0.014	0.001	1.445
Crane, SP, 12 ton	1	9.4	16	30	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.005	0.004	0.001	0.001	0.017	0.001	1.752
Dozer, 300 HP	1	3.7	40	30	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.010	0.011	0.002	0.002	0.027	0.002	3.112
Front end loader, 1.5 cy	1	12.3	40	98	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.004	0.014	0.003	0.003	0.014	0.003	1.403
Gas engine vibrator	1	3.6	20	14	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.034	0.000	0.000	0.000	0.001	0.053
Gas welding machine	1	1.3	40	10	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.000	0.087	0.000	0.000	0.000	0.002	0.134
Gradall, 3 ton, 1/2 cy	1	0.8	40	6	183	59	10.67	1.22	0.37	0.36	3.38	0.25	536.04	0.008	0.001	0.000	0.000	0.003	0.000	0.408
Grader, 30,000 lb	1	16.3	40	130	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.028	0.025	0.006	0.006	0.074	0.006	9.277
Pneumatic wheel roller	1	6.8	50	68	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.007	0.010	0.002	0.002	0.019	0.002	2.262
Roller, vibratory	1	3.7	20	15	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.002	0.002	0.000	0.000	0.004	0.000	0.496
Rollers, steel wheel	1	6.5	20	26	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.003	0.004	0.001	0.001	0.007	0.001	0.871
Tandem roller, 10 ton	1	3.5	20	14	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.002	0.000	0.000	0.004	0.000	0.469
Total Annual Constructio	n Emissio	ns Betwe	en 2011	- 2014										0.095	0.599	0.038	0.036	0.247	0.100	28.992

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-171: Guam Military Relocation Van & Truck Emissions - C3 & Non Firing Training / North & Central

Commuter Van (LDC	GT)					Emiss	ion Factor ⁱ	(lb/hr)					Emiss	sion Rate (te	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO_2	СО	PM_{10}	PM _{2.5}	NO _x	VOC	CO ₂	SO_2	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂
Construction	9428	25	47	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.012	0.000	0.000	0.001	0.001	0.668
Construction 9428 23 47 0.001 0.313 0.001 0.043 0.031 2.0 Trucks (HDDV) Emission Factor ¹ (lb/hr) Emispi Factor ¹ (lb/hr)													Emiss	sion Rate (to	ons/year)		
Construction	100646	25	503	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.061	0.028	0.007	0.007	0.081	0.006	19.652
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.061	0.040	0.007	0.007	0.082	0.008	20.320

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-172: Guam Military Relocation Pavement Emissions - C3 & Non Firing Training / North & Central

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
158,510	0.04	17.90	0.06	0.25	0.30	2.1E-05	3.25	4	0.814
Total Annual Pavin	g VOCs Between 2011-	2014							0.814

Source: 1. California Air Resources Board.

2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.

3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-173: Guam Military Relocation Total Construction Emissions - C3 & Non Firing Training / North & Central

				Pollutant			
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	0.2	0.6	0.0	0.0	0.3	0.9	49.3

3.4.2 Construction Emissions: Marine Corps Relocation – CNMI

Table I.3-174: CNMI Construction Equipment Emissions - Alternatives 1 and 2

	Number		Usage		Horse ₂	Load 2		E	nission F	actor ² (gr	ams/hp-h	our)				Emissio	on Rate (to	ons/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2	SO_2	CO	PM10	PM _{2.5}	NO_x	VOC	CO ₂
Construction																				
Asphalt paver, 130 HP	1	0.4	50	8	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.001	0.001	0.000	0.000	0.003	0.000	0.372
Backhoe loader, 48hp	1	28.7	40	459	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.010	0.033	0.007	0.006	0.035	0.007	3.376
Compressor, 250 cfm	1	4.5	40	71	83	43	1.76	2.40	0.57	0.56	5.42	0.59	573.27	0.005	0.007	0.002	0.002	0.015	0.002	1.601
Chain saws, 36"	1	33.3	20	266	7	70	2.00	349.2	12.63	11.62	0.911	69.87	686.61	0.003	0.488	0.018	0.016	0.001	0.098	0.959
Chipping machine	1	16.7	50	333	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.038	0.056	0.013	0.013	0.136	0.013	12.494
Concrete pump, small	1	1.6	50	31	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.001	0.002	0.001	0.001	0.005	0.001	0.439
Crane, 90-ton	1	3.6	16	23	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.004	0.003	0.001	0.001	0.013	0.001	1.342
Crane, SP, 12 ton	1	3.0	16	19	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.003	0.003	0.001	0.001	0.011	0.001	1.100
Dozer, 75 HP	1	0.2	40	2	75	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.000	0.000	0.000	0.000	0.001	0.000	0.063
Dozer, 200 HP	1	0.5	40	7	200	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.002	0.002	0.000	0.000	0.004	0.000	0.505
Dozer, 300 HP	1	0.8	40	12	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.004	0.005	0.001	0.001	0.011	0.001	1.262
Front end loader, 1.5 cy	1	17.2	40	274	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.012	0.038	0.008	0.008	0.040	0.009	3.928
Gas engine vibrator	1	3.6	20	28	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.067	0.000	0.000	0.000	0.003	0.105
Gas welding machine	1	1.3	40	21	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.000	0.173	0.000	0.000	0.001	0.003	0.269
Gradall, 3 ton, 1/2 cy	1	0.1	40	1	171	59	1.66	1.64	0.38	0.37	4.25	0.32	541.49	0.000	0.000	0.000	0.000	0.000	0.000	0.048
Grader, 30,000 lb	1	2.4	40	38	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.008	0.007	0.002	0.002	0.022	0.002	2.740
Hydraulic excavator, 3.5 cy	1	54.4	40	870	62	43	1.76	2.43	0.59	0.57	5.41	0.56	576.01	0.045	0.062	0.015	0.014	0.138	0.014	14.684
Paving machinery & equipment	1	1.0	50	19	70	21	1.70	2.64	0.57	0.55	5.00	0.47	555.84	0.001	0.001	0.000	0.000	0.002	0.000	0.171
Pneumatic wheel roller	1	0.4	50	8	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.002	0.000	0.268
Roller, vibratory	1	0.5	20	4	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.001	0.000	0.000	0.001	0.000	0.134
Tandem roller, 10 ton	1	0.7	20	6	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.002	0.000	0.188
Total Annual Construction Emiss	ions Betwee	n 2011 – 2	2014											0.140	0.951	0.068	0.065	0.442	0.154	46.048

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

ter Van (LDGT)					Emiss	tion Factor	(lb/hr)					Emiss	ion Rate (to	ons/year)		
Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO_2
18470	25	185	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.048	0.000	0.000	0.004	0.005	2.616
					Emis	sion Factor ¹	(lb/hr)					Emiss	tion Rate (to	ons/year)		
153798	25	1538	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.187	0.085	0.022	0.020	0.248	0.020	60.061
Vehicle Emissions,	Between 2011-20	14								0.187	0.133	0.022	0.020	0.252	0.024	62.677
	Total VMT 18470 153798	Total VMTSpeed in miles/hour184702515379825	Total VMTSpeed in miles/hourHours1847025185	Total VMT Speed in miles/hour Hours SO2 18470 25 185 0.001 153798 25 1538 0.243	Total VMT Speed in miles/hour Hours SO2 CO 18470 25 185 0.001 0.515 153798 25 1538 0.243 0.111	Total VMT Speed in miles/hour Hours SO2 CO PM10 18470 25 185 0.001 0.515 0.001 153798 25 1538 0.243 0.111 0.029	Total VMT Speed in miles/hour Hours SO2 CO PM10 PM25 18470 25 185 0.001 0.515 0.001 0.001 Emission Factor ¹ 153798 25 1538 0.243 0.111 0.029 0.026	Total VMT Speed in miles/hour Hours SO2 CO PM10 PM2.5 NOx 18470 25 185 0.001 0.515 0.001 0.001 0.045 Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322	Total VMT Speed in miles/hour Hours SO2 CO PM10 PM2.5 NOx VOC 18470 25 185 0.001 0.515 0.001 0.001 0.045 0.051 Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ 18470 25 185 0.001 0.515 0.001 0.001 0.045 0.051 28.324 Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025 78.104	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ $SO2$ 18470 25 185 0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.187	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ $SO2$ CO 18470 25 185 0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 0.048 Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.187 0.085	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ $SO2$ CO PM_{10} 18470 25 185 0.001 0.515 0.001 0.045 0.051 28.324 0.000 0.048 0.000 Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.187 0.085 0.022	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ 18470 25 185 0.001 0.515 0.001 0.0045 0.051 28.324 0.000 0.048 0.000 0.000 Emission Factor ¹ (lb/hr) Emission Rate (tr 0.153798 25 1538 0.243 0.111 0.026 0.322 0.025 78.104 0.187 0.022 0.020	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x 18470 25 185 0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 0.048 0.000 0.000 0.004 Emission Factor ¹ (lb/hr) Emission Rate (tons/year) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.187 0.085 0.022 0.020 0.248	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x VOC 18470 25 185 0.001 0.515 0.001 0.0045 0.051 28.324 0.000 0.048 0.000 0.004 0.005 Emission Factor ¹ (lb/hr) Emission Factor ¹ (lb/hr) 153798 25 1538 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.187 0.085 0.022 0.020 0.248 0.020

Table I.3-175: CNMI Van & Truck Emissions - Alternatives 1 and 2

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-176: CNMI Pavement Emissions - Alternatives 1 and 2

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
30,622	0.04	17.90	0.06	0.25	0.30	2.1E-05	0.63	4	0.157
Total Annual Pavin	g VOCs Between 2011-	2014							0.157

Source: 1. California Air Resources Board.

USCOE, Hot Mix Asphalt Paving Handbook, 2000.
 FHWA, Road and Bridge Specifications, 2002.

Table I.3-177: CNMI Total Construction Emissions - Alternatives 1 and 2

Construction Activity				Pollutant			
	SO_2	СО	PM_{10}	PM _{2.5}	NO _x	VOC	CO_2
Total Annual Emissions (TPY)	0.3	1.1	0.1	0.1	0.7	0.3	108.7

3.4.3 Construction Emissions: Marine Corps Relocation – Aircraft Carrier Berthing

Table I.3-178: Aircraft Carrier Berthing Construction Equipment Emissio	ns – Alternative 1 and Alternative 2 - Apra Harbor
---	--

E	Number	W. J.	Usage	11	Horse power ²	Load Factor ²		Ε	mission Fa	ctor ² (gran	ns/hp-ho	ur)				Emission	n Rate (to	ns/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power (hp)	Factor (%)	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Asphalt paver, 130 HP	1	0.4	50	8	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.001	0.001	0.000	0.000	0.003	0.000	0.372
Backhoe loader, 48hp	1	29.7	40	475	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.011	0.034	0.007	0.007	0.036	0.008	3.494
Chain saws, 36"	1	0.7	20	6	48	59	1.99	349.18	12.63	11.62	0.91	69.87	686.61	0.000	0.060	0.002	0.002	0.000	0.012	0.119
Chipping machine	1	0.4	50	7	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.001	0.001	0.000	0.000	0.003	0.000	0.263
Compressor, 250 cfm	1	0.4	40	6	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.000	0.001	0.000	0.000	0.001	0.000	0.144
Concrete pump, small	1	2.3	50	46	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.002	0.003	0.001	0.001	0.007	0.001	0.652
Crane, 90-ton	1	17.1	16	109	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.020	0.016	0.004	0.004	0.062	0.004	6.375
Crane, SP, 12 ton	1	39.3	16	252	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.045	0.036	0.009	0.009	0.141	0.010	14.652
Diesel hammer, 41k ft-lb	1	14.1	20	113	329	59	1.64	2.75	0.50	0.48	5.60	0.42	537.08	0.040	0.066	0.012	0.012	0.135	0.010	12.934
Dozer, 200 HP	1	0.1	40	1	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.000	0.000	0.000	0.000	0.001	0.000	0.084
Dozer, 300 HP	1	0.3	40	5	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.002	0.002	0.000	0.000	0.004	0.000	0.505
Front end loader, 1.5 cy	1	0.3	40	5	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.000	0.001	0.000	0.000	0.001	0.000	0.069
Gas engine vibrator	1	8.2	20	66	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.155	0.000	0.000	0.001	0.006	0.243
Gas welding machine	1	6.7	40	106	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.000	0.887	0.000	0.000	0.004	0.016	1.374
Gradall, 3 ton, 1/2 cy	1	0.7	40	10	171	59	1.66	1.64	0.38	0.37	4.25	0.32	541.49	0.002	0.002	0.000	0.000	0.005	0.000	0.626
Grader, 30,000 lb	1	1.0	40	15	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.003	0.003	0.001	0.001	0.009	0.001	1.085
Hydraulic excavator, 3.5 cy	1	5.9	40	94	171	59	1.66	1.64	0.38	0.37	4.25	0.32	541.49	0.017	0.017	0.004	0.004	0.045	0.003	5.686
Pneumatic wheel roller	1	0.4	50	8	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.002	0.000	0.268
Roller, vibratory	1	0.3	20	2	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.001	0.000	0.080
Rollers, steel wheel	1	0.8	20	6	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.002	0.000	0.214
Total Annual Construction En	missions Bet	ween 201	1 - 2014											0.146	1.287	0.042	0.040	0.462	0.072	49.239

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

	Number of		Usage		Horse	Load		Er	nission F	actor ² (gr	ams/hp-	hour)				Emissi	on Rate (t	ons/year)		
Equipment Type/Activity	Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO ₂
Dredging - ODMDS option	n												-							
Crane, 90-ton	1	37.9	16	243	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.043	0.034	0.009	0.008	0.136	0.009	14.130
Support and propulsion, mechanical dredge	1	37.9	50	758	2000	30	0.10	7.92	1.01	0.25	0.24	9.88	524.78	0.048	3.967	0.508	0.126	0.122	4.949	262.852
Tug to ODMDS	1	37.9	50	758	2000	30	0.10	7.92	1.01	0.25	0.24	9.88	524.78	0.048	3.967	0.508	0.126	0.122	4.949	262.852
Total Annual Dredging Em	issions Between	n 2014 – 2	015, ODMDS	option										0.139	7.968	1.024	0.260	0.380	9.907	539.835
Dredging - Upland Site opt	tion																			
Crane, 90-ton	1	37.9	16	243	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.043	0.034	0.09	0.08	0.136	0.009	14.130
Support and propulsion, mechanical dredge	1	37.9	50	758	2000	30	0.10	7.92	1.01	0.25	0.24	9.88	524.78	0.048	3.967	0.508	0.126	0.122	4.949	262.852
Total Annual Dredging Em	issions Betwee	n 2014 – 2	015, Upland S	ite										0.091	4.001	0.516	0.134	0.258	4.958	276.983

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-180: Aircraft Carrier Berthing Van & Truck Emissions – Alternative 1 and Alternative 2 – Apra Harbor

Commuter Van (LDC	GT)					Emiss	ion Factor ⁱ	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
Construction	19743	25	197	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.051	0.000	0.000	0.004	0.005	2.796
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	171304	25	1713	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.208	0.095	0.024	0.023	0.276	66.898	
Total Annual Motor	Vehicle Emissions,		14								0.208	0.146	0.025	0.023	0.280	0.027	69.694

Source: 1. Mobile 6.2 Emission Factors.

Comn	uter Van (LDGT)					Emiss	ion Factor	¹ (<i>lb/hr</i>)			Emission Rate (tons/year)								
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO_2	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂		
Dredging - ODMDS option	1516	25	30	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.008	0.000	0.000	0.001	0.001	0.429		
Dredging - Upland Site option	1516	25	30	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.008	0.000	0.000	0.001	0.001	0.429		
Tr	ucks (HDDV)					Emiss	ion Factor	¹ (lb/hr)			Emission Rate (tons/year)								
Dredging - ODMDS option	0	25	0	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
Dredging - Upland Site option	37900	25	758	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.092	0.042	0.011	0.010	0.122	0.010	29.602		
Total Annual Motor Vehicle Emi	issions, Between 2	011-2014, ODMI	DS option									0.005	0.000	0.000	0.000	0.000	0.275		
Total Annual Motor Vehicle Emi	· · · · · · · · · · · · · · · · · · ·	011-2014, Uplan	d Site optio	on							0.092	0.047	0.011	0.010	0.122	0.010	29.877		

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-182: Aircraft Carrier Berthing Pavement Emissions – Alternative 1 and Alternative 2 – Apra Harbor

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
21,932	0.04	17.90	0.06	0.25	0.30	2.1E-05	0.45	4	0.113
Total Annual Pavin	g VOCs Between 2011-	2014							0.113

Total Annual Paving VOCs Between 2011-2014

Source: 1. California Air Resources Board.

USCOE, Hot Mix Asphalt Paving Handbook, 2000.
 FHWA, Road and Bridge Specifications, 2002.

Table I.3-183: Aircraft Carrier Berthing Total Construction Emissions – Alternative 1 and Alternative 2 – Apra Harbor

				Pollutar	ıt		
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO _x	VOC	CO ₂
Total Annual Emissions (TPY)	0.4	1.4	0.1	0.1	0.7	0.2	118.9
Total Annual Emissions for Dredging – ODMDS option (TPY)	0.1	8.0	1.0	0.3	0.4	9.9	540.26
Total Annual Emissions for Dredging - Upland Site option (TPY)	0.2	4.1	0.5	0.1	0.4	5.0	307.01

3.4.4 Construction Emissions: Marine Corps Relocation –Army Air and Missile Defense Task

Table I.3-184: AMDTF Construction Equipment Emissions – Alternative 1 - North

	Number		Usage		Horse 2	Load		En	nission Fa	actor ² (gro	ams/hp-l	hour)				Emissi	on Rate (to	ons/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO ₂
Construction																			•	
Asphalt paver, 130 HP	1	1.2	50	24	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.003	0.004	0.001	0.001	0.009	0.001	1.115
Backhoe loader, 48hp	1	18.6	40	297	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.007	0.021	0.004	0.004	0.022	0.005	2.182
Centrif. water pump, 6"	1	0.1	50	2	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.000	0.000	0.000	0.000	0.000	0.000	0.028
Chain saws, 36"	1	3.1	20	25	48	59	2.00	349.18	12.63	11.62	0.91	69.87	686.61	0.002	0.267	0.010	0.009	0.001	0.054	0.526
Chipping machine	1	1.6	50	31	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.004	0.005	0.001	0.001	0.013	0.001	1.163
Compressor, 250 cfm	1	214.3	40	3430	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.236	0.323	0.077	0.075	0.729	0.073	77.136
Concrete pump, small	1	16.3	50	326	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.014	0.025	0.006	0.006	0.050	0.006	4.619
Crane, 90-ton	1	15.4	16	99	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.018	0.014	0.003	0.003	0.055	0.004	5.739
Crane, SP, 12 ton	1	33.9	16	217	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.039	0.031	0.008	0.007	0.122	0.008	12.631
Drill rig & augers	1	0.1	20	1	176	43	1.71	2.36	0.56	0.54	6.68	0.57	539.15	0.000	0.000	0.000	0.000	0.000	0.000	0.036
Dozer, 300 HP	1	2.6	40	42	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.014	0.016	0.003	0.003	0.039	0.003	4.421
Front end loader, 1.5 cy	1	5.9	40	95	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.004	0.013	0.003	0.003	0.014	0.003	1.357
Gas engine vibrator	1	34.5	20	276	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.651	0.000	0.000	0.003	0.024	1.023
Gas welding machine	1	15.5	40	249	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.001	2.071	0.000	0.000	0.010	0.037	3.211
Gradall, 3 ton, 1/2 cy	1	1.3	40	20	171	59	1.66	1.64	0.38	0.37	4.25	0.32	541.49	0.004	0.004	0.001	0.001	0.009	0.001	1.205
Grader, 30,000 lb	1	5.5	40	88	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.019	0.017	0.004	0.004	0.050	0.004	6.253
Pneumatic wheel roller	1	1.2	50	24	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.002	0.004	0.001	0.001	0.007	0.001	0.804
Roller, vibratory	1	2.6	20	21	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.002	0.003	0.001	0.001	0.006	0.001	0.691
Rollers, steel wheel	1	2.2	20	18	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.002	0.003	0.001	0.001	0.005	0.000	0.590
Tandem roller, 10 ton	1	0.1	20	1	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.000	0.000	0.027
Total Annual Construction	Emissions	Between 2	2011 - 2014											0.370	3.472	0.124	0.120	1.145	0.225	124.756

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Commuter Van (LDC	GT)					Emiss	ion Factor ⁱ	(lb/hr)					Emiss	tion Rate (to	ons/year)				
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂		
Construction	130580	25	1,306	0.001	0.515	0.001	0.001	0.045	0.051	1 28.324 0.000 0.336 0.001 0.000 0.029 0.033							18.493		
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)				
Construction	794982	25	7,950	0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.964 0.441 0.114 0.105 1.280 0.101									310.457						
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.965	0.777	0.777 0.115 0.105 1.309 0.134 32						
Sourcest Mabile 6.2 Emission Factors																			

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-186: AMDTF Pavement Emissions – Alternative 1 - North

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
103,106	0.04	17.90	0.06	0.25	0.30	2.1E-05	2.12	4	0.529
Total Annual Pavin	g VOCs Between 2011-	2014							0.529

Source: 1. California Air Resources Board.

2. USCOE, Hot Mix Asphalt Paving Handbook, 2000. 3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-187: AMDTF Total Construction Emissions – Alternative 1 - North

				Pollutant			
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	1.3	4.2	0.2	0.2	2.5	0.9	453.7

Equipment Type/Activity	Number of Units	Weeks	Usage Factor ¹ %	Hours	Horse power ² (hp)	Load Factor ² (%)	Emission Factor ² (grams/hp-hour)							Emission Rate (tons/year)						
							SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Construction			•																	
Asphalt paver, 130 HP	1	1.1	50	21	130	59	0.12	2.07	0.36	0.35	4.59	0.38	550.19	0.003	0.004	0.001	0.001	0.008	0.001	0.976
Backhoe loader, 48hp	1	18.6	40	297	48	21	0.14	6.42	1.01	0.98	6.80	1.47	662.28	0.007	0.021	0.004	0.004	0.022	0.005	2.182
Centrif. water pump, 6"	1	0.1	50	2	53	43	0.12	3.03	0.57	0.56	6.18	0.75	567.14	0.000	0.000	0.000	0.000	0.000	0.000	0.028
Chain saws, 36"	1	2.9	20	23	48	59	0.14	349.18	9.76	8.98	0.91	69.87	686.61	0.001	0.250	0.009	0.008	0.001	0.050	0.492
Chipping machine	1	1.5	50	29	144	43	0.12	2.46	0.45	0.43	5.98	0.59	550.61	0.003	0.005	0.001	0.001	0.012	0.001	1.088
Compressor, 250 cfm	1	214.2	40	3427	83	43	0.12	2.40	0.44	0.43	5.42	0.54	573.27	0.236	0.322	0.077	0.075	0.728	0.073	77.083
Concrete pump, small	1	15.4	50	308	53	43	0.12	3.03	0.57	0.56	6.18	0.75	567.14	0.013	0.023	0.006	0.006	0.048	0.006	4.363
Crane, 90-ton	1	15.2	16	97	231	43	0.11	1.30	0.25	0.24	5.14	0.35	532.78	0.017	0.014	0.003	0.003	0.055	0.004	5.648
Crane, SP, 12 ton	1	33.8	16	216	231	43	0.11	1.30	0.25	0.24	5.14	0.35	532.78	0.039	0.031	0.008	0.007	0.122	0.008	12.602
Drill rig & augers	1	0.1	20	1	176	43	0.12	2.36	0.43	0.42	6.68	0.57	539.15	0.000	0.000	0.000	0.000	0.000	0.000	0.036
Dozer, 300 HP	1	2.5	40	39	300	59	0.12	1.93	0.30	0.29	4.72	0.33	539.34	0.013	0.015	0.003	0.003	0.036	0.002	4.121
Front end loader, 1.5 cy	1	5.3	40	85	93	21	0.14	6.42	1.01	0.98	6.80	1.47	662.28	0.004	0.012	0.002	0.002	0.012	0.003	1.214
Gas engine vibrator	1	33.3	20	266	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.629	0.000	0.000	0.003	0.024	0.988
Gas welding machine	1	15.3	40	244	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.001	2.033	0.000	0.000	0.010	0.036	3.151
Gradall, 3 ton, 1/2 cy	1	1.3	40	20	171	59	0.12	1.64	0.29	0.28	4.25	0.32	541.49	0.004	0.004	0.001	0.001	0.009	0.001	1.205
Grader, 30,000 lb	1	5.2	40	82	204	59	0.12	1.45	0.28	0.27	4.26	0.32	537.25	0.018	0.016	0.004	0.004	0.047	0.003	5.880
Pneumatic wheel roller	1	1.1	50	21	92	59	0.12	2.49	0.41	0.40	4.77	0.42	558.97	0.002	0.003	0.001	0.001	0.006	0.001	0.704
Roller, vibratory	1	2.5	20	20	92	59	0.12	2.49	0.41	0.40	4.77	0.42	558.97	0.002	0.003	0.001	0.001	0.006	0.000	0.657
Rollers, steel wheel	1	1.9	20	15	92	59	0.12	2.49	0.41	0.40	4.77	0.42	558.97	0.002	0.002	0.000	0.000	0.004	0.000	0.509
Tandem roller, 10 ton	1	0.1	20	1	92	59	0.12	2.49	0.41	0.40	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.000	0.000	0.027
Total Annual Construction	n Emissions	Between 2	2011 - 2014											0.365	3.387	0.122	0.118	1.130	0.218	122.954

Table I.3-188: AMDTF Construction Equipment Emissions –Alternative 2 –Central

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-189: AMDTF Van & Truck Emissions –Alternative 2 –Central

Commuter Van (LDC	GT)					Emiss	ion Factor ⁱ	(lb/hr)					Emiss	sion Rate (te	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO _x	VOC	CO_2
Construction	128444	25	1284	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.331	0.001	0.000	0.029	0.032	18.190
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	778980	25	7,790	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.945	0.432	0.111	0.103	1.254	0.099	304.208
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.945	0.762	0.112	0.103	1.283	0.132	322.398

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-190: AMDTF Pavement Emissions –Alternative 2 –Central

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
90135	0.04	17.90	0.06	0.25	0.30	2.1E-05	1.85	4	0.463
Total Annual Pavin	g VOCs Between 2011-	2014							0.463

Source: 1. California Air Resources Board.

2. USCOE, Hot Mix Asphalt Paving Handbook, 2000.

3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-191: AMDTF Total Construction Emissions –Alternative 2 –Central

				Pollutant			
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	1.3	4.1	0.2	0.2	2.4	0.8	445.4

	Number		Usage		Horse ₂	Load		Er	nission Fe	actor ² (gra	ams/hp-l	iour)				Emiss	ion Rate (to	ons/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO ₂	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO ₂
Construction																				
Asphalt paver, 130 HP	1	0.9	50	18	130	59	1.68	2.07	0.46	0.45	4.59	0.38	550.19	0.003	0.003	0.001	0.001	0.007	0.001	0.837
Backhoe loader, 48hp	1	18.6	40	297	48	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.007	0.021	0.004	0.004	0.022	0.005	2.182
Chain saws, 36"	1	2.5	20	20	48	59	1.74	349.18	0.74	0.72	0.91	69.87	686.61	0.001	0.216	0.008	0.007	0.001	0.043	0.424
Chipping machine	1	1.3	50	25	144	43	2.00	2.46	12.63	11.62	5.98	0.59	550.61	0.003	0.004	0.001	0.001	0.010	0.001	0.938
Compressor, 250 cfm	1	40.0	40	640	83	43	1.69	2.40	0.58	0.56	5.42	0.54	573.27	0.044	0.060	0.014	0.014	0.136	0.014	14.394
Concrete pump, small	1	13.6	50	271	53	43	1.76	3.03	0.57	0.56	6.18	0.75	567.14	0.012	0.021	0.005	0.005	0.042	0.005	3.840
Crane, 90-ton	1	13.9	16	89	231	43	1.74	1.30	0.74	0.72	5.14	0.35	532.78	0.016	0.013	0.003	0.003	0.050	0.003	5.199
Crane, SP, 12 ton	1	33.8	16	216	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.039	0.031	0.008	0.007	0.122	0.008	12.602
Dozer, 300 HP	1	1.8	40	28	300	59	1.63	1.93	0.32	0.31	4.72	0.33	539.34	0.009	0.011	0.002	0.002	0.026	0.002	2.951
Front end loader, 1.5 cy	1	3.7	40	60	93	21	1.71	6.42	0.56	0.54	6.80	1.47	662.28	0.003	0.008	0.002	0.002	0.009	0.002	0.853
Gas engine vibrator	1	26.5	20	212	6	55	1.65	696.11	0.38	0.37	2.78	26.08	1093.00	0.000	0.500	0.000	0.000	0.002	0.019	0.785
Gas welding machine	1	8.8	40	141	17	68	2.03	642.74	1.31	1.27	3.24	11.35	996.20	0.000	1.178	0.000	0.000	0.006	0.021	1.826
Gradall, 3 ton, 1/2 cy	1	1.3	40	20	171	59	0.22	1.64	0.18	0.17	4.25	0.32	541.49	0.004	0.004	0.001	0.001	0.009	0.001	1.205
Grader, 30,000 lb	1	4.2	40	67	204	59	0.21	1.45	0.11	0.10	4.26	0.32	537.25	0.015	0.013	0.003	0.003	0.038	0.003	4.768
Pneumatic wheel roller	1	0.9	50	18	92	59	1.66	2.49	0.38	0.37	4.77	0.42	558.97	0.002	0.003	0.001	0.001	0.005	0.000	0.603
Roller, vibratory	1	1.7	20	13	92	59	1.64	2.49	0.36	0.35	4.77	0.42	558.97	0.001	0.002	0.000	0.000	0.004	0.000	0.449
Rollers, steel wheel	1	1.6	20	13	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.002	0.000	0.000	0.004	0.000	0.429
Tandem roller, 10 ton	1	0.1	20	1	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.000	0.000	0.027
Total Annual Construction	Emissions	Between 2	2011 - 2014											0.159	2.089	0.054	0.052	0.493	0.128	54.311

Table I.3-192: AMDTF Construction Equipment Emissions – Alternative 3 - North

Commuter Van (LDC	GT)					Emiss	tion Factor	(lb/hr)					Emissi	ion Rate (to	ns/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	CO	PM10	PM _{2.5}	NO _x	VOC	CO ₂
Construction	59109	591	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.152	0.000	0.000	0.013	0.015	8.371	
Trucks (HDDV)						Emis	sion Factor	(lb/hr)					Emiss	ion Rate (to	ns/year)		
Construction	590301	25	5,903	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.716	0.327	0.084	0.078	0.950	0.075	230.525
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.716	0.479	0.085	0.078	0.963	0.090	238.896

Table I.3-193: AMDTF Van & Truck Emissions – Alternative 3 - North

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-194: AMDTF Pavement Emissions – Alternative 3 - North

Total Pavement (square yards)	Hot Mix Emission Factor ¹ (lbs/ton)	Emulsified Emission Factor ¹ (lbs/ton)*	Hot Mix Application Rate ² (gal/SY)	Primary Coat Application Rate ³ (gal/SY)	Tack Coat Application Rate ³ (gal/SY)	Hot Mix, Primary & Tack Coat asphalt (tons VOC/SY)	Total VOC (tons)	# of years of construction	Emissions Rate VOC (tons/year)
73921	0.04	17.90	0.06	0.25	0.30	2.1E-05	1.52	4	0.379
Total Annual Pavin	g VOCs Between 2011-	2014							0.379

Total Annual Paving VOCs Between 2011-2014

Source: 1. California Air Resources Board.

2. USCOE, Hot Mix Asphalt Paving Handbook, 2000. 3. FHWA, Road and Bridge Specifications, 2002.

Table I.3-195: AMDTF Total Construction Emissions – Alternative 3 - North

				Pollutant			
Construction Activity	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂
Total Annual Emissions (TPY)	0.9	2.6	0.1	0.1	1.5	0.6	293.2

T i i m (1 i i i	Number		Usage		Horse	Load		Emi	ssion Fact	tor ² (gran	ns/hp-ho	ur)				Emissio	on Rate (ton	s/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	CO	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM ₁₀	PM _{2.5}	NO_x	VOC	CO ₂
Construction																				
Centrif. water pump, 6"	1	0.1	50	2	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.000	0.000	0.000	0.000	0.000	0.000	0.028
Compressor, 250 cfm	1	174.4	40	2790	82.8	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.192	0.262	0.063	0.061	0.593	0.060	62.743
Concrete pump, small	1	2.8	50	55	52.7	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.002	0.004	0.001	0.001	0.008	0.001	0.779
Crane, 90-ton	1	1.5	16	9	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.002	0.001	0.000	0.000	0.005	0.000	0.541
Drill rig & augers	1	0.1	20	1	176	43	1.71	2.36	0.56	0.54	6.68	0.57	539.15	0.000	0.000	0.000	0.000	0.000	0.000	0.036
Dozer, 300 HP	1	0.7	40	10	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.003	0.004	0.001	0.001	0.010	0.001	1.093
Front end loader, 1.5 cy	1	0.7	40	10	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.000	0.001	0.000	0.000	0.002	0.000	0.149
Gas engine vibrator	1	8.0	20	64	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.151	0.000	0.000	0.001	0.006	0.237
Gas welding machine	1	6.7	40	107	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.000	0.893	0.000	0.000	0.005	0.016	1.384
Grader, 30,000 lb	1	0.7	40	10	204.4	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.002	0.002	0.000	0.000	0.006	0.000	0.742
Roller, vibratory	1	0.7	20	5	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.001	0.000	0.174
Total Annual Construction														0.203	1.321	0.066	0.064	0.631	0.084	67.907

Table I.3-196: AMDTF Construction Equipment Emissions – Alternative 3 - Central

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-197: AMDTF Van & Truck Emissions – Alternative 3 - Central

Commuter Van (LDG	GT)					Emiss	tion Factor ⁱ	(lb/hr)					Emissio	on Rate (tor	s/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
Construction	71307	25	713	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.184	0.000	0.000	0.016	0.018	10.098
Trucks (HDDV)						Emis	sion Factor ¹	(lb/hr)					Emissi	on Rate (tor	ns/year)		
Construction	203401	25	2034	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.247	0.113	0.029	0.027	0.327	0.026	79.432
Total Annual Motor	Vehicle Emissions,	Between 2011-201	4								0.247	0.296	0.030	0.027	0.343	0.044	89.531

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-198: AMDTF Total Construction Emissions – Alternative 3 - Central

				Pollutant			
Construction Activity	SO ₂	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	0.5	1.6	0.1	0.1	1.0	0.1	157.4

3.4.5 Construction Emissions: Marine Corps Relocation – Related Actions/Utilities Projects

Table I.3-199: Utilities Construction Equipment Emissions –Power Basic Alternative 1

	Number		Usage		Horse 2	Load		I	Emission Fa	ctor ² (gram:	s/hp-hou	r)				Emission	n Rate (tor	ns/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Chain saws, 36"	1	0.2	20	2	6.8	70	2.00	349.18	12.63	11.62	0.91	69.87	686.61	0.000	0.003	0.000	0.000	0.000	0.001	0.006
Chipping machine	1	0.1	50	2	143.9	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.000	0.000	0.000	0.000	0.001	0.000	0.075
Compressor, 250 cfm	1	0.1	40	2	82.8	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.000	0.000	0.000	0.000	0.000	0.000	0.036
Crane, 90-ton	1	37.5	16	240	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.043	0.034	0.008	0.008	0.135	0.009	13.981
Crane, 33 ton	1	5.6	16	36	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.006	0.005	0.001	0.001	0.020	0.001	2.069
Dozer, 300 HP	1	0.2	20	2	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.001	0.001	0.000	0.000	0.001	0.000	0.168
Front end loader, 1.5 cy	1	37.8	40	604	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.026	0.084	0.017	0.017	0.089	0.019	8.646
Gas engine vibrator	1	18.8	20	150	6	55	0.22	696.11	0.18	0.17	2.78	26.08	1093.00	0.000	0.104	0.000	0.000	0.001	0.004	0.164
Gas welding machine	1	24.3	40	388	17	68	0.21	642.74	0.11	0.10	3.24	11.35	996.20	0.001	3.233	0.001	0.001	0.016	0.057	5.011
Generator	1	24.3	50	485	50	43	1.74	3.02	0.72	0.70	6.14	0.80	567.43	0.020	0.034	0.008	0.008	0.070	0.009	6.460
Grader, 30,000 lb	1	0.4	40	6	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.001	0.001	0.000	0.000	0.004	0.000	0.457
Roller, vibratory	1	0.2	20	1	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.000	0.000	0.000	0.000	0.000	0.000	0.040
			Total A	nnual Cor	struction E	Emissions B	etween 20	011 - 2014						0.099	3.750	0.036	0.035	0.338	0.110	37.506

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Commuter Van (LDC	GT)					Emiss	tion Factor ⁱ	(lb/hr)					Emiss	ion Rate (te	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO_2	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO_2
Construction	11482	25	115	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.030	0.000	0.000	0.003	0.003	1.626
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	ion Rate (te	ons/year)		
Construction	32825	25	328	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.040	0.018	0.005	0.004	0.053	0.004	12.819
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.040	0.048	0.005	0.004	0.055	0.007	14.445

Table I.3-200: Utilities Van & Truck Emissions - Power Basic Alternative 1

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-201: Utilities Total Construction Emissions - Power Basic Alternative 1

				Pollutant			
Construction Activity	SO ₂	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	0.1	3.8	0.0	0.0	0.4	0.1	52.0

Table I.3-202: Utilities Construction Equipment Emissions –Potable Basic Water Alternative 1

	Numbe	Week	Usage Factor	Hour	Horse	Load Factor		Em	ission Fa	ctor ² (gra	ms/hp-ho	our)				Emissic	on Rate (t	ons/year)	
Equipment Type/Activity	r of Units	s	1 %	s	power ² (hp)	2 (%)	SO_2	СО	PM ₁ 0	PM _{2.}	NO_x	VOC	CO ₂	SO_2	СО	PM1 0	PM _{2.}	NO_x	VOC	CO ₂
Construction																				
Backhoe loader, 48hp	1	290.7	40	4650	48	21	1.99	6.42	1.31	1.27	6.80	1.47	662.28	0.10 3	0.33 1	0.06 7	0.06 5	0.35 1	0.07 6	34.191
Chain saws, 36"	1	1.0	20	8	6.8	70	2.00	349.2	12.6 3	11.6 2	0.91 1	69.8 7	686.61	0.00 0	0.01 5	0.00	0.00 0	0.00 0	0.00 3	0.029
Chipping machine	1	0.5	50	10	144	43	1.69	2.46	0.58	0.56	5.98	0.59	550.61	0.00	0.00 2	0.00	0.00 0	0.00 4	0.00 0	0.375
Compressor, 250 cfm	1	3.0	40	47	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.00	0.00 4	0.00	0.00 1	0.01	0.00	1.062
Concrete pump, small	1	5.2	50	104	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.00 5	0.00 8	0.00	0.00 2	0.01 6	0.00 2	1.473
Crane, 90-ton	1	6.7	16	43	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.00 8	0.00 6	0.00 2	0.00 1	0.02 4	0.00 2	2.498
Crane, SP, 12 ton	1	294.6	16	1885	231	43	1.63	1.30	0.32	0.31	5.14	0.35	532.78	0.33 6	0.26 7	0.06 7	0.06 5	1.06 0	0.07 3	109.81 6
Vibratory hammer and generator	1	3.6	50	72	50	43	1.74	3.02	0.72	0.70	6.14	0.80	567.43	0.00	0.00 5	0.00	0.00 1	0.01 0	0.00	0.959

	Numbe	Week	Usage Factor	Hour	Horse	Load Factor		Em	ission Fa	ector ² (gra	ams/hp-h	our)				Emissic	on Rate (i	ons/year)	
Equipment Type/Activity	r of Units	s	1 %	s	power ² (hp)	2 (%)	SO ₂	СО	PM1 0	PM _{2.}	NO _x	VOC	CO ₂	SO_2	СО	PM1 0	PM _{2.}	NO_x	VOC	<i>CO</i> ₂
Drill rig & augers	1	34.2	20	274	176	43	1.65	2.36	0.56	0.54	6.68	0.57	539.15	0.03 8	0.05 4	0.01	0.01	0.15 2	0.01 3	12.266
Dozer, 300 HP	1	0.1	40	1	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.00	0.00	0.00	0.00	0.00	0.00 0	0.168
Front end loader, TM, 2.5 cy	1	0.6	40	10	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.00 0	0.00	0.00	0.00	0.00	0.00 0	0.137
Gas engine vibrator	1	13.6	20	108	6	55	0.22	696.1 1	0.18	0.17	2.78	26.0 8	1093.0 0	0.00	0.25 6	0.00	0.00	0.00	0.01 0	0.402
Gas welding machine	1	6.0	40	96	17	68	0.21	642.7 4	0.11	0.10	3.24	11.3 5	996.20	0.00 0	0.80 0	0.00	0.00	0.00 4	0.01 4	1.240
Grader, 30,000 lb	1	1.1	40	96	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.00 4	0.00	0.00	0.00	0.01 0	0.00	1.256
Hydraulic excavator, 3.5 cy	1	9.4	40	150	62	43	7.96	0.45	0.57	0.57	2.43	0.12	576.01	0.03 5	0.00	0.00	0.00	0.01	0.00 1	2.540
Roller, vibratory	1	0.1	20	1	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.00 0	0.00	0.00	0.00	0.00 0	0.00 0	0.018
Tug, 500 HP	1	0.6	50	12	500	80	140.6 6	0.781	0.25	0.25	7.92 3	0.07	524.77	0.74 4	0.00 4	0.00	0.00	0.04 2	0.00 0	2.774
Total Annual Construction Em	issions Bet	ween 201	1 - 2014											1.28 0	1.76 0	0.15 9	0.15 4	1.69 9	0.19 7	171.20 3

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006. 2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-203: Utilities Van & Truck Emissions –Potable Basic Water Alternative 1

Commuter Van (LDC	GT)					Emiss	tion Factor ⁱ	(lb/hr)					Emiss	tion Rate (to	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
Construction	42740	25	427	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.110	0.000	0.000	0.010	0.011	6.053
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	629007	25	6270	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.763	0.349	0.090	0.083	1.012	0.080	245.641
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.763	0.459	0.090	0.083	1.022	0.091	251.693

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-204: Utilities Total Construction Emissions - Potable Basic Water Alternative 1

				Pollutant			
Construction Activity	SO ₂	СО	PM_{10}	PM _{2.5}	NO _x	VOC	CO_2
Total Annual Emissions (TPY)	2.0	2.2	0.2	0.2	2.7	0.3	422.9

Table I.3-205: Utilities Construction Equipment Emissions – Potable Basic Water Alternative 2

	Numbe	Week	Usage Factor	Hour	Horse	Load Factor		Ε	mission F	actor ² (gr	ams/hp-h	our)				Emissi	on Rate (t	ons/year))	
Equipment Type/Activity	r of Units	S	1 %	s	power ² (hp)	2 (%)	SO ₂	СО	PM10	PM _{2.}	NO _x	VOC	CO_2	SO ₂	СО	PM ₁₀	PM _{2.}	NO_x	VOC	CO_2
Construction																				
Backhoe loader, 48hp	1	284.2	40	4546	48	21	1.9 9	6.42	1.31	1.27	6.80	1.47	662.28	0.10	0.34	0.06 6	0.06	0.34 3	0.07 4	33.426
Chain saws, 36"	1	0.7	20	6	6.8	70	2.0 0	349.2	12.6 3	11.6 2	0.91 1	69.8 7	686.61	0.00	0.01	0.00	0.00	0.00 0	0.00	0.020
Chipping machine	1	0.4	50	7	144	43	1.6 9	2.46	0.58	0.56	5.98	0.59	550.61	0.00	0.01	0.00	0.00	0.00	0.00	0.263
Compressor, 250 cfm	1	2.0	40	31	83	43	1.7 6	2.40	0.57	0.56	5.42	0.54	573.27	0.00	0.00	0.00	0.00	0.00 7	0.00	0.702
Concrete pump, small	1	4.6	50	91	53	43	1.7 4	3.03	0.74	0.72	6.18	0.75	567.14	0.00	0.00 7	0.00	0.00	0.01 4	0.00	1.289
Crane, 90-ton	1	2.8	16	18	231	43	1.6 3	1.30	0.32	0.31	5.14	0.35	532.78	0.00	0.00	0.00	0.00	0.01 0	0.00	1.025
Crane, SP, 12 ton	1	287.7	16	1841	231	43	1.6 3	1.30	0.32	0.31	5.14	0.35	532.78	0.32 8	0.26	0.06	0.06	1.03 6	0.07 1	107.26 2
Drill rig & augers	1	34.2	20	274	176	43	1.6 5	2.36	0.56	0.54	6.68	0.57	539.15	0.03 8	0.05 4	0.01	0.01	0.15 2	0.01	12.266
Dozer, 300 HP	1	0.1	40	1	300	59	1.6 5	1.93	0.38	0.37	4.72	0.33	539.34	0.00	0.00	0.00	0.00	0.00	0.00	0.084
Front end loader, TM, 2.5 cy	1	0.4	40	6	93	21	2.0 3	6.42	1.31	1.27	6.80	1.47	662.28	0.00	0.00	0.00	0.00	0.00	0.00	0.092
Gas engine vibrator	1	11.9	20	95	6	55	0.2 2	696.1 1	0.18	0.17	2.78	26.0 8	1093.0 0	0.00	0.22 5	0.00	0.00	0.00	0.00 8	0.353
Gas welding machine	1	5.4	40	86	17	68	0.2	642.7 4	0.11	0.10	3.24	11.3 5	996.20	0.00	0.72 0	0.00	0.00	0.00 4	0.01	1.116
Grader, 30,000 lb	1	0.7	40	11	204	59	1.6 4	1.45	0.36	0.35	4.26	0.32	537.25	0.00	0.00	0.00	0.00	0.00 6	0.00	0.799
Hydraulic excavator, 3.5 cy	1	8.4	40	134	62	43	7.9 6	0.45	0.57	0.57	2.43	0.12	576.01	0.03	0.00	0.00	0.00	0.01 0	0.00	2.269
Roller, vibratory	1	0.1	20	0	92	59	1.7 1	2.49	0.53	0.51	4.77	0.42	558.97	0.00 0	0.00	0.00	0.00	0.00 0	0.00	0.013
Total Annual Construction En	issions Bet	ween 2011	1 - 2014											0.51 1	1.61 2	0.15	0.14 6	1.58 7	0.18 6	160.98 0

Commuter Van (LDC	GT)					Emiss	tion Factor ¹	(lb/hr)					Emiss	sion Rate (t	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	<i>CO</i> ₂
Construction	39719	25	397	0.001	0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 0.102 0.000									0.000	0.009	0.010	5.625
Trucks (HDDV)						Emis	sion Factor ¹	(lb/hr)					Emiss	sion Rate (t	ons/year)		
Construction	593680	25	5937	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.720	0.329	0.085	0.078	0.956	0.076	231.845
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.720	0.431	0.085	0.078	0.965	0.086	237.470

Table I.3-206: Utilities Van & Truck Emissions - Potable Basic Water Alternative 2

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-207: Utilities Total Construction Emissions - Potable Basic Water Alternative 2

				Pollutant			
Construction Activity	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO_2
Total Annual Emissions (TPY)	1.2	2.0	0.2	0.2	2.6	0.3	398.4

Table I.3-208: Utilities Construction Equipment Emissions - Wastewater Basic Alternative 1a and 1b

E	Number	W. J.	Usage	11	Horse 2	Load		Er	nission Fa	ctor ² (gram	s/hp-hoi	ır)				Emission	n Rate (tons	/year)		
Equipment Type/Activity	of Units	Weeks	Factor ¹ %	Hours	power ² (hp)	Factor ² (%)	SO ₂	СО	PM ₁₀	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Concrete pump, small	1	0.2	50	3.0	53	43	1.74	3.03	0.74	0.72	6.18	0.75	567.14	0.000	0.000	0.000	0.000	0.000	0.000	0.043
Gas engine vibrator	1	0.3	20	2.0	6	55	3.20	696.11	0.24	0.22	2.78	26.08	1093.00	0.000	0.013	0.000	0.000	0.000	0.000	0.021
Hydraulic excavator, 3.5 cy	1	0.1	40	0.8	171	59	1.66	1.64	0.38	0.37	4.25	0.32	541.49	0.000	0.000	0.000	0.000	0.000	0.000	0.048
Total Annual Construction Er	missions Ber	tween 201	1 - 2014											0.000	0.005	0.000	0.000	0.001	0.000	0.098

Table I.3-209: Utilities Van & Truck Emissions - Wastewater Basic Alternative 1a and 1b

Commuter Van (LDG	GT)					Emiss	tion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO_2
Construction	155	25	2	0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 0.000 0.000 0.000 0.000										0.000	0.000	0.022	
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	3150	25	32 0.243 0.111 0.029 0.026 0.322 0.025 78.104								0.004	0.002	0.000	0.000	0.005	0.000	1.230
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.004	0.002	0.000	0.000	0.005	0.000	1.252

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-210: Utilities Total Construction Emissions - Wastewater Basic Alternative 1a and 1b

				Pollutant			
Construction Activity	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	0.0	0.0	0.0	0.0	0.0	0.0	1.4

Table I.3-211: Utilities Construction Equipment Emissions –Solid Waste Basic Alternative 1 / Apra Harbor

Environment True / Antinite	Number	Weeks	Usage	Hours	Horse	Load Factor ²		Er	nission Fa	ctor ² (gran	1s/hp-hoi	ur)				Emissio	n Rate (tons	/year)		
Equipment Type/Activity	of Units	weeks	Factor ¹ %	nours	power ² (hp)	(%)	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Construction																				
Compressor, 250 cfm	1	0.4	40	6	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.000	0.001	0.000	0.000	0.001	0.000	0.144
Dozer,75 HP	1	5.5	40	87	75	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.007	0.008	0.002	0.002	0.020	0.001	2.292
Dozer, 300 HP	1	1.0	40	16	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.005	0.006	0.001	0.001	0.015	0.001	1.682
Front end loader, 1.5 cy	1	1.0	40	16	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.001	0.002	0.000	0.000	0.002	0.001	0.229
Grader, 30,000 lb	1	2.6	40	41	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.009	0.008	0.002	0.002	0.023	0.002	2.912
Roller, vibratory	1	1.0	20	8	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.001	0.001	0.000	0.000	0.002	0.000	0.268
Total Annual Construction	Emissions	Between 2	2011 - 2014											0.023	0.026	0.006	0.005	0.064	0.005	7.527

Table I.3-212: Utilities Van & Truck Emissions – Solid Waste Basic Alternative 1 / Apra Harbor

GT)					Emiss	tion Factor	(lb/hr)					Emiss	sion Rate (to	ons/year)			
Total VMT	Speed in miles/hour	Hours	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO_2	
3234	25	32	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.008	0.000	0.000	0.001	0.001	0.458	
					Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)			
9201	25	92	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.011	0.005	0.001	0.001	0.015	0.001	3.593	
Vehicle Emissions,	Between 2011-20	14								0.011	0.013	0.001	0.001	0.001 0.015 0.001			
	<i>Total VMT</i> 3234 9201	Total VMTSpeed in miles/hour323425920125	Total VMT Speed in miles/hour Hours 3234 25 32	Total VMT Speed in miles/hour Hours SO2 3234 25 32 0.001 9201 25 92 0.243	Total VMT Speed in miles/hour Hours SO2 CO 3234 25 32 0.001 0.515 9201 25 92 0.243 0.111	Total VMT Speed in miles/hour Hours SO2 CO PM10 3234 25 32 0.001 0.515 0.001 9201 25 92 0.243 0.111 0.029	Total VMT Speed in miles/hour Hours SO2 CO PM10 PM2.5 3234 25 32 0.001 0.515 0.001 0.001 Emission Factor ¹ 9201 25 92 0.243 0.111 0.029 0.026	Total VMT Speed in miles/hour Hours SO2 CO PM10 PM2.5 NOx 3234 25 32 0.001 0.515 0.001 0.001 0.045 Emission Factor ¹ (lb/hr) 9201 25 92 0.243 0.111 0.029 0.026 0.322	Total VMT Speed in miles/hour Hours SO2 CO PM10 PM2.5 NOx VOC 3234 25 32 0.001 0.515 0.001 0.001 0.045 0.051 Emission Factor ¹ (lb/hr) 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ 3234 25 32 0.001 0.515 0.001 0.001 0.045 0.051 28.324 Emission Factor ¹ (Ib/hr) 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025 78.104	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ $SO2$ 3234 25 32 0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 Emission Factor ¹ (lb/hr) 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.011	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ $SO2$ CO 3234 25 32 0.001 0.515 0.001 0.001 0.045 0.051 28.324 0.000 0.008 Emission Factor ¹ (lb/hr) 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.011 0.005	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC $CO2$ $SO2$ CO PM_{10} 3234 25 32 0.001 0.515 0.001 0.0045 0.051 28.324 0.000 0.008 0.000 Emission Factor ¹ (lb/hr) 9201 25 92 0.243 0.111 0.026 0.322 0.025 78.104 0.011 0.005 0.001	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ 3234 25 32 0.001 0.515 0.001 0.0045 0.051 28.324 0.000 0.008 0.000 0.000 Emission Factor ¹ (lb/hr) Emission Rate (tr 9201 25 92 0.243 0.111 0.026 0.322 0.025 78.104 0.011 0.001 0.001 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.011 0.005 0.001 0.001	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x 3234 25 32 0.001 0.515 0.001 0.0045 0.051 28.324 0.000 0.008 0.000 0.000 0.001 Emission Factor ¹ (lb/hr) Emission Factor ¹ (lb/hr) 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.011 0.005 0.001 0.015	Total VMT Speed in miles/hour Hours SO2 CO PM_{10} $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x VOC CO_2 SO_2 CO $PM_{2.5}$ NO_x VOC 3234 25 32 0.001 0.515 0.001 0.004 0.051 28.324 0.000 0.000 0.000 0.001 0.001 Emission Factor ¹ (lb/hr) Emission Rate (tons/year) 9201 25 92 0.243 0.111 0.029 0.026 0.322 0.025 78.104 0.011 0.001 0.011 0.001 0.011	

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-213: Utilities Total Construction Emissions - Solid Waste Basic Alternative 1 / Apra Harbor

				Pollutant			
Construction Activity	SO ₂	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2
Total Annual Emissions (TPY)	0.0	0.0	0.0	0.0	0.1	0.0	11.6

Table I.3-214: Utilities Construction Equipment Emissions - Solid Waste Basic Alternative 1 / Layon

Environment Terrar/Antivita	Number	Weeks	Usage	Hours	Horse	Load Factor ²		E	mission Fa	ctor ² (gran	ns/hp-ho	ur)				Emissio	on Rate (ton	s/year)		
Equipment Type/Activity	of Units	weeks	Factor ¹ %	nours	power ² (hp)	(%)	SO_2	СО	PM_{10}	PM _{2.5}	NO_x	VOC	CO_2	SO_2	СО	PM10	PM _{2.5}	NO_x	VOC	CO ₂
Construction																				
Compressor, 250 cfm	1	1.2	40	18	83	43	1.76	2.40	0.57	0.56	5.42	0.54	573.27	0.001	0.002	0.000	0.000	0.004	0.000	0.415
Dozer, 75 HP	1	16.0	40	256	75	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.021	0.024	0.005	0.005	0.059	0.004	6.729
Dozer, 200 HP	1	6.9	41	112	200	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.024	0.028	0.006	0.005	0.069	0.005	7.874
Dozer, 300 HP	1	2.9	40	46	300	59	1.65	1.93	0.38	0.37	4.72	0.33	539.34	0.015	0.017	0.003	0.003	0.043	0.003	4.878
Front end loader, 1.5 cy	1	2.9	40	46	93	21	2.03	6.42	1.31	1.27	6.80	1.47	662.28	0.002	0.006	0.001	0.001	0.007	0.001	0.664
Grader, 30,000 lb	1	7.3	40	117	204	59	1.64	1.45	0.36	0.35	4.26	0.32	537.25	0.026	0.023	0.006	0.005	0.066	0.005	8.335
Hydraulic excavator, 3.5 cy	1	8.6	40	137	62	43	1.76	2.43	0.59	0.57	5.41	0.56	576.01	0.007	0.010	0.002	0.002	0.022	0.002	2.310
Roller, vibratory	1	2.9	20	23	92	59	1.71	2.49	0.53	0.51	4.77	0.42	558.97	0.002	0.003	0.001	0.001	0.007	0.001	0.777
Total Annual Construction En	nissions Bet	tween 201	1 - 2014											0.098	0.114	0.024	0.023	0.276	0.021	31.982

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

Table I.3-215: Utilities Van & Truck Emissions - Solid Waste Basic Alternative 1 / Layon

Commuter Van (LDC	GT)					Emiss	ion Factor	(lb/hr)					Emiss	tion Rate (te	ons/year)		
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	CO	PM10	PM _{2.5}	NO _x	VOC	CO ₂	SO ₂	СО	PM10	PM _{2.5}	NO _x	VOC	CO ₂
Construction	10292	25	103	0.001	0.515	0.001	0.001	0.045	0.051	28.324	0.000	0.026	0.000	0.000	0.002	0.003	1.458
Trucks (HDDV)						Emiss	sion Factor ¹	(lb/hr)					Emiss	sion Rate (to	ons/year)		
Construction	32423	25	324	0.243	0.111	0.029	0.026	0.322	0.025	78.104	0.039	0.018	0.005	0.004	0.052	0.004	12.662
Total Annual Motor	Vehicle Emissions,	Between 2011-20	14								0.039	0.044	0.005	0.004	0.054	0.007	14.119

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-216: Utilities Total Construction Emissions - Solid Waste Basic Alternative 1 / Layon

				Pollutant			
Construction Activity	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
Total Annual Emissions (TPY)	0.1	0.2	0.0	0.0	0.3	0.0	46.1

Table I.3-217: Roadway Projects Estimated Construction Emission Burden – North, Alternative 1

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	<i>CO</i> ₂
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.23	0.36	0.09	0.06	0.03	0.27	73.1
	2011	2011	2011	2011	2011	2011	2011

Guam and CNMI Military Relocation

Table I.3-218: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 1

	СО	NO_x	PM_{10}	PM _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)	8.5	13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.42	0.65	0.11	0.11	0.05	0.48	129
Year Highest Monthly Emission Burden Predicted to Occur	2012	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013

Table I.3-219: Roadway Projects Estimated Construction Emission Burden – Apra Harbor, Alternative 1

	CO	NO_x	<i>PM</i> ₁₀	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)	1.6	2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Table I.3-220: Roadway Projects Estimated Construction Emission Burden – South, Alternative 1

	СО	NO_x	PM ₁₀	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Year Highest Monthly Emission Burden Predicted to Occur	2012	2013	2012 & 2013	2012 & 2013	2013	2013	2013

Table I.3-221: Roadway Projects Estimated Construction Emission Burden – North, Alternative 2

	СО	NO _x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

	CO	NO _x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)	8.5	13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.42	0.65	0.11	0.11	0.05	0.48	129
Year Highest Monthly Emission Burden Predicted to Occur	2012	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013

Table I.3-222: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 2

Table I.3-223: Roadway Projects Estimated Construction Emission Burden – Apra Region, Alternative 2

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)	1.6	2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.08	0.12	0.03	.02	0.02	0.0.9	24.7
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Table I.3-224: Roadway Projects Estimated Construction Emission Burden – South, Alternative 2

	CO	NO _x	<i>PM</i> ₁₀	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Year Highest Monthly Emission Burden Predicted to Occur	2012	2013	2012 &	2012 &	2013	2013	2013
			2013	2013			

Table I.3-225: Roadway Projects Estimated Construction Emission Burden – North, Alternative 3

	СО	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Table I.3-226: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 3

	CO	NO_x	PM_{10}	PM _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)		13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.42	0.65	0.11	0.11	0.05	0.48	129
Year Highest Monthly Emission Burden Predicted to Occur	2012	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013

Table I.3-227: Roadway Projects Estimated Construction Emission Burden – Apra Harbor, Alternative 3

	СО	NO_x	<i>PM</i> ₁₀	<i>PM</i> _{2.5}	VOC	SO ₂	<i>CO</i> ₂
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)		2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Guam and CNMI Military Relocation

Table I.3-228: Roadway Projects Estimated Construction Emission Burden – South, Alternative 3

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	<i>CO</i> ₂
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Year Highest Monthly Emission Burden Predicted to Occur	2012	2013	2012 & 2013	2012 & 2013	2013	2013	2013

Table I.3-229: Roadway Projects Estimated Construction Emission Burden – North, Alternative 8

	СО	NO_x	<i>PM</i> ₁₀	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	13.0	20.3	8.4	4.1	1.4	15.3	3,881
Highest Monthly Emission Burden (Tons)	4.7	7.3	1.8	1.3	0.51	5.4	1,462
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.23	0.36	0.09	0.06	0.03	0.27	73.1
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Table I.3-230: Roadway Projects Estimated Construction Emission Burden – Central, Alternative 8

	CO	NO_x	PM_{10}	<i>PM</i> _{2.5}	VOC	SO_2	CO_2
Maximum Yearly Value (Tons)	54.6	84.2	17.2	14.4	5.9	62.4	16,707
Highest Monthly Emission Burden (Tons)		13.1	2.2	2.2	0.9	9.7	2,590
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.42	0.65	0.11	0.11	0.05	0.48	129
Year Highest Monthly Emission Burden Predicted to Occur	2012	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013	2012 & 2013

Table I.3-231: Roadway Projects Estimated Construction Emission Burden – Apra Harbor, Alternative 8

	СО	NO_x	<i>PM</i> ₁₀	<i>PM</i> _{2.5}	VOC	SO_2	<i>CO</i> ₂
Maximum Yearly Value (Tons)	13.5	20.9	5.0	3.7	1.2	15.4	4,199
Highest Monthly Emission Burden (Tons)		2.5	0.59	0.44	0.34	1.82	494
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.08	0.12	0.03	0.02	0.02	0.09	24.7
Year Highest Monthly Emission Burden Predicted to Occur	2011	2011	2011	2011	2011	2011	2011

Table I.3-232: Roadway Projects Estimated Construction Emission Burden – South, Alternative 8

	СО	NO _x	<i>PM</i> ₁₀	<i>PM</i> _{2.5}	VOC	SO_2	CO ₂
Maximum Yearly Value (Tons)	11.1	17.3	2.9	2.8	1.2	12.9	3310
Highest Monthly Emission Burden (Tons)	3.1	4.9	0.83	0.81	0.34	3.7	957
Average Daily Emission Burden (Based on Highest Month) (Tons)	0.16	0.25	0.04	0.04	0.02	0.18	47.8
Year Highest Monthly Emission Burden Predicted to Occur	2012	2013	2012 & 2013	2012 & 2013	2013	2013	2013

3.5 REGIONAL EMISSIONS UNDER PREFERRED ALTERNATIVES

The preferred alternatives (Table I.3-233) were evaluated for potential air quality impacts to Guam. Regional emissions occurring under the collective alternatives require analysis of both the location of the proposed actions and the timing of the proposed actions. The greatest collective impact to air quality resources would occur if all of the proposed actions were implemented concurrently. As construction activities would occur prior to operational activities, it was assumed that all of the proposed construction actions are occurring at the same time and that all operational activity will commence upon completion of construction. Although some components of the preferred alternative would require longer construction times than others, construction and operation in a specific area would not be occurring concurrently. Impacts on air quality are evaluated for each individual ROI. The scenario presented is a consideration of the preferred alternative from each individual component of the proposed action.

	Preferred Alternatives
Alternative	Description
Alternative 2	Marine Corps Guam Relocation
Alternative 1	Marine Corps Tinian (CNMI) Relocation
Alternative 1	Aircraft Carrier Berthing
Alternative 1	Army Air Missile Defense Task Force (AMDTF)
Basic Alternative	Utilities – Power
Basic Alternative 1	Utilities – Potable Water
Basic Alternative 1a and 1b	Utilities –Wastewater
Basic Alternative 1	Utilities – Solid Waste
Alternative 2	Roadway Projects

 Table I.3-233: Collective Alternatives for Preferred Alternatives

Methods, emission factors, and input parameters for the analyses summarized in this section were obtained from the following references, with detailed of the analyses provided previously in Section 3.

- The Procedures of Emission Inventory Preparation, Volume IV: Mobile Sources (USEPA December 1992)
- Aircraft engine emission factors developed by the Navy's Aircraft Environmental Support Office (AESO) (AESO April 1999 January 2001)
- U.S. Air Force Air Conformity Applicability Model (Version 4.3) (Air Force Center for Environmental Excellence [AFCEE] 2005)
- Aircraft Noise Study for Guam Joint Military Master Plan at Andersen AFB (Czech and Kester 2008)
- USEPA NONROAD emission factor model (USEPA December 2008)
- FHWA Roadway Construction Noise Model User's Guide (FHWA 2006)
- USEPA Mobile6 emission factor model (USEPA August 2003).

The significance criteria used to determine potential air quality impacts are summarized below. There criteria include:

- The Clean Air Act (CAA) General Conformity Rule (GCR) de minimis levels for nonattainment pollutant emissions.
- Criteria pollutants significance criteria selected based on Prevention of Significant Deterioration (PSD) major source threshold

Under the GCR, reasonably foreseeable emissions associated with all proposed operational and construction activities, both direct and indirect, must be quantified and compared to the annual *de minimis* levels for those pollutants in nonattainment areas. The areas around the Piti and Tanguisson power plants on Guam (Figure I.2-1) are SO₂ nonattainment areas. Apra Harbor is within the Piti SO₂ nonattainment area. The *de minimis* criterion for these nonattainment areas is 100 TPY for SO₂.

For the purposes of this summary impact evaluation, all construction and operational emissions are combined according to the preferred alternatives specified. Using these emission totals the CAA GCR applicability analysis was completed for those activities with potential to occur within the SO_2 nonattainment areas of Tanguisson and Piti. These emissions are further discussed in the CAA General Applicability Analysis (Section 3.6).

Greenhouse gas (GHG) emissions in the atmosphere are of concern because they contribute to global warming by trapping re-radiated energy. The total quantity of GHG emissions was expressed in terms of CO_2 emissions resulting under the preferred alternatives. CO_2 is not a criteria pollutant and the 250 TPY significance threshold is not applicable to CO_2 . Therefore, greenhouse gases in terms of CO_2 emissions are presented only for disclosure purposes. GHG emissions in terms of CO_2 equivalents for the preferred alternatives are discussed for all ROIs collectively In Section 3.7 of this study.

Since the proposed action would mostly involve the relocation of the military operations that are currently occurring in the West Pacific region, such as training exercises, energy consumption from activities in the region are unlikely to change significantly and the overall global greenhouse gas emissions associated with the proposed action are likely to remain at the current levels on a regional scale. The following tables present the action scenario utilizing the preferred alternative from each individual component of the proposed action: Table I.3-234, Table I.3-235, Table I.3-236, Table I.3-237, Table I.3-238, Table I.3-239.

					Tota	al Annual	Pollutant	Emissio	ns (TPY)	
	ROI	Construction Activity	Year	SO ₂	CO	PM ₁₀	PM _{2.5}	NO _x	VOC	CO ₂
		Andersen AFB	2011 - 2014							
		Airfield		0.5	1.5	0.1	0.1	1.0	2.5	166.0
		Training Facilities	2011 - 2014	0.0	0.1	0.0	0.0	0.0	0.0	7.4
			2011	6.4	26.2	1.5	1.4	13.3	10.4	2,188.9
	NT .1		2012	10.4	42.9	2.5	2.3	21.7	16.9	3,581.9
	North	Main Cantonment	2013	13.3	54.8	3.2	13.3	27.7	21.6	4,576.8
			2014	13.3 9.9	54.8	3.2	3.0	27.7	21.6	4,576.8
			2015 2016	4.6	40.5	2.3	2.2	20.5 9.6	16.0 7.5	3,382.9 1,591.9
Volume 2		C3 and Non-Firing	2010	4.0	19.1	1.1	1.0	9.0	7.5	1,391.9
Alternative 2		Training Facilities	2011 - 2014	0.2	0.6	0.0	0.0	0.3	0.9	49.3
		C3 and Non-Firing Training Facilities	2011 - 2014	0.2	0.6	0.0	0.0	0.3	0.9	49.3
	Central	Firing Training, Option A	2011 - 2014	0.4	1.6	0.1	0.1	1.0	0.5	138.9
		Firing Training, Option B	2011 - 2014	0.8	1.7	0.2	0.2	1.5	0.3	264.3
	Apra Harbor	Waterfront Operations	2011 - 2014	1.1	0.8	0.0	0.0	0.5	0.4	80.1
	South	Training Facilities	2011 - 2014	0.0	0.1	0.0	0.0	0.0	0.0	7.4
Volume 4	Apra Harbor	Aircraft Carrier Berthing	2011 - 2014	0.4	1.4	0.1	0.1	0.7	0.2	118.9
Alternative 1		Dredging, ODMDS option	2014 - 2015	0.1	8.0	1.0	0.3	0.4	9.9	539.8
Volume 5 Alternative 1	North	Army AMDTF	2011 - 2014	1.3	4.2	0.2	0.2	2.5	0.9	453.7
		Utilities Wastewater	2011 - 2014	0.0	0.0	0.0	0.0	0.0	0.0	1.4
			2011	13.5	11.7	4.5	3.3	18.3	1.3	3665.5
	North		2012	14.1	12.2	7.5	3.8	18.9	1.3	3699.4
	North	Roadway	2013	15.3	13.0	8.4	4.1	20.3	1.4	3881.3
			2014	7.0	5.9	5.5	2.2	9.4	0.7	1896.0
			2015	4.1	3.5	2.9	1.2	5.5	0.4	1106.0
		Utilities Power	2011 - 2014	0.1	3.8	0.0	0.0	0.4	0.1	52.0
		Utilities Long – Term Water	2011 - 2014	2.0	2.2	0.2	0.2	2.7	0.3	422.9
			2011	17.0	14.7	5.3	4.0	23.0	1.6	4613.2
Volume 6	Central		2012	31.6	27.7	7.9	7.3	42.7	3.0	8467.8
Alternative 1			2013	62.4	54.6	15.8	14.4	84.2	5.9	16707.6
		Roadway	2014	35.6	31.2	15.5	9.5	48.2	3.4	9680.5
			2015	5.0	4.3	17.2	4.2	6.7	0.5	1346.6
			2016	0.0	0.0	4.8	0.9	0.0	0.0	0.0
		Utilities Solid Waste	2011 - 2014	0.0	0.0	0.0	0.0	0.1	0.0	11.6
	Apra		2011	15.4	13.5	5.0	3.7	20.9	1.5	4199.8
	Harbor	Roadway	2012	3.2	2.6	0.6	0.6	4.1	0.3	703.4
			2013	5.1	4.1	1.0	1.0	6.6	0.5	1166.0
	South Roadway	2012	8.2	6.9	1.8	1.7	10.8	0.8	2042.2	
			2013	13.0	11.1	2.9	2.8	17.3	1.2	3309.9

Note: ¹ Air emissions from Tinian are not considered in the summary impacts of Guam air quality. Only CO² emissions are considered on a regional scale for GHG impacts.

		Total Construction Annual Pollutant Emissions (TPY)							
Year	SO ₂	СО	PM ₁₀	PM _{2.5}	NO _x	VOC	<i>CO</i> ₂		
2011	59.3	85.0	17.3	13.5	86.6	21.9	16490.5		
2012	74.6	111.1	21.3	16.8	109.5	29.4	20317.8		
2013	116.1	156.4	32.4	36.7	167.4	37.8	31464.8		
2014	63.0	118.8	26.3	15.9	97.0	42.7	18516.3		
2015	19.0	56.3	23.5	7.9	33.1	26.8	6375.2		
2016	4.6	19.1	5.9	2.0	9.6	7.5	1591.9		

Table I.3-235: Guam Annual Construction Emissions by Volume and ROIs – Preferred Alternatives

Note: Bolded numbers indicate an exceedance of the 250 TPY significance criteria.

Table I.3-236: Annual Operational Emissions by EIS Volume and ROI – Preferred Alternatives

			tion al		Annual Po	ollutant	Emission	s (TPY))	
Action Item	ROI	Operational Activity	Year	SO_2	CO	PM ₁₀	<i>PM</i> _{2.5}	NO_x	VOC	CO_2
		Airfield Training2015Operationsand on		0.2	1.6	1.0	1.0	5.6	0.4	1399.8
	North	Anderson AFB Aircraft Operations	2015 and on	2.1	135.6	20.6	20.6	40.1	45.8	4477.1
		On base Vehicle Operations	2015 and on	10.1	254.2	1.9	1.2	12.2	16.1	21235.8
		Airfield Training Operations	2015 and on	0.1	0.5	0.5	0.5	1.9	0.1	179.5
	Central	Training Vehicle Operations	2015 and on	0.2	1.6	24.1	2.4	0.3	0.2	161.8
Volume 2 Alternative		On base Vehicle Operations	2015 and on	2.8	70.9	0.5	0.3	3.4	4.5	5926.1
2		Airfield Training Operations	2015 and on	0.1	0.4	0.4	0.4	2.0	0.1	361.0
	Apra Harbor	Vessel Training Operations	2015 and on	3.6	4.5	6.4	6.4	9.5	0.6	1423.1
		On base Vehicle Operations	2015 and on	0.3	8.6	0.1	0.0	0.4	0.5	716.3
		Airfield Training Operations	2015 and on	0.4	1.4	1.7	1.7	10.6	0.1	1883.8
	South	On base Vehicle Operations	2015 and on	0.1	0.8	0.0	0.0	0.0	0.1	77.6
		Training Vehicle Operations	2015 and on	0.0	0.0	0.5	0.1	0.0	0.0	2.3
Volume 4 Alternative 1	Apra Harbor	Aircraft Carrier Berthing	2015 and on	0.5	91.3	4.7	8.4	27.3	1.7	NA
Volume 6	Apra	Utilities Solid	2011 – 2013 –	NA	NA	NA	NA	NA	2.6 - 18.7	164.4 - 1194.8
Alternative	Harbor	Waste	2014 and on	NA	NA	NA	NA	NA	0.6 - 2.6	1903.0 - 8235.0
1 Natari	Total	Off-base Vehicle Operations ¹	2015 and on	99.4	2425.3	13.7	10.1	87.8	150.2	14188.0

Notes: 1. Based on 2030 estimates.

		Total Operational Annual Pollutant Emissions (TPY)								
Year	SO_2	СО	PM_{10}	<i>PM</i> _{2.5}	NO_x	VOC	CO_2			
2011	NA	NA	NA	NA	NA	2.6	164.4			
2012	NA	NA	NA	NA	NA	9.0	571.8			
2013	NA	NA	NA	NA	NA	18.7	1194.8			
2014	NA	NA	NA	NA	NA	0.6	1903.0			
2015	119.93	2996.93	76.10	53.11	201.04	221.3	54932.2			
2016	119.93	2996.93	76.10	53.11	201.04	221.5	55697.1			
2017 and on	119.93	2996.93	76.10	53.11	201.04	221.7 -223.0	56087.5 - 60267.2			

 Table I.3-237: Guam Annual Operational Emissions – Preferred Alternatives

Note: Bolded numbers indicate an exceedance of the 250 TPY significance criteria.

		Total Combined Annual Pollutant Emissions (TPY)								
Year	SO_2	СО	PM ₁₀	<i>PM</i> _{2.5}	NO _x	VOC	CO_2			
2011	59.3	85.0	17.3	13.5	86.6	24.5	16654.9			
2012	74.6	111.1	21.3	16.8	109.5	38.4	20889.6			
2013	116.1	156.4	32.4	36.7	167.4	56.5	32659.7			
2014	63.0	118.8	26.3	15.9	97.0	43.3	20419.7			
2015	138.9	3053.2	99.6	61.0	234.1	248.0	61307.4			
2016	124.6	3016.0	82.0	55.1	210.7	229.0	57289.0			
2017 and on	119.9	2996.9	76.1	53.1	201.0	221.7 - 223.0	56087.5 - 60267.2			

 Table I.3-238: Guam Total Annual Construction and Operational Emissions Combined – Preferred Alternatives

Note: Bolded numbers indicate an exceedance of the 250 TPY significance criteria.

Vehicular CO emissions are of local (microscale) concern with potential impacts concentrated around heavily congested intersections. Although the collective CO emissions are predicted to exceed 250 TPY under both construction and operational conditions, the further microscale dispersion modeling performed at the worst-case intersections (Section 3.3.7) indicated that no exceedance of the CO NAAQS would occur. Therefore, potential CO impacts would not be significant under the preferred alternatives. Table I.3-239 lists the worst-case intersections on Guam that were analyzed for CO concentration levels. These intersections showed no exceedance of the CO NAAQS under the preferred alternatives.

ROI	Intersections				
North	Route 1/28				
North	Route 9/Andersen AFB North Gate				
	Route 1/8				
Central	Route 4/7A				
	Route 16/27				
Apra Harbor	Route 1/2A				
South	Route 5/2A				

Table I.3-239: Intersections Analyzed for CO Microscale Impact Analysis – Preferred Alternatives

3.6 CAA GENERAL CONFORMITY APPLICABILITY ANALYSIS

The 1990 amendments to the CAA (CAAA) require federal agencies to ensure that their actions conform to the State Implementation Plan (SIP) in a nonattainment area. The SIP is a plan that provides for implementation, maintenance, and enforcement of the National Ambient Air Quality Standards (NAAQS) and it includes emission limitations and control measures to attain and maintain the NAAQS. Conformity to a SIP, as defined in the CAA, means conformity to a SIP's purpose of reducing the severity and number of violations of the NAAQS to achieve attainment of such standards. The federal agency responsible for an action is required to determine whether its action conforms to the applicable SIP.

The USEPA has developed two sets of conformity regulations—for transportation projects and non-transportation-related projects, respectively:

- Transportation projects developed or approved under the Federal Aid Highway Program or Federal Transit Act are governed by transportation conformity regulations (40 CFR Parts 51 and 93), which became effective December 27, 1993 and were revised August 15, 1997.
- Non-transportation projects are governed by general conformity regulations (40 CFR Parts 6, 51, and 93), described in the final rule for *Determining Conformity of General Federal Actions to State or Federal Implementation Plans*, published in the *Federal Register* on November 30, 1993. The general conformity rule became effective January 31, 1994 and was revised on March 24, 2010.

As the proposed action is a non-transportation project and would potentially involve activities in Piti and Tanguisson SO_2 nonattainment areas, the General Conformity Rule (GCR) applies to the proposed activities within the nonattainment areas. Therefore, a subsequent general conformity applicability analysis is required.

3.6.1 General Conformity Rule

The General Conformity Rule applies to federal actions occurring in an area designated as nonattainment for the NAAQS or in attainment areas subject to maintenance plans (maintenance areas). Federal actions occurring in an area in attainment with the NAAQS are not subject to the conformity rule.

A criteria pollutant is a pollutant for which an air quality standard has been established under the CAA. The designation of nonattainment is based on the exceedances or violations of the air quality standard. A maintenance plan establishes measures to control emissions to ensure the air quality standard is maintained in areas that have been redesignated as attainment from a previous nonattainment status.

Areas that meet the NAAQS standard for a criteria pollutant are designated as being in "attainment;" areas where the criteria pollutant level exceeds the NAAQS are designated as being in "nonattainment." O_3 nonattainment areas are subcategorized based on the severity of their pollution problem (marginal, moderate, serious, severe, and extreme). Particulate Matter (PM) and CO nonattainment areas are classified into two categories (moderate and serious). When insufficient data exists to determine an area's attainment status, it is designated unclassifiable (or attainment).

Components of the proposed action would occur at various locations on Guam. Many of the areas where the actions are proposed are currently designated as attainment areas for all criteria pollutants. There are two areas on Guam that are designated as attainment areas for CO, NO_x , O_3 , PM (PM₁₀ and PM_{2.5}), and Pb, but are designated as nonattainment areas for SO₂, as follows (see Figure I.2-1, Guam SO₂ Nonattainment Areas):

- Piti: Portion of Guam within a 3.5- kilometers (km) (2.2-mile) radius of the Piti Power Plant
- Tanguisson: Portion of Guam within a 3.5-km (2.2-mile) radius of the Tanguisson Power Plant

A maximum sulfur content of 0.5% was used based on USEPA's Heavy-Duty Standards/Diesel Fuel Regulatory Impact Analysis (RIA) (USEPA 2000). Based on the RIA, data observed in 1992 shows that No. 2 diesel fuel imports actually had sulfur content ranging from 0.39% to 0.5%. Therefore, using the actual highest sulfur content observed in 1992 (0.5%) for vehicles in this analysis is considered appropriate and conservative and is also coincident with the highest sulfur content fuel input available in the NONROAD model.

Both areas are designated nonattainment for SO_2 as a result of monitored and modeled exceedances in the 1970s. Since that time, changes have been made to these power generation facilities. In accordance with 40 CFR Parts 80 and 86, both plants were rebuilt, upgrading their emission controls in the 1990s. Based on these improvements, Guam has submitted a redesignation request for the Piti area to USEPA. The pending redesignation request shows that Piti is now in attainment. In addition, as both plants are located on the western side of the island and the trade winds blow persistently from east-to-west, the impact of the SO_2 emissions on the people of Guam from the power plants is reduced. Mobile sources, such as cars, are a minor contributor to SO_2 emissions.

To focus general conformity requirements on those federal actions with the potential to have significant air quality impacts, threshold (*de minimis*) rates of emissions were established in the final rule. A formal conformity determination is required when the annual net total of direct and indirect emissions from a federal action occurring in a nonattainment or maintenance area for a criteria pollutant equals or exceeds the *de minimis* for this pollutant. Table I.3-240 lists the *de minimis* level by pollutant.

Under the General Conformity Rule (GCR), the total emissions resulting from the proposed federal actions must be compared to applicable *de minimis* levels on an annual basis. As defined by the GCR, if the emissions of a criteria pollutant (or its precursors) do not exceed the *de minimis* level, the federal action has minimal air quality impact and the action is determined to be in conformity for the pollutant under study. Therefore, no further analysis is necessary. Conversely, if the total direct and indirect emissions of a pollutant are above the *de minimis* level, a formal general conformity determination is required for that pollutant.

For SO_2 nonattainment areas, USEPA's conformity rules establish *de minimis* emission levels for SO_2 . The de minimis level of 100 *TPY* would apply to SO_2 .

Pollutant	Nonattainment Designation	Tons/Year				
	Serious	50				
	Severe	25				
Ozone*	Extreme	10				
	Other nonattainment or maintenance areas outside ozone transport region	100				
	Marginal and moderate nonattainment areas inside ozone transport region	50/100**				
Carbon Monoxide	All	100				
Sulfur Dioxide	All	100				
Lead	All	25				
Nitrogen Dioxide	All	100				
Derticulate Matter < 10 microse	Moderate	100				
Particulate Matter ≤ 10 microns	Serious	70				
Particulate Matter ≤ 2.5 microns***	All					
Notes: *Applies to ozone precursors – volatile organic compounds (VOCs) and nitrogen oxides (NO _X). ** VOCs/NO _X *** Applies to PM _{2.5} and its precursors.						

Table I.3-240: De Minimis Emission Levels for Criteria Air Pollutants

3.6.2 Applicability Analysis

The applicability analysis was performed for the preferred alternatives, to determine whether the preferred alternatives would be consistent with the GCR and whether a formal conformity analysis would be required. Pursuant to the GCR, all reasonably foreseeable emissions (both direct and indirect) associated with the implementation of the preferred alternatives within two nonattainment areas at Guam were quantified and compared to the applicable annual *de minimis* levels to determine potential air quality impacts.

The conformity analysis for a federal action examines the impacts of the direct and indirect net emissions from mobile and stationary sources. Direct emissions are emissions of a criteria pollutant or its precursors that are caused or initiated by a federal action and occur at the same time and place as the action. Indirect emissions, occurring later in time and/or further removed in distance from the action itself, must be included in the determination if both of the following apply:

- The federal agency can practicably control the emissions and has continuing program responsibility to maintain control.
- The emissions caused by the federal action are reasonably foreseeable.

The following project components under the proposed action were identified with potential to occur within the two SO_2 nonattainment areas even partially and the emissions from these components were conservatively estimated for purposes of the GCR applicability analysis.

Tanguisson Area

- Operation
 - Aircraft training
 - Flight to and from Andersen South
 - On Base Vehicles
 - Marine Base in Finegayan

- Construction
 - Main Cantonment
 - \circ $\;$ Family housing in the former FAA and South Finnegayan areas
 - Power Basic Alternative
 - o All
 - Potable Basic Water Alternative 1
 - Distribution lines
 - Wastewater Basic Alternative 1a and 1b
 - o All

Piti Area

- Operation
 - Aircraft Carrier Berthing Operations
 - Aircraft Carrier Berthing
 - Transient Aircraft
 - Aircraft Operational Training
 - Flight to and from Orote
 - On Base Vehicles
 - o Naval Base & Polaris Point
- Construction
 - Waterfront
 - o All
 - Aircraft Carrier Berthing
 - o All
 - Potable Basic Water Alternative 1
 - Distribution lines

3.6.2.1 AIR EMISSIONS FROM OPERATIONAL ACTIVITIES

Aircraft Operational Emissions from Aircraft Carrier Berthing

The DoD proposes to construct a new deep-draft wharf with shoreside infrastructure improvements in Apra Harbor, Guam at Polaris Point (within the Piti nonattainment area) to provide for a transient nuclear powered aircraft carrier. Up to 59 aircraft including strike, surveillance, control, and other logistic and combat aircraft, would either remain onboard the ship or fly to Andersen AFB. Two locations for siting the new wharf are considered under the proposed action: 1) Polaris Point (preferred), and 2) the Former Ship Repair Facility (SRF).

The Aircraft Carrier Berthing component of the proposed action requires operational activities that have the potential to generate air emissions within Piti nonattainment area. Specifically, operational emissions would result from the following activities:

- Operation of the aircraft carriers' on-board diesel generators.
- Aircraft carrier routine maintenance.
- Transient aircraft operations.
- Escort vessels operations.
- Operation of the tugboats that assist in navigating the aircraft carrier through the harbor.
- Operation of the on-road vehicles transporting the aircraft carrier crew.
- Operations of the on-road trucks transporting materials to and from aircraft carriers.

The emissions inventory for one aircraft carrier homeporting for six months was taken from a U.S. Navy study (U.S. Navy July 1999). This inventory was used to prorate the aircraft carrier berthing emissions based on an increase in aircraft carrier berthing days at Apra Harbor of 49 days.

Commercial port transporting service air emissions were properly excluded from the general conformity analysis because they do not meet the indirect emissions criteria. These emissions are not reasonably foreseeable and cannot be practicably controlled by DoD as a part of our continuing program responsibility.

Accompanying vessel and tugboat emissions were also not considered in this analysis because these operations are a function of the number of aircraft carrier visits rather than of the number of berthing days. Because the number of aircraft carrier visits at Apra Harbor would not increase, no additional emissions from vessel and tugboat operations are anticipated.

The aircraft carrier berthing-related vehicle operations would be increased due to an increase in berthing days. However, the SO_2 impacts from increased on-road vehicular trips are covered in the traffic-related air quality impact analysis discussed later in this study. Aircraft carrier berthing-related emissions from operations in 2014 and beyond are shown in Table I.3-241.

Operational Activities 2016 and after	Pollutant (TPY) SO ₂
Piti	
Aircraft Carrier Berthing	0.1
Transient Aircraft	0.4
Total Operation	0.5

Table I.3-241: Aircraft Carrier Berthing Operational Emissions in Piti Nonattainment Area

Aircraft Operational Training Emissions

Of the five sites considered on Guam for aviation training, two are considered for the SO_2 nonattainment area analyses. The Orote Airfield at Navy Main Base lies mostly within the Piti area, therefore its operations are included. Similarly, Andersen South (including two improved helicopter landing pads) lies near the Tanguisson area, and so its aircraft operations can be conservatively considered to take place within the nonattainment area. The types of aviation training and facility requirements associated with Marine Corps units that would relocate to Guam are listed in Table I.3-242. The minimum requirement for most training would be twice annually; however, the minimum Field carrier landing practice (FCLP) training requirement is 12 times annually. The majority of this training requirement would be met at Guam and surrounding airspace.

The aircraft squadrons are proposed for basing at Andersen AFB North Ramp, in a separately constructed air facility. To reduce the operationally undesirable, simultaneous mix of fixed wing and rotary wing operations at Andersen AFB, proposed Marine Corps aviation training would primarily occur at the following sites rather than North Ramp: Northwest Field at Andersen AFB, Orote Airfield at Navy Main Cantonment, Andersen South, and Naval Munitions Site.

	Training Type	Facility/Airspace Requirements
FAM	Familiarization and	Improved airfield with air rescue available. FAM is a daylight operation.
	Instrument Flight	Instrument flight is day and night.
FORM	Formation Flights	Flying in formation, often in Air Traffic Controlled Assigned Airspace
		(ATCAA) assigned by FAA. Also includes helicopter flying Visual Flight. Rules
		(VFR) in formation. Day and night use.
CAL	Confined Area	Ground space, helicopter landing zones in approx. 10 locations. Day and night.
	Landing	
TERF	Terrain Flights	1 or more routes in ATCAA assigned by FAA over varying terrain for day and
		night flights at 50 to 200 ft (15 to 61 m) above ground level.
EXT	External Loads	Both unimproved and improved LZs for day and night use. Unimproved LZs at
		remote sites. Ground access needed to pre-position external loads that cannot be
		carried across public roads or populated areas.
GTR	Ground Threat	Tactical flight maneuver area or route where ground based threat simulators can
	Reaction	be placed. Air routes similar to TERF. Day and night. Includes training on Tinian
		that is addressed in Volume 3.
FCLP	Field Carrier Landing	Simulated ship deck paved area. Day and night.
	Practice	
TAC	Tactics	Routes over water or land of at least 50 nm (93 km), for chaff, flares, and .50 cal
		machine gun engagement. Day and night. Includes training in CNMI that is
		addressed in the MIRC EIS/OEIS.
AG	Aerial Gunnery	Air-to-Ground gun munitions against ground targets. Day and night. Includes
		training in CNMI that is addressed in the MIRC EIS/OEIS.
HIE	Helicopter Insertion	Fast rope, rappelling, helo-casting, and parachute operations in improved fields,
	and Extraction	drop zones, and water operating areas. Day and night
DM	Defensive Maneuvers	Airspace routes similar to TERF, but at higher altitude. Day and night.

Table I.3-242: Aviation Training Types

Source: NAVFAC Pacific 2009.

In addition, aviation training would occur along proposed flight corridors and SUA within and offshore Guam and integrated with MIRC training operations. Specific aviation training proposals for Guam and surrounding airspace are as follows:

Marine Air Control Group Training (MACG). MACG training involves coordination of air command and control and air defense within the Marine Aircraft Wing.

Training in Military Flight Corridors, Routes, or Tactical Navigation Area. Aviation training requirements requiring military flight corridors or routes include Terrain Flight (TERF), Ground Threat Reaction (GTR), and Defensive Maneuvering (DM). All four aircraft types associated with the proposed action conduct TERF, GTR, and DM training. Table I.3-254 provides an estimate of aviation training that would occur in designated airspace within nonattainment areas on Guam based on the minimum biannual training requirement for TERF, GTR, and DM for aircrews associated with the proposed action. In addition, sorties associated with the transport personnel from Andersen AFB North Ramp to NMS or Andersen South for maneuver training is also estimated in Table I.3-254 (as MAN-LFT).

Location and Training Type	So	rtie-Ops Ty	s by Air ype	craft	Total Annual Sortie- Ops	Duration/Sortie -Op(Minutes)		Duration of Sortie-Ops Aircraft Type (Minute		5 1 5			% Below 3,000ft AGL
	CH -53	MV- 22	АН- 1	UH-1			СН- 53	MV- 22	AH-1	UH-1			
MAN- LFT	720	0	0	0	912	10	9,120	0	0	0	9,120	10%	80%

 Table I.3-243: Estimated Annual Training Sortie Activity in Military Flight Corridors, Routes, or Tactical

 Navigation Area on Guam Based on Minimum Training Requirements

Landing Zone Training. Both improved and unimproved LZs are required to support training in Confined Area Landing (CAL), External Loads (EXT), and Helicopter Insertion Extraction (HIE). CAL training is required for all four aircraft types associated with the proposed action. EXT and HIE training is required for CH-53, UH-1, and MV-22, but not AH-1 aircraft. CAL requires approximately 10 LZs in various locations. All three types of training would include both day and night operations.

Table I.3-244 provides an estimate of aviation training that would occur at NWF, Andersen South, NMS, and Orote Airfield LZs based on the minimum bi-annual training requirement for CAL, EXT, and HIE for aircrews associated with the proposed action. In addition, sorties associated with the lifts for access to Andersen South and NMS for maneuver training are also estimated in Table I.3-244 (as MAN-LFT).

The emissions from aircraft training at existing airfields were estimated using the same methods and emission factors guidance described previously for Andersen AFB Aircraft Basing Operations. The training flight sorties, as shown in Table I.3-255 and flight hours defined around each airfield were based on information provided above.

Locatio	S	ortie	-Ops	s by	Total	Duration/Sortie				Total	%	%	Annual Freq.	
_n and	A	Aircra	aft Ty	/pe	Annua	-Op(Minutes)				Annual	Night	Below	Training/Location(Days	
Training								(Minu	tes)		Sortie-		3,000f)
Туре					Sortie-						Ор		t AGL	
	CH	MV	A	HU H	Ops		CH-	MV	AH	UH-	Minute			
	-53	22	-1	-1			53	-22	-1	1	S			
							Orote	Airfie	ld					
EXT	20	6 0	0	15	95	2	40	120	0	3 0	190	10 %	100%	1-2
							Anders	en So	uth					
CAL	20	6 0	30	15	125	2	40	120	60	3 0	250	10 %	100%	2-3
EXT	13	4 0	0	10	63	2	27	80	0	2 0	127	10 %	100%	2-3
HIE	24	7 2	0	18	114	2	48	144	0	3 6	228	10 %	100%	2-3
MAN- LFT	720	0	0	0	720	2	1,44 0	0	0	0	1,440	10 %	80%	90

Table I.3-244: Estimated Annual Training Sortie Activity at Guam LZ Sites

					% <	%	Sortie-		% <	
	Sortie-	% Sortie-	Sortie-Ops	Min/Sortie-	3,000	Sortie	Ops	Min/Sortie	3,000	
Aircraft	Ops	Ops	/Area	Op	ft	-Ops	/Area	-Op	ft	
	CAL - Confined Area Landing									
			ANDY S	1	•					
CH-53	80	25%	20	90	75%					
MV-22	240		60	120	75%					
AH-1	120		30	90	75%					
UH-1	60		15	60	75%					
	-		EXT	- External Loads						
			Orote					DY S		
CH-53	80	25%	20	90	100	17%	13.3333	90	100	
MV-22	240		60	120	100		40	120	100	
AH-1	120		30	90	100		20	90	100	
UH-1	60	15 60 100					10	60	100	
			FFCLP - Field	l Carrier Landing	Practice					
			Orote							
CH-53	480	33%	160	90	100					
MV-22	1440		480	120	100					
AH-1	720		240	90	100					
UH-1	360		120	60	100					
			HIE - Helicopt	er Insertion and E	xtraction					
		ANDY S								
CH-53	48	50%	24	60	5%					
MV-22	144		72	90	5%					
AH-1	72		36	60	5%					
UH-1	36		18	30	5%					

Table I.3-245: Annual Sortie-Ops by Training Airspace within Nonattainment Areas

The annual aircraft training flight emissions are summarized in Table I.3-246.

Table I.3-246: Aircraft Training Flight Annual Emissions within Nonattainment Areas

Location	Pollutant (TPY)					
Location	SO_2					
Tanguisson						
Flight to and from	0.1					
Andersen South	0.1					
Piti						
Flight to and from						
Orote	0.1					
Sorce: Table I.3-32.						

On Base Vehicle Operational Emissions

On base emissions will occur from commuter vehicles traveling onto each base. The on base vehicle emissions were estimated using the same method described for the training vehicle operational emissions. Only exhaust emissions were analyzed since all roadways will be paved.

Average daily traffic trips were analyzed at each gate for each base. To be conservative, at each base the gate with the maximum amount of daily trips was chosen. Average annual vehicle miles traveled for each

type of vehicle were estimated based on a 365 day per year work schedule. The different vehicle types traveling through the gates were analyzed with the following vehicle class mix as summarized in Attachment A in the Guam Implementation Strategy document:

- Class 1, 2, 3 Motorcycles, cars, pickups, cars/pickups with trailers: 91.4%
- Class 4, 5, 6, 7 Single unit trucks including buses: 7.8%
- Class 8 Multi unit truck with four axles: 0.5%
- Class 9 and larger Multi unit trucks with five or more axles: 0.3%

The estimated on base vehicle emissions are shown in Table I.3-247. On base emissions will occur from commuter vehicles traveling onto each base. The on base vehicle emissions were estimated using the same method described for the training vehicle operational emissions. Only exhaust emissions were analyzed since all roadways will be paved.

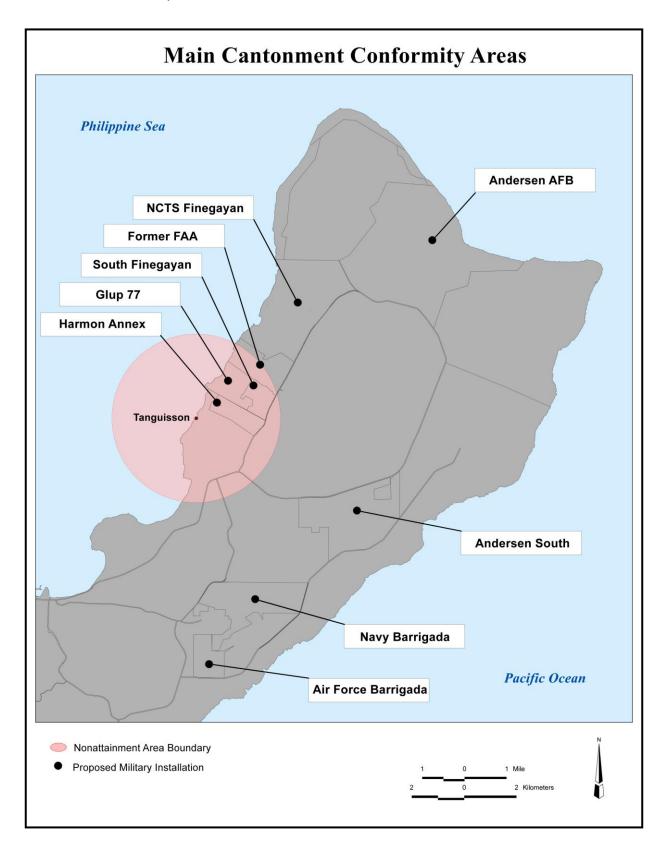
 Table I.3-247: On Base Vehicle Emissions within Nonattainment Areas

Activity Area	Gate	FHWA Vehicle Classification	Annual VMT	Emission Factors (g/mi) SO ₂	Vehicle Emissions (tons/yr) SO ₂
Tanguisson (at Marine Base in Finegayan)	C8	1, 2, 3	36,411,780	0.007	0.273
		4, 5, 6, 7	3,107,351	1.869	6.401
		8	199,189	4.382	0.962
		9 and larger	119,514	4.382	0.577
Piti (at Naval Base & Polaris Point)	Total	1, 2, 3	1,506,249	0.007	0.011
		4, 5, 6, 7	128,542	1.869	0.265
		8	8,240	4.382	0.040
		9 and larger	4,944	4.382	0.024

On base annual commuting vehicle emissions were estimated using the methodology presented above and are summarized in Table I.3-248.

 Table I.3-248: On Base Vehicle Annual Emissions within Nonattainment Areas

On Base Commuting Vehicle Emissions	Pollutant (TPY)	
On Base Communing Vehicle Emissions	SO ₂	
Tanguisson (at Finegayan)	8.2	
Piti (at Naval Base & Polaris Point)	0.3	


3.6.2.2 AIR EMISSIONS FROM CONSTRUCTION ACTIVITIES

Construction-related emissions were estimated for each component of the proposed action. The different construction activities associated with different components of the proposed action are described below:

Marine Corps Relocation to Guam (Volume 2 of EIS) proposes the following five land use functions: Airfield Operations, Waterfront Operations, Main Cantonment, Family Housing, and Training. For the training function, the facilities can be further divided into three categories: firing ranges, non-fire maneuver ranges, and aviation training ranges. Among the four alternatives, these proposed training facilities vary depending on the land use function, location, and quantity of non-DoD land to be acquired. Most project components that would affect potential air quality conditions remain the same for each alternative including:

- The scale of construction
- Airfield operations
- Waterfront operations
- Aviation training operations
- The scale of ground training

The construction effort for all airfield, waterfront, and training projects is assumed to be the same, regardless of location. Therefore, the air emissions for these projects calculated for Alternative 1 are assumed to be representative of the preferred alternative. Although the total building space does not vary by alternative for the main cantonment project component, the total size of earth disturbance under each alternative does vary slightly. As a result, the pollutant emissions associated with the main cantonment construction activity were estimated individually for each alternative. Figure I.3-3 presents those proposed military installation areas considered and estimated for potentially contributing air emissions within the Tanguisson nonattainment area.

Construction activities, including the operation of construction equipment, trucks, and workers' commuting vehicles, may have short-term air quality impacts. In estimating construction-related criteria pollutants and CO_2 emissions, the usage of equipment, the likely duration of each activity, and manpower estimates for the construction were based on the information described in Volume 2 of the EIS for future project-associated construction activities. It is assumed for the emissions estimate purposes that major construction activities would begin in 2011 and last through 2014 with minimal effort during 2010 for all projects except for the construction of main cantonment. The construction of main cantonment is assumed to occur from 2011 to 2016 based on the construction cost profile projected for the proposed action.

Marine Corps Relocation - Training on Tinian (Volume 3 of the EIS) would require the construction of a Range Training Area (RTA) under each alternative considered which consists of four proposed live-fire ranges (platoon battle course, automated combat pistol range, rifle known distance range, and field firing range). Construction activities such as the operation of construction equipment and trucks may have short-term air quality impacts, but are not considered in the CAA General Conformity Applicability Analysis because they would not occur within either of the Guam nonattainment areas.

Aircraft Carrier Berthing (Volume 4 of the EIS) focuses on the proposed construction of a new deepdraft wharf with shoreside infrastructure improvements, creating the capability to support a transient nuclear powered aircraft carrier in Apra Harbor, Guam. Under the proposed action with a transientcapable port, there would be approximately three visits per year for up to approximately 21 days per visit, or combination thereof, for a total of approximately 63 days in port. The longer transient visits would interfere with existing munitions operations and therefore require a new deep-draft wharf that can accommodate the transient aircraft carrier.

Estimates on construction activities were calculated to identify equipment, material, and manpower requirements for the construction associated with the proposed aircraft carrier berthing project at Polaris Point. Assumptions were made to develop a list of major construction items, necessary equipment, and productivity levels necessary for the completed construction of Polaris Point including, but not limited to: shoreside structure prototypes, a bermed fuel tank, an electric substation, stormwater management, the Morale, Welfare and Recreation (MWR) area, a sewer pump station, a Bilge Oily Waste Treatment System (BOWTS) pump station, a BOWTS pump station prototype, and the wharf and related dredging activities.

Army Air and Missile Defense Task Force (Volume 5 of the EIS) proposes the following three missile components: The Terminal High Altitude Area Defense (THAAD) system is a long-range, land based theater defense weapon which acts as the upper tier of defense against ballistic missiles; Patriot Missiles target short-range ballistic missiles which threaten the THAAD or other civilian or military assets on Guam; and Surface-Launched Advanced Medium-Range Air-to-Air Missile (SLAMRAAM) engages targets to beyond line-of-sight and defends against the air threat from unmanned aerial vehicles and cruise missiles. Construction activities such as the operation of construction equipment and trucks would have short-term air quality impacts, but are not considered in the CAA General Conformity Applicability Analysis because they would not occur within either of the Guam nonattainment areas.

Related Actions – Utilities and Off Base Roadway Projects on Guam (Volume 6 of the EIS) would increase the demand on power, water, wastewater and solid waste utilities as part of the proposed military buildup on Guam associated with the relocation of the Marine Corps, the Navy aircraft carrier berthing, and Army Air and Missile Defense Task Force (AMDTF). The Navy conducted utility studies for power, water, wastewater, and solid waste that assumed that the construction workforce would reside off base and would be served by Guam public utilities at their place of residence. Construction activities involving the operation of construction equipment, trucks, and workers' commuting vehicles may have short-term air quality impacts. Given the lack of a specific construction schedule for each applicable project during

the early planning stage, the overall length of utility construction for each project is assumed to be four years from 2011 through 2014.

Because no specific information regarding sizes or types of construction is provided in the case of certain components, a series of construction prototypes was developed to represent these components. Estimates were developed for those components for which adequate specific information is available; however when the construction was considered similar to one of the prototypes, the prototype and scaling method were used.

Detail construction activity forecast methodologies and assumptions used for each applicable project component are described in Chapter 3.4.

The 2003 RSMeans Facilities Construction Cost Data (RS Means 2003a) manual was used to assign construction materials, equipment use and duration and manpower requirements to each prototype. The manual provides planning level estimates for construction materials, equipment use and duration information, and manpower requirements for construction and development. If construction material information, equipment use and duration, and manpower requirements were available then that information was used.

The weekly duration for each activity was assumed to be eight hours per day, five days per week. The emissions estimate assumes for only one piece of equipment because the same amount of construction activities can be accomplished by using one piece of equipment for one week, or can be shortened to half a week by using two pieces simultaneously. The key input in the emissions calculations is the total number of equipment hours required to complete the work. Therefore, the input of one piece of equipment used in the calculations is only for the purposes of completing them and does not reflect the actual number of pieces equipment that will be used on site during construction.

All construction equipment was assumed to be diesel powered unless otherwise noted. Pieces of equipment to be used for the construction and demolition activities include, but are not limited to:

- Backhoe loaders
- Chain saws
- Chipping machines
- Compressors
- Concrete pumps
- Cranes
- Drill rig and augurs
- Dozers
- Dump trucks
- Excavators
- Front end loaders
- Gas engine vibrators
- Gas welding machines
- Generators

- Gradalls
- Graders
- Hammers
- Pavement removers
- Pavement breakers
- Pavers
- Pumps
- Rammers/tampers
- Rollers
- Trenchers
- Tug boats

Equipment Emission Estimate

Estimates of the operational emissions from construction equipment were developed based on the estimated hours of equipment use and the emission factors for each type of equipment. Emission factors for SO_2 were based on USEPA's NONROAD emission factor model incorporating the use of high sulfur content (i.e., 0.5 %). The average equipment horsepower (hp) values and equipment power load factors were obtained in association with the NONROAD emission factors.

A maximum sulfur content of 0.5% was used based on USEPA's Heavy-Duty Standards/Diesel Fuel Regulatory Impact Analysis (RIA) (USEPA 2000). Based on the RIA, data observed in 1992 shows that No. 2 diesel fuel imports actually had sulfur content ranging from 0.39% to 0.5%. Therefore, using the actual highest sulfur content observed in 1992 (0.5%) for vehicles in this analysis is considered appropriate and conservative and is also coincident with the highest sulfur content fuel input available in the NONROAD model. It should also be noted that with the introduction of the Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements (40 CFR Parts 69, 80, and 86) in 2006, refiners were required to start producing diesel fuel for use in highway vehicles with a sulfur content of no more than 15 ppm. Therefore, the sulfur content of fuels since 1992 has decreased in general although Guam has been granted an exemption from using low sulfur fuel (see Volume 6, Section 7.2). DoD is currently examining the potential use of ultra low sulfur fuel for construction activities and highway diesel vehicles on Guam, so that the actual sulfur content used may be far lower than the results provided here.

Because the operational activity data presented in RSMeans' cost data books are generated based on the overall length of equipment presence duration on site, an actual running time factor (i.e., actual usage factor) was employed to determine actual equipment usage hours for the purpose of estimating equipment emissions. The usage factor for each equipment type was obtained fromFHWA *Roadway Construction Noise Model User's Guide* (FHWA January 2006). Emission factors related to construction-associated delivery trucks were obtained using the USEPA Mobile6 emission factor model (USEPA October 2002) which provides an emission factor database for various truck classifications.

Emission factors (in grams of pollutant per hour per horsepower) were multiplied by the estimated running time and equipment average horsepower to calculate the total grams of pollutant from each piece of equipment. Finally, the total grams of pollutant were converted to tons of pollutant.

The USEPA recommends the following formula to calculate hourly emissions from nonroad engine sources including cranes, backhoes, etc.:

$$M_i = N x HP x LF x EF_i$$

Where:

N /	mass of emissions of <i>i</i> th pollutants during inventory period;
$M_i =$	mass of emissions of η in pollutants during inventory period.
1111	mass of emissions of <i>i</i> m pondums during myentory period,

- N = source population (units);
- HP = average rated horsepower;
- LF = typical load factor; and
- EF_i = average emissions of *i*th pollutant per unit of use (e.g., grams per horsepower-hour).

Typical load factor values were obtained from *Nonroad Engine Emissions Model Worksheet* (USEPA December 2008). Equipment running times were estimated based on an 8 hour per day schedule. A sample calculation for SO_2 emissions from a 90-ton crane engine during the Waterfront construction at Apra Harbor follows:

Operational Hours = 4.5 hours (1 crane x 0.7 weeks x 5 days x 8 hr/day x 16% time usage factor) Operational Emissions = 4.5 hours x 231 hp x 43% x 1.63 grams/hp-hr = 0.001 tons (see Table I.3-251)

Vehicle Emission Estimate

Truck and commuting vehicle operations also would result in indirect emissions. Emission factors for trucks (including dump, delivery, tractor, and tractor trucks that were modeled as heavy-duty diesel vehicles) for years 2011-2014 using the USEPA Mobile 6.2 Emission Factor model (USEPA October 2002). National default input parameters for the summer and winter seasons were used, as these were considered the most similar parameters available. The modeled emission factors were then multiplied by the vehicle operation hours to determine total emissions. Total trucks were estimated based on a round trip assumption of 20 miles. The estimate of construction emissions with potential to occur within the two nonattainment areas from the proposed action described in Volumes 2, 4, and 6 are summarized below in Table I.3-249 through Table I.3-258. For Alternative 2 of the Main Cantonment, all of the family housing will be built in former FAA and South Finnegayan areas, which lie within the Tanguisson nonattainment area. Family housing will cover 645 acres, which is 29.3% of the 2,200 total acres needed for the construction emissions are within the Tanguisson area (Table I.3-249).

For portable basic water, 10% of the distribution lines lie within both the Tanguisson and Piti nonattainment areas. Therefore, it is conservatively assumed that 10% of the total construction emissions associated with portable water construction activities are within the two nonattainment areas (Table I.3-256).

Volume 2: Marine Corps Relocation - Guam

Table I.3-249: Percentage of Main Cantoment Area in Tanguisson Nonattainment Area

	Percentage of Area in Tanguisson Conformity Area
Alternative 2	29.3%

Table I.3-250: Construction Emissions – Main Cantonment / Tanguisson Area

Alternative	Total Annual Emissions (TPY)	Conformity SO ₂
Alternative 2	2011	1.88
	2012	3.05
	2013	3.90
	2014	3.90
	2015	2.90
	2016	1.35

Note:

Percentages are applied to Table I.3-138 to derive the results displayed above.

Table I.3-251: Construction Equipment Emissions – Waterfront / Piti

Equipment Type/Activity	Number of Units	Weeks	Usage Factor ¹ %	Hours	Horse power ² (hp)	Load Factor ² (%)	Emission Factor ² (grams/hp-hour) SO ₂	Emission Rate (tons/year) SO ₂
				Const	ruction	(11)		
Asphalt paver, 130 HP	1	0.6	50	11.0	130	59	1.68	0.002
Compressor, 250 cfm	1	1.7	40	27.2	83	43	1.76	0.002
Concrete pump, small	1	0.6	50	11.0	53	43	1.74	0.000
Crane, 90-ton	1	0.7	16	4.5	231	43	1.63	0.001
Crane, SP, 12 ton	1	0.7	16	4.2	231	43	1.63	0.001
Dozer, 300 HP	1	0.6	40	8.8	300	59	1.65	0.003
Front end loader, 1.5 cy, crl	1	1.1	40	17.6	93	21	2.03	0.001
Gas engine vibrator	1	1.1	20	8.8	6	55	0.22	0.000
Gas welding machine	1	0.5	40	8.0	17	68	0.21	0.000
Grader, 30,000 lb	1	1.3	40	20.8	204	59	1.64	0.005
Pneumatic wheel roller	1	0.6	50	11.0	92	59	1.71	0.001
Roller, vibratory	1	0.6	20	4.4	92	59	1.71	0.000
Rollers, steel wheel	1	1.1	20	8.8	92	59	1.71	0.001
Total Annual Construction Emissions Between 2011 – 2014					0.016			

Source: 1. FHWA Roadway Construction Noise Model User's Guide, Jan. 2006.

2. Nonroad model worksheet, USEPA, Dec. 31, 2008.

	Commuter Van (L	DGT)	Emission Factor ¹ (lb/hr)	Emission Rate (tons/year)	
Stage	Total VMT	Speed in miles/hour	Hours	SO ₂	SO ₂
Construction	1889	25	19	0.001	0.000
	Trucks (HDD)	√)	Emission Factor ¹ (lb/hr)	Emission Rate (tons/year)	
Construction	10832	25	108	0.243	0.013
Тс	0.013				

Table I.3-252: Van & Truck Emissions - Waterfront / Piti

Source: 1. Mobile 6.2 Emission Factors.

Table I.3-253: Total Construction Emissions - Waterfront / Piti

	Pollutant SO ₂
Total Annual Emissions (TPY)	0.03

Volume 4: Marine Corps Relocation – Aircraft Carrier Berthing

Table I.3-254: Marine Corps Total Construction Emissions – Aircraft Carrier Berthing/ Alternative 1 / Apra Harbor

	Pollutant SO ₂
Total Annual Emissions Excluding Dredging (TPY)	0.35
Total Annual Emissions for Dredging (TPY)	0.14
Note:	

Refer to Table I.3-167.

Volume 6: Marine Corps Relocation – Related Actions/ Utilities Projects

Table I.3-255: Utility Total Construction Emissions - Power Basic Alternative 1 / Tanguisson

	Pollutant
	SO ₂
Total Annual Emissions (TPY)	0.14

Note: Refer to Table I.3-185.

Table I.3-256: Percentage Within Nonattainment Areas – Potable Basic Water Alternative 1 / Piti & Tanguisson

Percentage
Piti & Tanguisson
10%

Table I.3-257: Utility Total Construction Emissions – Potable Basic Water Alternative 1 / Piti & Tanguisson

	Pollutant
Construction Activity	SO ₂
Total Annual Emissions (TPY)	0.20

Note:

Percentages are applied to Table I.3-188 to get the results displayed above.

Table I.3-258: Utility Total Construction Emissions - Wastewater Basic Alternative 1a and 1b / Tanguisson

	Pollutant
Construction Activity	SO ₂
Total Annual Emissions (TPY)	0.00

Note: Refer to Table L

Refer to Table I.3-194.

3.6.3 Compliance Analysis

The net increase in SO₂ emissions with potential to emit from the proposed action within the two SO₂ nonattainment areas was predicted in the same way as described in previous sections. The estimates of SO₂ emissions were performed for those operational and construction activities with potential to occur within those two nonattainment areas. Tables I.3-271 through I.3-274 summarized the annual emissions from construction and operations with potential to occur within the nonattainment areas during the implementation of the proposed action. As shown in Tables I.3-272 and I.3-274, the total combined construction and operation emissions are well below the applicable *de minimis* level of 100 TPY SO₂ emissions in each nonattainment area on an annual basis. Therefore, if the total expected direct and indirect emissions of SO₂ are below 100 TPY, no formal conformity determination is required and no significant air quality impact would result from the implementation of the proposed action.

Table I.3-259: Preferred Alternatives	SO2 Emissions – Tanguisson (TPY)
---------------------------------------	----------------------------------

Construction Activities	Year	SO ₂
	2011	1.88
	2012	3.05
Main Cantonment, Alternative 2	2013	3.90
Main Cantonnent, Alternative 2	2014	3.90
	2015	2.90
	2016	1.35
Power Basic Alternative 1	2011-2014	0.14
Wastewater Basic Alternative 1a and 1b	2011-2014	0.00
Potable Basic Water Alternative 1	2011-2014	0.20
Operational Activitie	5	
Aircraft Training	2015 and on	0.1

Construction Activities	Year	SO ₂
On-base Vehicles	2015 and on	8.2

Table I.3-260: Preferred Alternatives Total Annual SO2 Emissions – Tanguisson (TPY)

Year	SO_2
2011	2.22
2012	3.39
2013	4.24
2014	4.24
2015	11.20
2016	9.65
2017 and on	8.3
de minimis level	100

Table I.3-261: Preferred Alternatives SO2 Emissions – Piti (TPY)

Construction Activities	Years	SO_2
Waterfront Training	2011-2014	0.03
Aircraft Carrier Berthing Alternative 1	2011-2014	0.35
Aircraft Carrier Berthing Alternative 1 (Dredging)	2015 -2016	0.14
Potable Basic Water Alternative 1	2011-2014	0.20
Operational Activities		
Aircraft Carrier Berthing	2015 and on	0.50
Aircraft Training at Orote	2015 and on	0.06
On-base Vehicles	2015 and on	0.34

Table I.3-262: Preferred Alternatives Total Annual SO2 Emissions - Piti (TPY)

Year	SO ₂
2011	0.58
2012	0.58
2013	0.58
2014	0.58
2015	1.04
2016	1.04
2017 and on	0.90
de minimis level	100

3.7 GREENHOUSE GASES AND GLOBAL WARMING

Greenhouse gases (GHGs) are compounds that contribute to the greenhouse effect. The greenhouse effect is a natural phenomenon where these gases trap heat within the surface-troposphere (lowest portion of the earth's atmosphere) system, causing heating (radiative forcing) at the surface of the earth. Scientific evidence indicates a trend of increasing global temperature over the past century due to an increase in GHG emissions from human activities (USEPA 2009a). The climate change associated with this global warming is predicted to produce negative environmental, economic, and social consequences across the globe. The average global temperature since 1900 has risen by 1.5°F and is predicted to increase up to another 11.5°F by 2100 (Karl et al. 2009).

In 2007, the U.S. generated about 7,150 Tg CO₂ Eq (USEPA 2009c). This total includes emissions from Guam and Tinian, as after 2002 the United Nations no longer reports energy statistics for Guam separately (Marland et al. 2008) and emissions from Tinian were never reported separately. As the U.S. inventory does not provide a baseline for Guam, using the U.S. baseline condition for a comparison is considered appropriate for current conditions. The 2007 inventory data (USEPA 2009c) shows that CO₂, CH₄, and N₂O contributed from fossil fuel combustion process from mobile and stationary sources include approximately:

- 5,736 teragrams (Tg) (or million metric tons) of CO₂
- 9 Tg CH₄
- 45 Tg N₂O

This section begins by providing the background and regulatory framework for GHGs and then provides a quantitative evaluation of the increase in GHG emissions based on the preferred alternatives and cumulative GHG air quality impacts.

3.7.1 Background and Regulatory Framework

GHGs trap heat in the atmosphere by absorbing infrared radiation. These emissions occur from both natural processes and human activities. The primary long-lived GHGs directly emitted by human activities are carbon dioxide (CO₂), methane (CH₄), nitrous oxide (N₂O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulfur hexafluoride (SF₆). Although CO₂, CH₄, and N₂O occur naturally in the atmosphere, their concentrations have increased by 38, 149, 23 %, respectively, from the preindustrial era (1750) to 2007/2008 (USEPA 2009a).

Federal agencies address emissions of GHGs by reporting and meeting reductions mandated in laws, EOs and policies. The most recent of these are EOs 13514 Federal Leadership in Environmental, Energy, and Economic Performance, of October 5, 2009 and EO 13423 Strengthening Federal Environmental, Energy, and Transportation Management of January 26, 2007.

EO 13514 shifts the way the government operates by: 1) establishing GHGs as the integrating metric for tracking progress in federal sustainability; 2) requiring a deliberative planning process; and 3) linking to budget allocations and OMB scorecards to ensure goal achievement.

The targets for reducing GHG emissions discussed in EO 13514 for Scope 1 - direct greenhouse gas emissions from sources that are owned or controlled by a federal agency - and Scope 2 - direct greenhouse gas emissions resulting from the generation of electricity, heat, or steam purchased by a federal agency - have been set for DoD at a 34% reduction of GHG from the 2008 baseline by 2020. Scope 3 targets - greenhouse gas emissions from sources not owned or directly controlled by a Federal agency but related to agency activities such as vendor supply chains, delivery services, and employee

travel and commuting – have been proposed to set for DOD at a 13.5% reduction. The EO 13514 Strategic Sustainability Performance Plan (SSPP) was submitted to CEQ on June 2, 2010 and contains a guide for meeting these goals.

GHGs for the proposed action will be reduced by incorporating the Leadership in Energy and Environmental Design (LEED) program into the proposed action. LEED is an internationally recognized green building certification system, providing third-party verification that a building or community was designed and built using strategies aimed at improving performance across all the metrics that matter most: energy savings, water efficiency, CO_2 emissions reduction, improved indoor environmental quality, and stewardship of resources and sensitivity to their impacts. There are four levels of certification in LEEDS and building constructed for actions associated with this EIS will aim to attain a rating of LEEDS silver. Low impact land development (LID) will also be used during design in order to save water and energy to meet the targets established under EO 13514.

EO 13423 established a policy that Federal agencies conduct their environmental, transportation, and energy-related activities in support of their respective missions in an environmentally economic way. It included a goal of improving energy efficiency and reducing GHG emissions of the agency, through reduction of energy intensity by 3 % annually through the end of fiscal year 2015, or 30 % by the end of fiscal year 2015, relative to the baseline of the agency's energy use in fiscal year 2003.

CEQ Draft NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas Emissions (CEQ, 2010) states that "if a proposed action would be reasonably anticipated to cause direct emissions of 25,000 metric tons or more of CO2-equivalent GHG emissions on an annual basis, agencies should consider this an indicator that a quantitative and qualitative assessment may be meaningful to decision makers and the public." These recommendations are consistent with the Mandatory Reporting of Greenhouse Gases rule (40 CFR Parts 86, 87, 89 et al.) effective December 29, 2009 applies to fossil fuel suppliers and industrial gas suppliers, direct greenhouse gas emitters and manufacturers of heavy-duty and off-road vehicles and engines. Under the rule, suppliers of fossil fuels or industrial greenhouse gases, manufacturers of vehicles and engines, and facilities that emit 25,000 metric TPY of GHG emissions are required to submit annual reports to USEPA. The Mandatory Reporting rule for the proposed action applies to DoD stationary sources. GHG emissions for GPA Power and Layon Landfill sources would require separate annual reports to USEPA. Construction emissions are relatively short in nature, and as such, are not listed in these rules, which were designed primarily for tracking and regulating stationary sources. The rule provides accurate and timely data to inform future climate change policies and programs, but does not require control of GHGs. Monitoring begins January 1, 2010 and the first electronic reports are due March 31, 2011.

On May 13, 2010 the USEPA finalized the l Prevention of Significant Deterioration (PSD) and Title V Greenhouse Gas Tailoring Rule to address GHG under stationary sources. This final rule "tailors" the requirements of these CAA permitting programs to limit which facilities will be required to obtain PSD and Title V permits. The USEPA is phasing in the CAA permitting requirements for GHGs in two initial steps. The first step will occur from January 2, 2011 –June 30, 2011 and covers only sources currently subject to the PSD permitting program (i.e., those that are newly-constructed or modified in a way that significantly increases emissions of a pollutant other than GHGs) that would be subject to permitting requirements for their GHG emissions under PSD. For these projects, only GHG increases of 75,000 TPY or more of total GHG, on a CO₂eq basis, would need to determine the Best Available Control Technology (BACT) for their GHG emissions. Similarly for the operating permit program, only sources currently subject to the program (i.e., newly constructed or existing major sources for a pollutant other than GHGs) would be subject to Title V requirements for GHG. During the first step, no sources would be subject to CAA permitting requirements due solely to

GHG emissions. Step 2 will occur from July 1, 2011 to June 30, 2013 and build on Step 1. In this phase, PSD permitting requirements will cover for the first time new construction projects that emit GHG emissions of at least 100,000 TPY, even if they do not exceed the permitting thresholds for any other pollutant. Modifications at existing facilities that increase GHG emissions by at least 75,000 TPY will be subject to permitting requirements, even if they do not significantly increase emissions of any other pollutant. In Step 2, operating permit requirements will, for the first time, apply to sources based on their GHG emissions even if they would not apply based on emissions of any other pollutant. Facilities that emit at least 100,000 TPY CO₂eq will be subject to Title V permitting requirements. The emissions with potential to result from the proposed action at affected existing stationary sources discussed in this EIS are below the permitting thresholds covered by the Prevention of Significant Deterioration (PSD) and Title V Greenhouse Gas Tailoring Rule, as shown in Table 7.2-5 of Volume 6.

This analysis provided here follows the recent Draft NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas issued by the Council of Environmental Quality (CEQ) (CEQ 2010).

3.7.2 Proposed Action and Cumulative GHG Impacts

The potential effects of proposed GHG emissions are by nature global and cumulative impacts, as individual sources of GHG emissions are not large enough to have an appreciable effect on climate change. In keeping with CEQ guidance, the focus of the cumulative air quality GHG analysis is on GHG emissions that are affected by the proposed action and its significance on climate change as compared to the no-action alternative. The impact of proposed GHG emissions as they pertain to climate change is discussed in the context of the combined impacts as compared to the total amount of GHG emissions that the U.S. produces.

To estimate total GHG emissions, each GHG is assigned a global warming potential (GWP). The GWP is the ability of a gas or aerosol to trap heat in the atmosphere. The GWP rating system is standardized to CO_2 , which has a value of one. For example, CH_4 has a GWP of 21, which means that it has a global warming effect 21 times greater than CO_2 on an equal-mass basis (Intergovernmental Panel on Climate Change [IPCC] 2007). To simplify GHG analyses, total GHG emissions from a source are often expressed as CO_2 equivalents (CO2 Eq). The CO_2 Eq is calculated by multiplying the emissions of each GHG by its GWP and adding the results together to produce a single, combined emission rate representing all GHGs. While CH_4 and N_2O have much higher GWPs than CO_2 , CO_2 is emitted in much higher quantities, so that it is the overwhelming contributor to CO_2 Eq from both natural processes and human activities. GWP-weighted emissions are presented in terms of equivalent emissions of CO_2 , using units of teragrams (1 million metric tons or 1 billion kilograms) of carbon dioxide equivalents (Tg CO_2 Eq).

The total GHG emissions in terms of CO_2 Eq for the preferred alternatives were predicted for the following three source categories:

- Mobile fossil fuel combustion sources including construction equipment
- Stationary fossil fuel combustion sources
- Solid waste landfill

Among the primary long-lived GHGs directly emitted by human activities, only CH_4 and N_2O have potential to be produced from fossil fuel combustion sources (USEPA 2009c). CH_4 could also be produced during landfill operations in addition to production from combustion sources.

Although the USEPA final rule on Mandatory Reporting of Greenhouse Gases (October 30, 2009) provides various methodologies to estimate CO_2 equivalencies based on fuel test and consumption data, this rule is essentially designed for specific stationary facility reporting purposes and cannot be directly implemented in this PFEIS to addressing various source categories. Most of the USEPA tools that are widely used for NEPA study purposes (e.g., AP-42, NONROAD [USEPA 2008] and Mobile6 emissions factor models [USEPA 2003]) do not provide emission factors for CO_2 Eq other than for CO_2 . Therefore, given the lack of regulatory tools to provide reasonable estimates of CO_2 Eq, this report utilizes the inventory ratios among CO_2 , CH_4 and N_2O summarized in the most recent USEPA inventory report (USEPA 2009c) and provided in the introduction to this section as the basis for approximating and prorating CH_4 and N_2O emission levels.

The ratios among CO₂, CH₄ and N₂O based on above inventory levels were used to predict CH₄ and N₂O equivalencies from mobile and stationary combustion sources as follows:

 $CH_4 = (tons per year [TPY] of CO_2) * (9 / 5,736) = 0.16\% TPY of CO_2.$

$$N_2O = (TPY \text{ of } CO_2) * (45/5,736) = 0.78\% TPY \text{ of } CO_2.$$

Based on these ratios, the GHG contribution from CH_4 and N_2O is less than 1% of the total CO_2 equivalency for fossil fuel combustion sources. CH_4 emissions from the landfill were predicted directly using the Landfill Gas Emissions model (LandGEM) (USEPA 2005).

Table I.3-263 provides the CO_2 Eq from combustions sources and the landfill under the preferred alternatives (see Chapter 3.2.2). The predicted construction CO_2 Eq emissions range from about 18,078 TPY in 2011 to 55,792 to 60,610 TPY from 2017 on. The upper end of the range would primarily be due to vehicular emissions.

	Combustion	Landfi	Total	
Year	CO_2	CO_2	CH_4	$CO_2 Eq^*$
2011	16490.5	164.4	59.9	18077.7
2012	20317.8	571.8	208.4	25469.2
2013	31464.8	1194.8	435.5	42119.7
2014	18516.7	1903.0	13.9	20896.8
2015	58407.4	2900.0	21.1	62334.6
2016	53624.1	3664.9	26.7	58385.9
2017 and on	52032.2	4055.3 - 8235.0	29.6 - 60.0	57229.4 - 62047.5
* CO ₂ I	Eq= Combustion C	$O_2(1+0.01) + Lands$	$fill CO_2 + CH_4$	(GWP of 21)

 Table I.3-263: Preferred Alternatives CO2 Emissions Equivalents (TPY)

The different alternatives within Final EIS are unlikely to vary substantially in the quantity of CO_2 emissions from stationary and mobile combustion sources and landfill locations. For example, the same amount of construction activities would occur regardless of the different locations (alternatives), resulting in essentially the same amount of GHG emissions. Therefore, the GHG emissions for the different alternatives would be similar to those of the preferred alternatives.

In 2007, the U.S. generated about 7,150 Tg (million metric tons) CO_2 Eq (USEPA 2009c). This total includes emissions from Guam and Tinian, as after 2002 the United Nations no longer reports energy statistics for Guam separately (Marland et al. 2008) and emissions from Tinian were never reported separately. As the U.S. inventory does not provide a baseline for Guam, using the U.S. baseline condition

for a comparison is considered appropriate for current conditions. The total maximum quantity of GHG emissions from the preferred alternatives comprises less than 0.00085% of the annual U.S. emissions.

The change in climate conditions caused by GHG resulting from the burning of fossil fuels from both stationary and mobile sources and landfilling is a global effect, and requires that the emissions be assessed on a global scale. Therefore, the disclosure of localized incremental has limited or no weight in addressing climate change. The proposed action mainly involves the relocation of the military operations that are already occurring in the West Pacific region; therefore, fossil fuel burning activities in the West Pacific region are unlikely to change significantly. Consequently, overall global GHG emissions are likely to remain near the current level on a regional or global scale under the proposed condition, resulting in an insignificant cumulative impact to global climate change. No specific GHG emission mitigation measures are warranted.

4. **REFERENCES**

- AESO. February, 1999. Aircraft Emission Estimates: *H-60 Landing and Takeoff Cycle and, Maintenance Testing Using JP-5* (Draft AESO Memo Report No. 9929).
- AESO. April 30, 1999. Aircraft Emission Estimates: *AH-1W Landing and Takeoff Cycle and, Maintenance Testing Using JP-5* (Draft AESO Memo Report No. 9824, Revision A).
- AESO. May 3, 1999. Aircraft Emission Estimates: *HH/UH-1N Landing and Takeoff Cycle and, Maintenance Testing Using JP-5* (Draft AESO Memo Report No. 9904, Revision A).
- AESO. June, 1999. Aircraft Emission Estimates: *H-60 Mission Operations Using JP-5* (Draft AESO Memo Report No. 9953).
- AESO. July, 1999. Aircraft Emission Estimates: AH-1 Mission Operations Using JP-5 (Draft AESO Memo Report No. 9961).
- AESO. July, 1999. Aircraft Emission Estimates: UH-1 and HH-1 Mission Operations Using JP-5 (Draft AESO Memo Report No. 9962).
- AESO. February, 2000. Aircraft Emission Estimates: *H-53 Landing and Takeoff Cycle and In- Frame, Maintenance Testing Using JP-5* (Draft AESO Memo Report No. 9822, Revision C).
- AESO. April, 2000. Aircraft Emission Estimates: *E-2 Landing and Takeoff Cycle and, Maintenance Testing Using JP-5* (Draft AESO Memo Report No. 9920, Revision B).
- AESO. April, 2000. Aircraft Emission Estimates: *H-53 Mission Operations Using JP-5* (Draft AESO Memo Report No. 9960, Revision B).
- AESO. April, 2000. Aircraft Emission Estimates: UH-1 and HH-1 Mission Operations Using JP-5 (Draft AESO Memo Report No. 9943, Revision B).
- AESO. January, 2001. Aircraft Emission Estimates: V-22 Mission Operations Using JP-5 (Draft AESO Memo Report No. 9965, Revision B).
- AESO. November, 2002. Aircraft Emission Estimates: *F/A-18 Landing and Takeoff Cycle and In- Frame, Maintenance Testing Using JP-5* (Draft AESO Memo Report No. 9815, Revision E).
- AESO. November, 2002. Aircraft Emission Estimates: *F/A-18 Mission Operations Using JP-5* (Draft AESO Memo Report No. 9933, Revision B).
- Air Force Center for Engineering and the Environment. December, 2005. U.S Air Force Air Conformity Applicability Model (Version 4.3).
- Atkinson, B. W., 1981. *Mesoscale Atmospheric Circulations*, Academic Press Inc, ISBN-13 978-0120659609, New York City, NY USA.
- Bindoff, N.L. et al. 2007. Observations: Oceanic Climate Change and Sea Level. In: IPCC (2007). As cited in USEPA (2009b).
- California Air Resources Board (CARB). "Attachment C: Asphalt Paving and Roofing." [web document]. http://www.arb.ca.gov/ei/areasrc/ccosmeth/att_c_asphalt.doc.

- Carbon Dioxide Analysis Information Center. 2010. CO₂ Emissions from Guam. http://cdiac.esd.ornl.gov/trends/emis/gum.html. Accessed 12 March 2010.
- Claggett, Michael, Ph.D and Miller, Terry L., Ph.D., P.E. "FHWA: A Methodology for Evaluating Mobile Source Air Toxic Emissions among Transportation Project Alternative." [web page] no date. http://www.fhwa.dot.gov/environment/airtoxic/msatcompare/msatemissions.htm.
- Code of Federal Regulations (CFR). 2006. $PM_{2.5}$ and PM_{10} Hot-Spot Analyses in Project-Level Transportation Conformity Determinations for the New $PM_{2.5}$ and Existing PM_{10} National Ambient Air Quality Standards 40 CFR Part 93.
- Code of Federal Regulations (CFR). 2008. Control of Hazardous Air Pollutants From Mobile Sources: Early Credit Technology Requirement Revision Environmental Protection Agency. 40 CFR Part 80.
- Council on Environmental Quality (CEQ). 2010. Memorandum for Heads of Federal Departments and Agencies from: Nancy H. Sutley, Chair, Council on Environmental Quality Subject: Draft NEPA Guidance on Consideration of the Effects of Climate Change and Greenhouse Gas. February 18, 2010.
- Czech, J.J. and P.H. Kester. August, 2008. Final Aircraft Noise Study for Andersen Air Force Base, Guam. Prepared by Wyle Laboratories, Inc., El Segundo, CA under a subcontract to Earth Tech Inc., New York, NY for NAVFAC Pacific, Honolulu, HI.
- Department of Defense (DoD) and Department of Energy (DOE). 2010. Quadrennial Defense Review, Climate Change Support. <u>http://www.ornl.gov/sci/knowledgediscovery/QDR/</u> and www.ornl.gov/sci/knowledgediscovery/QDR/guam/GuamAssessment.pdf. Accessed 15 March 2010.
- Earth Tech Inc., 2005. *Meteorological evaluation of the New Plymouth region using MM5 and CALMET for the period January to June 2005*. Atmospheric Studies Group, Earth Tech, Inc. 196 Baker Ave., Concord, MA. Prepared for The Foundation for Research and Technology, New Zealand.
- Eugenio, H.V. 2009. Climate change is already here, Top EPA official: Islands may be model for energy conservation. July 6, 2009. <u>http://sb350.pbworks.com/Sea-Level-Rise</u>. Accessed 12 March 2010.
- Federal Highway Administration (FHWA). January 2006. Roadway Construction Noise Model User's Guide.
- FHWA. July, 2005. Guideline for Using Prime and Tack Coats.
- FHWA. February 3, 2006. Interim Guidance on Air Toxic Analysis in NEPA Document.
- Fischlin, A. et al. 2007. Ecosystems, their Properties, Goods, and Services. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden and C.E. Hanson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. As cited in USEPA (2009b).
- Guam Environmental Protection Agency (GEPA). December 26, 1995. Rules and Regulations for Solid Waste Disposal, Title 22, Division 4, Chapter 23, Permit Number 95-1009.
- GEPA. July, 2004. Air Pollution Control Standards and Regulations (APCSR) Section 1104.6 (c) (12) (ix).

- GEPA. No Date. Title V Permit Nos. FO-15A (NCTS Finegayan), FO-006 (Marbo), FO-009 (Yigo), FO-003 (Dededo), FO-008 (Tenjo), FO-005 (Manengon), FO-004 (Macheche), and FO-019 (Agana Shopping Center), FO-015B (Naval Hospital), FO-002 (Cabras), FO-015F (Orote Point).
- Guam Homeland Security. 2010. Office of Civil Defense. The Saffir-Simpson Tropical Cyclone Scale. <u>http://www.guamhs.org/main/?pg=sstcs&sec=a</u>. Accessed 15 March 2010.
- HDR/Hawaii Pacific Engineers. June 27, 2008. Revised Final Report on Guam Solid Waste Utility Study for Proposed Marine Corps Relocation.
- ICF International. 2007. Analyzing, Documenting, and Communicating the Impacts of Mobile Source Air Toxic Emissions in the NEPA Process. Requested by American Association of State Highway and Transportation Officials (AASHTO) Standing Committee on the Environment. March 2007.
- IPCC. 1995. IPCC Second Assessment Report. Climate Change 1995. OMM, WNO, PNUE, and UNEP.
- IPCC. 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.), Cambridge University Press, Cambridge, United Kingdom. As cited in USEPA (2009c).
- Karl, T.R., J.M. Melillo, and T.C. Peterson (eds). 2009. *Global Climate Change Impacts in the United States: a state of knowledge report from the U.S. Global Change Research Program.* New York, USA. Cambridge University Press.
- Liu, Z. and L. Fischer, 2000. *Guam vegetation Mapping Using very High Spatial Resolution Imagery: Methodology*, USDA Forest Service, Pacific Southwest Region, Forest health Protection, McCellan, CA.
- NAVFAC, February, 2008., *Guam Power Generation Study Report for Proposed Marine Corps Relocation*, Department of the Navy, Naval Facilities Engineering Command, Pacific., Pearl Harbor, HI USA.

Parsons Brinkerhoff. 2010. Guam Haul Road, Mobile Source Air Toxics Analysis, March 2010.

Pielke, R.A., 1984. Mesoscale Meteorological Modeling, Academic Press, New York City, NY USA.

R.S. Means Co., Inc. (RS Means) 2003a. Construction Cost Data.

RSMeans. 2003. Facilities Construction Cost Data.

RSMeans. 2006. Heavy Construction Cost Data.

The Sierra Club. 2004. *Highway Health Hazards*.

- South Coast Air Quality Management District (SCAQMD). March, 2000. Multiple Air Toxic Exposure Study MATES II.
- UNFCCC. 2004. Guidelines for the preparation of national communications by Parties included in Annex I to the Convention, Part I: UNFCCC reporting guidelines on annual inventories (following incorporation of the provisions of decision 13/CP.9) Subsidiary Body for Scientific and Technological

Advice ,Twenty-first session Buenos Aires, 6–14 December 2004. Item 5 (d) of the provisional agenda, Methodological issues, Issues relating to greenhouse gas inventories.

- U.S. Army of Corps of Engineer (USACE). 2000. Hot-Mix Asphalt Paving Handbook.
- U.S. Air Force. November, 2006. Final EIS Establishment and Operation of an Intelligence, Surveillance, Reconnaissance, and Strike Capability, Andersen Air Force Base. Department of the Air Force, Pacific Air Forces, Hickam AFB, Hawaii.
- U.S. Environmental Protection Agency (USEPA). September, 1985, revised January, 1995. Compilation of Air Pollutant Emission Factors, Fifth Edition, AP-42.
- USEPA. 1990. Draft New Source Review Workshop Manual.
- USEPA. November, 1992a. User's Guide to CAL3QHC Version 2.0: A Modeling Methodology for Predicting Pollutant Concentrations Near Roadway Intersections.
- USEPA. November, 1992b. Guideline for Modeling Carbon Monoxide from Roadway Intersections.
- USEPA. December, 1992. Procedures of Emission Inventory Preparation, Volume IV: Mobile Sources.
- USEPA. November 24, 1993b. 40 CFR Parts 51, and 93. Air Quality: Transportation Plans, Programs, and Projects; Federal or State Implementation Plan Conformity; Rule.
- USEPA. November 30, 1993. 40 CFR Parts 6, 51, and 93. Determining Conformity of Federal Actions to State or Federal Implementation Plans, Federal Register.
- USEPA. January, 1995 and after. AP-42 Fifth Edition: Compilation of Air Pollutant Emission Factors.
- USEPA. September, 1995. A Modeling Methodology for Predicting Pollutant Concentrations Near Roadway Intersections.
- USEPA. 1999. Technology Transfer Network 1999 National-Scale Air Toxics Assessment <u>http://www.epa.gov/ttn/atw/nata1999/</u> Accessed on 5 April 2010.
- USEPA. April, 2000. AP 42, Fifth Edition, Volume I Chapter 3: Stationary Internal Combustion Sources, Section 3.1 Stationary Gas Turbines.
- USEPS. December 2000. *Heavy-Duty Standards / Diesel Fuel Regulatory Impact Analysis*. EPA420-R-00-026.
- USEPA. January, 2001. Emission Inventory Improvement Program (EIIP).
- USEPA. October, 2002. User's Guide to MOBILE 6.2, Mobile Source Emission Factor Model.
- USEPA. February, 2003. Air Pollution Control Technology Fact Sheet. February 19, 2003.
- USEPA. August, 2003. Mobile6 User's Guide.

USEPA. May, 2005. Landfill Gas Emissions Model Version 3.02 User's Guide.

- USEPA. November 9, 2005. 40 CFR Part 51, Appendix W. Guideline on Air Quality Models (Revised), Federal register.
- USEPA. January, 2006. Current Methodologies and Best Practices in Preparing Port Emission Inventories Final Report. January 5, 2006
- USEPA. March, 2006. Transportation Conformity Guidance for Qualitative Hot-spot Analyses in PM_{2.5} and PM₁₀ Nonattainment and Maintenance Areas.
- USEPA. June, 2006. WATER9, Beta Version 3.0. June 29, 2006.
- USEPA. July 17, 2006. 40 CFR Parts 51 and 93. PM2.5 De Minimis Emission Levels for General Conformity Applicability, Federal Register.
- USEPA. December, 2006. Addendum User's Guide for the AMS/EPA Regulatory Model AERMOD.

USEPA. January, 2007. AMS/EPA Regulatory Model – AERMOD Components.

USEPA. February, 2007. Control of Hazardous Air Pollutants from Mobile Sources, CFR 2008.

USEPA. December 31, 2008. Non-road Model Worksheet.

USEPA. December 2008. Non-road Model Worksheet.

- USEPA. 2009a. Technical Support Document for Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act. December 7, 2009.
- USEPA. 2009b. Endangerment and Cause or Contribute Findings for Greenhouse Gases under Section 202(a) of the Clean Air Act. Final findings were published in the Federal Register under Docket ID No. EPA-HQ-OAR-2009-0171 on December 15, 2009, with the final rule was effective January 14, 2010. <u>http://www.epa.gov/climatechange/endangerment.html</u>.
- USEPA. 2009c. Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990 2007. April 15, 2009. USEPA, Washington, DC.
- USEPA. 2009d. Technology Transfer Network 2002 National-Scale Air Toxics Assessment. http://www.epa.gov/ttn/atw/nata2002/index.html Accessed on 5 April 2010.
- USEPA. 2009e. Proposed Rulemaking: Light-Duty Vehicle Greenhouse Gas Emissions Standards and Corporate Average Fuel Economy Standards. <u>http://www.epa.gov/oms/climate/regulations.htm</u> Accessed 12 March 2010.
- USEPA. 2009f. Mobile Source Air Toxics. Available at: <u>http://www.epa.gov/OMS/toxics.htm</u>. Last updated 18 May 2009, accessed on 29 May 2009.
- USEPA. 2009. Technology Transfer Network 2002 National-Scale Air Toxics Assessment. http://www.epa.gov/ttn/atw/nata2002/index.html Accessed on 5 April 2010.
- USEPA. 2010. Integrated Risk Information System (IRIS). <u>http://www.epa.gov/iris/</u> Accessed on 2 April 2010.

- USEPA. "Integrated Risk Information System (IRIS)." [web database] No date. ">http://www.epa.gov/iris>.
- U.S. Navy. July, 1999. Final Environmental Impact Statement: Developing Home Port Facilities for Three Nimitz-Class Aircraft Carriers in Support of the U.S. Pacific Fleet.
- U.S. Navy. December, 2008. Final Environmental Impact Statement/Overseas Environmental Impact Statement for the Southern California Range Complex.
- U.S. Navy and Joint Guam Program Office. In progress. Military Relocation Environmental Impact Statement (EIS).
- Water Environment Federation (WEF). 2004. Manual of Practice 25 Control of Odors and Emissions from Wastewater Treatment Plants.
- Western Governors' Association Western Regional Air Partnership (WRAP). October, 2005. Analysis of the Fine Fraction of Particulate Matter in Fugitive Dust.
- World Health Organization (WHO). 2000 *Air quality guidelines for Europe*, 2nd ed. Copenhagen, World Health Organization Regional Publications, European Series.
- Wyle. August, 2008. The Aircraft Noise Study for Guam Joint Military Master Plan at Andersen Air Force Base.
- Yuhnke, Robert E. 2005. *NEPA's Uncertainty Principle in the Federal Legal Scheme Controlling Air Pollution From Motor Vehicles*. Environmental Law Institute, 35 ELR 10273.

Attachment A Off Base Roadway Project Impact Analysis Support Data

Attachment B Mobile Source Air Toxics Impact Analysis Support Data

Attachment A

1) Roadway Construction Emissions Worksheet

2) Sample CAL3QHC Input and Output Files (Site 1)

Guam Haul Road Construction Emission Analysis North- Equipment

	Number	Туре	Equipment	Average Equipment	Total Utilized Equipment	Start	End	Act	ruction ivity ation				
Construction Equipment	of	of	Rated	Usage	HP	Date	Date			Die	sel Pollutant E	nission Factor	s ⁽³⁾
	Units	Fuel	HP ⁽²⁾ hp/hr	of HP ⁽²⁾ hrs	(all units) hp/hr			Months	(4) hrs/month	CO g/hp-hr	NOx g/hp-hr	PM10 g/hp-hr	PM _{2.5} g/hp-hr
PTG8 - FDR						I		montaio		9.1.p.1.	grop o	grop o	9mp
WL	1	Diesel	197	116	116	11/3/2012	8/2/2013	10	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	11/3/2012	8/2/2013	10	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	11/3/2012	8/2/2013	10	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/3/2012	8/2/2013	10	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	11/3/2012	8/2/2013	10	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	11/3/2012	8/2/2013	10	172	4.17	3.14	0.73	0.71
Paving Machine Wheel Loader	1	Diesel Diesel	130 0	77 0	77	11/3/2012 11/3/2012	8/2/2013 8/2/2013	10 10	172 172	1.53 4.17	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/3/2012	8/2/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/3/2012	8/2/2013	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9	Diesei	0	0	0	11/3/2012	0/2/2013	10	172	4.17	3.14	0.75	0.71
PTG9 - FDR & Widening	, i			I		1		1	1		L		
Wheel Loader	2	Diesel	197	116	232	10/1/2011	4/2/2012	7	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	10/1/2011	4/2/2012	7	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/1/2011	4/2/2012	7	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	10/1/2011	4/2/2012	7	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	10/1/2011	4/2/2012	7	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/1/2011	4/2/2012	7	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16							<u> </u>					
PTG 10 - FDR & Widening				[T			1	, ,		[
Wheel Loader	2	Diesel	197	116	232	10/1/2011	4/2/2012	7	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	10/1/2011	4/2/2012	7	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/1/2011	4/2/2012	7	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	10/1/2011	4/2/2012	7	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	10/1/2011	4/2/2012	7	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/1/2011	4/2/2012	7	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PTG 22 - FDR & Widening	0	Discol	407	440	000	40/4/0044	4/0/0040	-	470	4.00	0.00	0.40	0.00
Wheel Loader	2	Diesel	197	116 295	232	10/1/2011 10/1/2011	4/2/2012	7	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500 540	295	590	10/1/2011	4/2/2012	7	172	1.48	2.62		0.39
Reclaimer	2	Diesel		319	319 637	10/1/2011		7	172	1.48	2.62	0.40	0.39
Grader Roller	4	Diesel Diesel	540 147	87	347	10/1/2011	4/2/2012 4/2/2012	7	172	1.40	2.62	0.40	0.59
Back hoe	4	Diesel	97	57	229	10/1/2011	4/2/2012	7	172	4.17	3.14	0.30	0.71
Paving Machine	1	Diesel	130	77	77	10/1/2011	4/2/2012	7	172	1.53	2.62	0.75	0.54
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PTG 22A - FDR & Widening													
Wheel Loader	2	Diesel	197	116	232	10/4/2012	9/3/2013	12	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	10/4/2012	9/3/2013	12	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/4/2012	9/3/2013	12	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	10/4/2012	9/3/2013	12	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	10/4/2012	9/3/2013	12	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	10/4/2012	9/3/2013	12	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/4/2012	9/3/2013	12	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/4/2012	9/3/2013	12	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/4/2012	9/3/2013	12	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/4/2012	9/3/2013	12	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16				1			1	I I				
PTG 23 - Overlay	1	Disa-!	EAE	222	222	0/2/2010	6/2/2010	40	170	1 40	0.60	0.40	0.00
Cold Planer	1	Diesel	545	322	322	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Roller Rack boo	2	Gasoline	147	87	173	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Back hoe Baving Machine	1	Electric	97 130	57 77	57 77	9/2/2012 9/2/2012	6/3/2013	10	172 172	4.17	3.14 2.62	0.73	0.71
Paving Machine Construction Equipment Total	1 5	Electric	130	11		3/2/2012	6/3/2013	10	112	1.00	2.02	0.00	0.34
PTG 38 - FDR & Widening	5			L	1	1		1	ı <u> </u>		L		
		Diesel	197	116	232	10/2/2011	12/6/2011	3	172	1.32	2.62	0.40	0.39
Wheel Loader	2				590	10/2/2011	12/6/2011		172		2.62		0.39
Wheel Loader Scraper	2		500	295				3		1.48		0.40	
Scraper	2	Diesel	500 540	295 319				3		1.48		0.40	
Scraper Reclaimer	2 1	Diesel Diesel	540	319	319	10/2/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Scraper Reclaimer Grader	2	Diesel Diesel Diesel	540 540	319 319		10/2/2011 10/2/2011	12/6/2011 12/6/2011	3 3	172 172	1.48 1.48	2.62 2.62	0.40 0.40	0.39 0.39
Scraper Reclaimer	2 1 2	Diesel Diesel	540	319	319 637	10/2/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Scraper Reclaimer Grader Roller Back hoe	2 1 2 4	Diesel Diesel Diesel Diesel Diesel	540 540 147	319 319 87	319 637 347	10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3	172 172 172	1.48 1.48 1.53 4.17	2.62 2.62 2.62 3.14	0.40 0.40 0.56 0.73	0.39 0.39 0.54 0.71
Scraper Reclaimer Grader Roller	2 1 2 4 4	Diesel Diesel Diesel Diesel	540 540 147 97	319 319 87 57	319 637 347 229	10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011	3 3 3 3	172 172 172 172	1.48 1.48 1.53	2.62 2.62 2.62	0.40 0.40 0.56	0.39 0.39 0.54
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader	2 1 2 4 4 1	Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130	319 319 87 57 77	319 637 347 229 77	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3	172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53	2.62 2.62 2.62 3.14 2.62	0.40 0.40 0.56 0.73 0.56	0.39 0.39 0.54 0.71 0.54
Scraper Reclaimer Grader Roller Back hoe Paving Machine	2 1 2 4 4 1 0	Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0	319 319 87 57 77 0	319 637 347 229 77 0	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3 3 3	172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17	2.62 2.62 2.62 3.14 2.62 3.14	0.40 0.40 0.56 0.73 0.56 0.73	0.39 0.39 0.54 0.71 0.54 0.71
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader	2 1 2 4 4 1 0 0	Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0	319 319 87 57 77 0 0	319 637 347 229 77 0 0	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172	1.48 1.53 4.17 1.53 4.17 4.17 4.17	2.62 2.62 3.14 2.62 3.14 3.14 3.14	0.40 0.56 0.73 0.56 0.73 0.73 0.73	0.39 0.39 0.54 0.71 0.54 0.71 0.71
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader	2 1 2 4 4 1 0 0 0	Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0	319 319 87 57 77 0 0	319 637 347 229 77 0 0	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172	1.48 1.53 4.17 1.53 4.17 4.17 4.17	2.62 2.62 3.14 2.62 3.14 3.14 3.14	0.40 0.56 0.73 0.56 0.73 0.73 0.73	0.39 0.39 0.54 0.71 0.54 0.71 0.71
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader Construction Equipment Total PTG 39 - Widening	2 1 2 4 4 1 0 0 0	Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0	319 319 87 57 77 0 0	319 637 347 229 77 0 0	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172	1.48 1.53 4.17 1.53 4.17 4.17 4.17	2.62 2.62 3.14 2.62 3.14 3.14 3.14	0.40 0.56 0.73 0.56 0.73 0.73 0.73	0.39 0.39 0.54 0.71 0.54 0.71 0.71
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader Construction Equipment Total PTG 39 - Widening Wheel Loader	2 1 2 4 1 0 0 0 0 16	Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0 0	319 319 87 57 77 0 0 0	319 637 347 229 77 0 0 0	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17 4.17 4.17	2.62 2.62 3.14 2.62 3.14 3.14 3.14 3.14	0.40 0.40 0.56 0.73 0.56 0.73 0.73 0.73 0.73	0.39 0.39 0.54 0.71 0.54 0.71 0.71 0.71
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader Construction Equipment Total PTG 39 - Widening Wheel Loader Scraper	2 1 2 4 1 0 0 0 0 16 1	Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0 0 0 197	319 319 87 57 77 0 0 0 0 116	319 637 347 229 77 0 0 0 0	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17 4.17 4.17 4.17 1.32	2.62 2.62 2.62 3.14 2.62 3.14 3.14 3.14 3.14 2.62	0.40 0.56 0.73 0.56 0.73 0.73 0.73 0.73 0.73 0.73	0.39 0.39 0.54 0.71 0.54 0.71 0.71 0.71 0.71
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Construction Equipment Total PTG 39 - Widening Wheel Loader Scraper Grader	2 1 2 4 1 0 0 0 0 16 1 1	Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0 0 0 0 197 500	319 319 87 57 77 0 0 0 0 0 116 295	319 637 229 77 0 0 0 0 0 116 295	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/5/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/7/2011	3 3 3 3 3 3 3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17 4.17 4.17 1.32 1.48	2.62 2.62 3.14 3.14 3.14 3.14 3.14 3.14 2.62 2.62 2.62	0.40 0.56 0.73 0.56 0.73 0.73 0.73 0.73 0.73 0.73	0.39 0.39 0.54 0.71 0.54 0.71 0.71 0.71 0.71 0.39 0.39
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader Wheel Loader Construction Equipment Total	2 1 2 4 4 1 0 0 0 0 16 1 1 1 1	Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0 0 0 0 197 500 540	319 319 87 57 0 0 0 0 0 116 295 319	319 637 229 77 0 0 0 0 116 295 319 637 114	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/5/2011 10/5/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/7/2011 12/7/2011 12/7/2011	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17 4.17 4.17 1.32 1.48 1.48	2.62 2.62 3.14 2.62 3.14 3.14 3.14 3.14 2.62 2.62 2.62 2.62 2.62	0.40 0.56 0.73 0.56 0.73 0.73 0.73 0.73 0.73 0.73 0.73	0.39 0.54 0.71 0.54 0.71 0.71 0.71 0.71 0.71 0.39 0.39 0.39
Scraper Reclaimer Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader Wheel Loader Construction Equipment Total PTG 39 - Widening Wheel Loader Scraper Grader Reclaimer	2 1 2 4 4 1 0 0 0 0 16 1 1 1 2	Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0 0 0 197 500 540	319 319 87 57 77 0 0 0 0 116 295 319 319	319 637 347 229 77 0 0 0 0 0 0 116 295 319 637	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/5/2011 10/5/2011 10/5/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/7/2011 12/7/2011 12/7/2011	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17 4.17 4.17 4.17 1.32 1.48 1.48 1.48	2.62 2.62 3.14 2.62 3.14 3.14 3.14 2.62 2.62 2.62 2.62 2.62 2.62	0.40 0.56 0.73 0.56 0.73 0.73 0.73 0.73 0.73 0.73	0.39 0.54 0.71 0.54 0.71 0.71 0.71 0.71 0.39 0.39 0.39 0.39
Scraper Scraper Grader Grader Roller Back hoe Paving Machine Wheel Loader Wheel Loader Wheel Loader Wheel Loader Wheel Loader Scraper Grader Grader Reclaimer Back hoe	2 1 2 4 1 0 0 0 0 0 16 1 1 1 1 2 2	Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel Diesel	540 540 147 97 130 0 0 0 0 197 500 540 540 97	319 319 87 57 77 0 0 0 0 0 116 295 319 319 57	319 637 229 77 0 0 0 0 116 295 319 637 114	10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/2/2011 10/5/2011 10/5/2011 10/5/2011 10/5/2011	12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/6/2011 12/7/2011 12/7/2011 12/7/2011 12/7/2011	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	172 172 172 172 172 172 172 172 172 172	1.48 1.48 1.53 4.17 1.53 4.17 4.17 4.17 1.32 1.48 1.48 1.48 1.48 4.17	2.62 2.62 3.14 2.62 3.14 3.14 3.14 2.62 2.62 2.62 2.62 2.62 2.62 2.62 3.14	0.40 0.40 0.56 0.73 0.56 0.73 0.73 0.73 0.73 0.73 0.40 0.40 0.40 0.40 0.73	0.39 0.54 0.71 0.54 0.71 0.71 0.71 0.71 0.39 0.39 0.39 0.39 0.39 0.71

Guam Haul Road Construction Emission Analysis North- Equipment

			1										
					Total				truction				
	Number		-	Average	Utilized	Start	End		tivity ration				
Oranteeritee Environment		Туре	Equipment	Equipment	Equipment			Dui	ration				(3)
Construction Equipment	of Units	of Fuel	Rated HP ⁽²⁾	Usage of HP ⁽²⁾	HP (all units)	Date	Date			CO	sel Pollutant E NOx	PM10	S (7) PM25
	Units	Fuel	hp/hr	hrs	(all units)			Months	(4) hrs/month	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
		D 1 1				10/5/0011	10/7/00/11						
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/7/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/7/2011	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	8							1					
PTG 41 - FDR & Widening				1	1			-	1			[[
Wheel Loader	1	Diesel	197	116	116	10/5/2011	12/6/2011	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	10/5/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/5/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Reclaimer	2	Diesel	540	319	637	10/5/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Back hoe	2	Diesel	97	57	114	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/5/2011	12/6/2011	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	8												
PTG 42 - Widening													
Wheel Loader	1	Diesel	197	116	116	10/5/2011	12/6/2011	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	10/5/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/5/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Reclaimer	2	Diesel	540	319	637	10/5/2011	12/6/2011	3	172	1.48	2.62	0.40	0.39
Back hoe	2	Diesel	97	57	114	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/5/2011	12/6/2011	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	8	510001	Ŭ	ç	0	10/0/2011	12/0/2011				0.11	0.10	0.11
PTG 117 - FDR & Widening	, i				1	1	1						1
Wheel Loader	1	Diesel	197	116	116	10/28/2015	12/30/2015	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	10/28/2015	12/30/2015	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/28/2015	12/30/2015	3	172	1.48	2.62	0.40	0.39
Reclaimer	2	Diesel	540	319	637	10/28/2015	12/30/2015	3	172	1.48	2.62	0.40	0.39
Back hoe	2	Diesel	97	57	114	10/28/2015	12/30/2015	3	172	4.17	3.14	0.40	0.39
Paving Machine	1	Diesel	97	57	77	10/28/2015	12/30/2015	3	172	4.17	2.62	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/28/2015	12/30/2015	3	172	4.17	3.14	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/28/2015	12/30/2015	3	172 172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0		0	10/28/2015	12/30/2015	3	172	4.17	3.14	0.73	0.71
Wheel Loader	8	Diesel	U	0	U	10/28/2015	12/30/2015	3	1/2	4.17	3.14	0.73	0.71
Construction Equipment Total	ð				1	1	1	1	1			1	1
PTG 57 - FDR & Widening	1.	.	107			10/1/00/-	E 10 10 0 1 -		170		0.00	0.40	0.00
Wheel Loader	1	Diesel	197	116	116	10/4/2013	5/6/2015	20	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	10/4/2013	5/6/2015	20	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/4/2013	5/6/2015	20	172	1.48	2.62	0.40	0.39
Reclaimer	2	Diesel	540	319	637	10/4/2013	5/6/2015	20	172	1.48	2.62	0.40	0.39
Back hoe	2	Diesel	97	57	114	10/4/2013	5/6/2015	20	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/4/2013	5/6/2015	20	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	4.17	3.14	0.73	0.71

Guam Haul Road Construction Emission Analysis Central 1- Equipment

	Number	Туре	Equipment	Average Equipment	Total Utilized Equipment	Start	End	Act	truction tivity ration				
Construction Equipment	of	of	Rated	Usage	HP	Date	Date				sel Pollutant E		
	Units	Fuel	HP ⁽²⁾ hp/hr	of HP ⁽²⁾ hrs	(all units) hp/hr			Months	(4) hrs/month	CO g/hp-hr	NOx g/hp-hr	PM10	PM _{2.5} g/hp-hr
PB1 - Pavement Strengthening			np/m	111.5	iip/iii	1		wonuis	Instituti	g/np-m	g/ip-iii	g/hp-hr	g/ip-iii
WL	1	Diesel	197	116	116	11/8/2010	6/2/2011	8	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	11/8/2010	6/2/2011	8	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	11/8/2010	6/2/2011	8	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/8/2010	6/2/2011	8	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	11/8/2010	6/2/2011	8	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/8/2010	6/2/2011	8	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9												
PTG2 - FDR & Widening		D : 1	107			4.4/0/004.0	0/0/0011		170		0.00	0.40	0.00
Wheel Loader	2	Diesel Diesel	197 500	116 295	232 590	11/8/2010 11/8/2010	6/2/2011 6/2/2011	8	172 172	1.32	2.62	0.40	0.39
Scraper Reclaimer	1	Diesel	540	319	319	11/8/2010	6/2/2011	8	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	11/8/2010	6/2/2011	8	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	11/8/2010	6/2/2011	8	172	1.48	2.62	0.40	0.54
Back hoe	4	Diesel	97	57	229	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Paving Machine	4	Diesel	130	77	77	11/8/2010	6/2/2011	8	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PTG 3 - FDR & Widening				-								-	
Wheel Loader	0	Diesel	197	116	0	12/1/2010	10/31/2011	11	172	1.32	2.62	0.40	0.39
Scraper	0	Diesel	500	295	0	12/1/2010	10/31/2011	11	172	1.48	2.62	0.40	0.39
Reclaimer	0	Diesel	540	319	0	12/1/2010	10/31/2011	11	172	1.48	2.62	0.40	0.39
Grader	0	Diesel	540	319	0	12/1/2010	10/31/2011	11	172	1.48	2.62	0.40	0.39
Roller	0	Diesel	147	87	0	12/1/2010	10/31/2011	11	172	1.53	2.62	0.56	0.54
Back hoe	0	Diesel	97	57	0	12/1/2010	10/31/2011	11	172	4.17	3.14	0.73	0.71
Paving Machine	0	Diesel	130	77	0	12/1/2010	10/31/2011	11	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	12/1/2010	10/31/2011	11	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	12/1/2010	10/31/2011	11	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	12/1/2010	10/31/2011	11	172	4.17	3.14	0.73	0.71
Construction Equipment Total	0												
PTG 6 - FDR & Widening				1							I	1	1
Wheel Loader	2	Diesel	197	116	232	8/5/2012	5/1/2013	10	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	8/5/2012	5/1/2013	10	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	8/5/2012	5/1/2013	10	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	8/5/2012	5/1/2013	10	172	1.48	2.62	0.40	0.39
Roller Roak has		Diesel	147 97	87 57	347 229	8/5/2012	5/1/2013	10	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel Diesel	97	57	77	8/5/2012 8/5/2012	5/1/2013 5/1/2013	10 10	172 172	4.17 1.53	3.14 2.62	0.73	0.71
Paving Machine	0	Diesel	0	0	0	8/5/2012	5/1/2013	10	172	4.17	3.14	0.56	0.54
Wheel Loader Wheel Loader	0	Diesel	0	0	0	8/5/2012 8/5/2012	5/1/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	8/5/2012	5/1/2013	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16	Diesei	0	0	0	0/0/2012	5/1/2013	10	172	4.17	3.14	0.73	0.71
PTG 7 - FDR & Widening	10												
Wheel Loader	2	Diesel	197	116	232	9/2/2012	6/3/2013	10	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16			1	1	1		<u> </u>	1		1	1	1
PB17 - Overlay	1.	Dia 1		000	000	0/4/0010	0/0/0212	40	470	4.42	0.00	0.10	0.00
Cold Planer	1	Diesel	545	322	322	9/1/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Roller Roak has	2	Gasoline	147	87	173	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Back hoe Boving Machine	1	Electric	97 130	57 77	57 77	9/2/2012	6/3/2013	10	172	4.17	3.14 2.62	0.73	0.71
Paving Machine Construction Equipment Total	5	Electric	130	11		9/2/2012	6/3/2013	10	172	1.00	2.02	0.56	0.54
PTG 11 - FDR	3			1	1	1		1	1		1	1	1
Wheel Loader	1	Diesel	197	116	116	10/2/2010	7/4/2011	10	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.54
Back hoe	2	Diesel	97	57	113	10/2/2010	7/4/2011	10	172	4.17	3.14	0.30	0.34
Paving Machine	1	Diesel	130	77	77	10/2/2010	7/4/2011	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9												
PTG 12 - FDR													
Wheel Loader	1	Diesel	197	116	116	10/2/2010	7/4/2011	10	172	1.32	2.62	0.40	0.39
0	1	Diesel	500	295	295	10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.39
Scraper	-					10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/2/2010	114/2011	10					
		Diesel Diesel	540 540	319	319 319	10/2/2010	7/4/2011	10	172	1.48	2.62	0.40	0.39
Grader Reclaimer Back hoe	1 1 2		540 97	319 57	319 114		7/4/2011 7/4/2011	10 10	172 172	1.48 4.17	2.62 3.14	0.40 0.73	0.71
Grader Reclaimer Back hoe Paving Machine	1	Diesel	540	319 57 77	319	10/2/2010 10/2/2010 10/2/2010	7/4/2011	10	172 172 172	1.48 4.17 1.53	2.62	0.40	0.71 0.54
Grader Reclaimer Back hoe	1 1 2	Diesel Diesel	540 97	319 57	319 114	10/2/2010 10/2/2010	7/4/2011 7/4/2011	10 10	172 172	1.48 4.17	2.62 3.14	0.40 0.73	0.71

Guam Haul Road Construction Emission Analysis Central 1- Equipment

Instruction Description Description Description Description Operation	Phr PM25 p-hr g/hp-hr 73 0.71 73 0.71
Units Fuel MP ⁽⁰⁾ by the loader of MP ⁽⁰⁾ by the loader (0) by the loader (0) b	Phr PM25 p-hr g/hp-hr 73 0.71 73 0.71
Wheel Loader 0 Deset 0 0 1022010 7442011 10 172 4.17 3.14 0 Construction Equipment Total 9 0 0 1022010 7442011 10 172 4.17 3.14 0 Construction Equipment Total 9 1 Deset 500 285 285 017021 <th>73 0.71 73 0.71</th>	73 0.71 73 0.71
Wheel Loader 0 0 102/201 74/2011 10 172 4.17 3.14 0 PTG 13-FBR -	73 0.71
Construction Equipment Total 9 Image Ima	
Nmed Ladar 1 Desci 116 116 91/2012 61/2013 100 172 1.32 2.62 0 Grader 1 Diesel 600 2365 2365 91/2012 61/2013 100 172 1.48 2.62 0 Grader 1 Diesel 640 319 319 91/2012 61/2013 100 172 1.48 2.62 0 Back hose 2 Diesel 0 0 91/2012 61/2013 100 172 4.13 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 100 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 100 172 4.47 3.14 0 Organ 1 Diesel 0 0 91/2012 61/2013 100 172 1.48 2.62 0 0 <	40 0.00
Sorager 1 Desel 500 295 9/12012 6/12013 10 172 1.48 2.62 0.0 Reclamer 1 Desel 540 319 319 9/12012 6/12013 10 172 1.48 2.62 0 Back hon 2 Desel 97 513 9/12012 6/12013 10 172 1.43 2.62 0 Paving Machine 2 Desel 0 0 9/12012 6/12013 10 172 4.17 3.14 0 Wheel Loader 0 Desel 0 0 9/12012 6/12013 10 172 4.17 3.14 0 Wheel Loader 0 Desel 0 0 9/12012 6/12013 10 172 4.42 2.62 0 Caster 1 Desel 130 2.75 116 118 9/12012 6/12013 10 172 1.48 2.62 0 <	
Grader 1 Dissel 540 319 319 91/2012 61/2013 10 172 1.48 2.62 00 Back hone 2 Dissel 570 114 91/2012 61/2013 10 172 1.48 2.62 00 Back hone 2 Dissel 0.0 0.0 91/2012 61/2013 10 172 4.17 3.14 0.0 Wheel Loader 0 Dissel 0 0 91/2012 61/2013 10 172 4.17 3.14 0.0 Wheel Loader 0 Dissel 0 0 0 91/2012 61/2013 10 172 4.18 2.62 0 Wheel Loader 1 Dissel 197 11.6 91/2012 61/2013 10 172 1.48 2.62 0 Operation State 1 Dissel 197 11.6 91/2012 61/2013 10 172 1.48 2.62 0	40 0.39 40 0.39
Back hoo 2 Diesel 97 97 114 91/2012 61/2013 10 172 41.7 31.4 0 Privin Machine 1 Diesel 10 0 0 91/2012 61/2013 10 172 41.7 31.4 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 41.7 31.4 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 41.7 31.4 0 Construction Equipment Total 9 Diesel 500 285 91/2012 61/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 91/2012 61/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 91/2012 61/2013 10 172 1.48	40 0.39
Paving Machine 2 Diesel 100 77 153 91/2012 61/2013 10 172 1.13 2.8.2 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Monel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 1.47 3.14 0 Construction Equipment Total 9 10 16 116 91/2012 61/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 91/2012 61/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 53 177 153 91/2012 61/2013 10 172	40 0.39
Whenel Loadoar 1 Diseal 0 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loador 0 Diseal 0 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loador 0 Diseal 0 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Ocostruction Equipment Total 9 10 116 116 91/2012 61/2013 10 172 1.48 2.62 0 Scraper 1 Disesi 540 319 319 91/2012 61/2013 10 172 1.48 2.62 0 Reclaimer 1 Disesi 57 114 91/2012 61/2013 10 172 1.48 2.62 0 Back hoe 2 Disesi 0 0 0 91/2012 61/2013 10	73 0.71 56 0.54
Wheel Loader 0 Desel 0 0 9 /1/2012 9/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 V	73 0.71
Wheel Loader 0 Desol 0 0 9/1/2012 1/2/2013 10 172 4/17 3.14 0 PTG 14 - PDR Opting 14 - PDR 0 172 1.41 2.62 0 Straper 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 10 0 0 0 9/1/2012 6/1/2013 10 172 1.44 2.62 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0	73 0.71
Construction Equipment Total 9 PTG 14 - FDR <	73 0.71 73 0.71
Wheel Loader 1 Diesel 197 116 91/2012 61/2013 10 172 1.32 2.62 0 Straper 1 Diesel 500 295 295 91/2012 61/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 91/2012 61/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 540 319 91/2012 61/2013 10 172 1.48 2.62 0 Paving Machine 2 Diesel 0 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 1.42 4.17 3.14	
Scraper 1 Diesel 500 295 295 91/2012 61/12013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 91/2012 61/12013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 91/2012 61/12013 10 172 1.48 2.62 0 Back hoe 2 Diesel 0 0 91/2012 61/12013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/12013 10 172 4.17 3.14 0 Orservetone 0 Diesel 0 0 91/2012 61/12013 10 172 4.17 3.14 0 Orservetone 0 Diesel 500 2.95 2.95 91/2012 61/12013 10 172 1.48 2.62	
Grader 1 Diesel 540 319 319 91/2012 61/2013 10 172 1.48 2.62 0 Rediamer 1 Diesel 540 319 91/2012 61/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 130 77 153 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 1 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Grader 1 Diesel 197 116 116 91/2012 61/2013 10 172 1.43 2.62 0	40 0.39 40 0.39
Back hoe 2 Diesel 97 57 114 91/2012 61/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 0 0 91/2012 61/2013 10 172 1.53 2.62 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Othel Loader 0 Diesel 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 0 0 91/2012 61/2013 10 172 4.17 3.14 0 Graper 1 Diesel 500 295 295 91/2012 61/2013 10 172 1.48 2.62 0 Gra	40 0.39
Paving Machine 2 Diesel 130 77 153 9/1/2012 6/1/2013 10 172 1.53 2.62 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Onstruction Equipment Total 9 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Ocnstruction Equipment Total 9 0 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Scraper 1 Diesel 500 285 295 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62	40 0.39
Wheel Loader 1 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 0 0 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 500 2.95 2.95 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 4.17 3.14 0 <	73 0.71 56 0.54
Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 Image: Construction Equipment Total 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 91/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 30 77 153 9/1/2012 6/1/2013 10 172 4.17	73 0.71
Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 <t< td=""><td>73 0.71</td></t<>	73 0.71
Construction Equipment Total 9 model mod	73 0.71 73 0.71
Wheel Loader 1 Diesel 197 116 116 9/1/2012 6/1/2013 10 172 1.32 2.62 0 Scraper 1 Diesel 500 295 295 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Paving Machine 2 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Construction Equipment Total 9 9 <td></td>	
Scraper 1 Diesel 500 295 295 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Onscrution Equipment Total 9 9 116 116 9/1/2012 6/1/2013 10 172 1.48	
Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Reclaimer 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 <	40 0.39 40 0.39
Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 130 77 153 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 1 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 9/1/2012 6/1/2013 10 172 1.83 2.62 0 <	40 0.39
Paving Machine 2 Diesel 130 77 153 9/1/2012 6/1/2013 10 172 1.53 2.62 0 Wheel Loader 1 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Scraper 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48	40 0.39
Wheel Loader 1 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 9/1/2012 6/1/2013 10 172 1.32 2.62 0 Grader 1 Diesel 500 295 295 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 545 322 322 9/1/2012 6/1/2013 10 172 1.48 2.62 0	73 0.71 56 0.54
Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 10 172 4.17 3.14 0 Construction Equipment Total 9 6/1/2013 10 172 4.17 3.14 0 PTG 16< Widening & Overlay	73 0.71
Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 9 <	73 0.71
Construction Equipment Total 9 m	73 0.71 73 0.71
Wheel Loader 1 Diesel 197 116 116 9/1/2012 6/1/2013 10 172 1.32 2.62 0 Scraper 1 Diesel 500 295 295 9/1/2012 6/1/2013 10 172 1.32 2.62 0 Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Cold Planer 1 Diesel 540 322 322 9/1/2012 6/1/2013 10 172 1.48 2.62 00 Cold Planer 1 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 147 87 347 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013	
Scraper 1 Diesel 500 295 295 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Cold Planer 1 Diesel 545 322 322 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Roller 4 Diesel 147 87 347 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Paving Machine 2 Diesel 0 0 9/1/2012 6/1/2013 10	
Grader 1 Diesel 540 319 319 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Cold Planer 1 Diesel 545 322 322 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 1.48 2.62 0 Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Roller 4 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 0 0 9/1/2012 6/1/2013 10 172 </td <td>40 0.39 40 0.39</td>	40 0.39 40 0.39
Back hoe 2 Diesel 97 57 114 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Roller 4 Diesel 147 87 347 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 130 77 153 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 <td>40 0.39</td>	40 0.39
Roller 4 Diesel 147 87 347 9/1/2012 6/1/2013 10 172 1.53 2.62 0 Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 1.53 2.62 0 Paving Machine 2 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 00 Paving Machine 2 Diesel 10 0 0 172 4.53 2.62 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 15 </td <td>40 0.39</td>	40 0.39
Back hoe 3 Diesel 97 57 172 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Paving Machine 2 Diesel 130 77 153 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 15 PB18 - FDR <td>73 0.71 56 0.54</td>	73 0.71 56 0.54
Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 15 <td< td=""><td>73 0.71</td></td<>	73 0.71
Wheel Loader 0 Diesel 0 0 9/1/2012 6/1/2013 10 172 4.17 3.14 0 Construction Equipment Total 15 <	56 0.54
PB18 - FDR	73 0.71 73 0.71
	40 0.39
	40 0.39
Reclaimer 1 Diesel 540 319 319 9/1/2012 6/3/2013 10 172 1.48 2.62 0	40 0.39
	40 0.39 56 0.54
	73 0.71
Paving Machine 1 Diesel 130 77 77 9/1/2012 6/3/2013 10 172 1.53 2.62 0	56 0.54
	73 0.71 73 0.71
	73 0.71
Construction Equipment Total 9	
PB19 - FDR	40 0.39
	40 0.39
Reclaimer 1 Diesel 540 319 319 9/1/2012 6/3/2013 10 172 1.48 2.62 0	40 0.39
	40 0.39 56 0.54
	73 0.71
	56 0.54
	73 0.71 73 0.71
Wheel Loader 0 Diesel 0 0 9/1/2012 6/3/2013 10 172 4.17 3.14 0	73 0.71
Construction Equipment Total 9	
PB20 - FDR	40 0.39
	40 0.39
Reclaimer 1 Diesel 540 319 319 9/1/2012 6/3/2013 10 172 1.48 2.62 0	40 0.39
	40 0.39 56 0.54
	73 0.71
Paving Machine 1 Diesel 130 77 77 9/1/2012 6/3/2013 10 172 1.53 2.62 0	56 0.54
	73 0.71 73 0.71
	73 0.71
Construction Equipment Total 9 S	

Guam Haul Road Construction Emission Analysis Central 1- Equipment

Construction Emilymout	Number of	Type of	Equipment Rated	Average Equipment	Total Utilized Equipment HP	Start Date	End Date	Act	tivity ration	Die	aal Dallutant E	mission Factor	
Construction Equipment	Units	Fuel	HP ⁽²⁾	Usage of HP ⁽²⁾	(all units)	Date	Date		(4)	со	NOx	PM10	PM _{2.5}
DD01 Outstan			hp/hr	hrs	hp/hr			Months	hrs/month	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
PB21 - Overlay Cold Planer	1	Diesel	197	116	116	9/1/2012	6/1/2013	10	172	1.32	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	9/1/2012	6/1/2013	10	172	1.53	2.62	0.40	0.54
Back hoe	1	Diesel	97	57	57	9/1/2012	6/1/2013	10	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	9/1/2012	6/1/2013	10	172	1.53	2.62	0.56	0.54
Roller	0	Diesel	147	87	0	9/1/2012	6/1/2013	10	172	1.53	2.62	0.56	0.54
Back hoe	0	Diesel	97	57	0	9/1/2012	6/1/2013	10	172	4.17	3.14	0.73	0.71
Paving Machine	0	Diesel	130	77	0	9/1/2012	6/1/2013	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total PB 28 - Widening & FDR	5												
Wheel Loader	2	Diesel	197	116	232	10/1/2013	12/3/2014	15	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	10/1/2013	12/3/2014	15	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/1/2013	12/3/2014	15	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	10/1/2013	12/3/2014	15	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	10/1/2013	12/3/2014	15	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	10/1/2013	12/3/2014	15	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/1/2013	12/3/2014	15	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/1/2013	12/3/2014	15	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2013	12/3/2014	15	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2013	12/3/2014	15	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16											I	
PB 29 - Widening & FDR		B : 1	107			0/7/0011	5/0/00/15		170	1.00	0.00	0.40	0.00
Wheel Loader	2	Diesel	197 500	116 295	232 590	8/7/2014	5/6/2015 5/6/2015	10 10	172 172	1.32 1.48	2.62	0.40	0.39
Scraper Reclaimer	1	Diesel Diesel	540	295 319	319	8/7/2014 8/7/2014	5/6/2015	10	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	8/7/2014	5/6/2015	10	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	8/7/2014	5/6/2015	10	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	8/7/2014	5/6/2015	10	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	8/7/2014	5/6/2015	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	8/7/2014	5/6/2015	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	8/7/2014	5/6/2015	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	8/7/2014	5/6/2015	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PB30 -Overlay		D : 1				0/0/0010	540044	10	170		0.00	0.40	0.00
Cold Planer Roller	2	Diesel Diesel	545 147	322 87	322	8/2/2013	5/1/2014	10 10	172 172	1.48	2.62	0.40	0.39
Back hoe	1	Diesel	97	57	173 57	8/2/2013 8/2/2013	5/1/2014 5/1/2014	10	172	1.53 4.17	3.14	0.56	0.54
Paving Machine	1	Diesel	130	77	77	8/2/2013	5/1/2014	10	172	1.53	2.62	0.75	0.54
Roller	0	Diesel	130	87	0	8/2/2013	5/1/2014	10	172	1.53	2.62	0.56	0.54
Back hoe	0	Diesel	97	57	0	8/2/2013	5/1/2014	10	172	4.17	3.14	0.73	0.71
Paving Machine	0	Diesel	130	77	0	8/2/2013	5/1/2014	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	8/2/2013	5/1/2014	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	8/2/2013	5/1/2014	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	8/2/2013	5/1/2014	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	5												
PB31 - FDR		D : 1	107				5/0/0044		(70		0.00	0.40	0.00
Wheel Loader Scraper	1	Diesel Diesel	197 500	116 295	116 295	11/1/2012 11/1/2012	5/2/2014 5/2/2014	19 19	172 172	1.32 1.48	2.62	0.40	0.39
Scraper Reclaimer	1	Diesel	500	295 319	295 319	11/1/2012	5/2/2014	19 19	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/1/2012	5/2/2014	19	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	11/1/2012	5/2/2014	19	172	1.40	2.62	0.40	0.54
Back hoe	2	Diesel	97	57	114	11/1/2012	5/2/2014	19	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/1/2012	5/2/2014	19	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/1/2012	5/2/2014	19	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/1/2012	5/2/2014	19	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/1/2012	5/2/2014	19	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9		1		1				L		1		l
PB 33 - Widening & FDR		Di.	407	410	000	04/0010	0/0/0011	40	470	4.00	0.00	0.10	0.00
Wheel Loader	2	Diesel	197	116	232	8/1/2013	8/2/2014	13	172	1.32	2.62	0.40	0.39
Scraper Reclaimer	2	Diesel Diesel	500 540	295 319	590 319	8/1/2013 8/1/2013	8/2/2014 8/2/2014	13 13	172 172	1.48	2.62	0.40	0.39
Grader		Diesel	540	319	637	8/1/2013	8/2/2014 8/2/2014	13	172	1.48	2.62	0.40	0.39
	2		J4U		347	8/1/2013	8/2/2014 8/2/2014	13	172	1.48	2.62	0.40	0.39
	2		147	87									
Roller	2 4 4	Diesel	147 97	87 57	229			13	172				0.71
Roller Back hoe Paving Machine	4			87 57 77		8/1/2013 8/1/2013	8/2/2014 8/2/2014		172 172	4.17 1.53	3.14 2.62	0.73 0.56	0.71
Roller Back hoe	4	Diesel Diesel	97	57	229	8/1/2013	8/2/2014	13		4.17	3.14	0.73	
Roller Back hoe Paving Machine Wheel Loader Wheel Loader	4 4 1 0 0	Diesel Diesel Diesel	97 130	57 77 0 0	229 77	8/1/2013 8/1/2013 8/1/2013 8/1/2013	8/2/2014 8/2/2014 8/2/2014 8/2/2014	13 13	172	4.17 1.53	3.14 2.62	0.73 0.56	0.54
Roller Back hoe Paving Machine Wheel Loader	4 4 1 0	Diesel Diesel Diesel	97 130 0	57 77 0	229 77 0	8/1/2013 8/1/2013 8/1/2013	8/2/2014 8/2/2014 8/2/2014	13 13 13	172 172	4.17 1.53 4.17	3.14 2.62 3.14	0.73 0.56 0.73	0.54 0.71

Guam Haul Road Construction Emission Analysis Central2 - Equipment

				Average	Total Utilized			Act	ruction ivity				
Construction Equipment	Number of	Type of	Equipment Rated	Equipment Usage	Equipment HP	Start Date	End Date	Dura	ation	Die	sel Pollutant Er	mission Factor	s ⁽³⁾
	Units	Fuel	HP ⁽²⁾ hp/hr	of HP ⁽²⁾ hrs	(all units) hp/hr			Months	(4) hrs/month	CO g/hp-hr	NOx g/hp-hr	PM10 g/hp-hr	PM _{2.5} g/hp-hr
PTG36 - Widening WL	1	Diesel	197	116	116	10/1/2011	9/10/2013	24	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	10/1/2011	9/10/2013	24	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	10/1/2011	9/10/2013	24	172	1.48	2.62	0.40	0.39
Roller	1	Diesel	147	87	87	10/1/2011	9/10/2013	24	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	10/1/2011	9/10/2013	24	172	4.17	3.14	0.73	0.71
Paving Machine	2	Diesel	130	77	153	10/1/2011	9/10/2013	24	172	1.53	2.62	0.56	0.54
Paving Machine Wheel Loader	0	Diesel Diesel	130 0	77 0	0	10/1/2011 10/1/2011	9/10/2013 9/10/2013	24 24	172 172	1.53 4.17	2.62 3.14	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/1/2011	9/10/2013	24	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/1/2011	9/10/2013	24	172	4.17	3.14	0.73	0.71
Construction Equipment Total	8												
PTG44 - FDR & Widening				1	1			1	<u>г т</u>				
Wheel Loader	2	Diesel	197	116	232	11/28/2012	1/30/2013	3	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	11/28/2012 11/28/2012	1/30/2013 1/30/2013	3	172	1.48	2.62	0.40	0.39
Reclaimer Grader	2	Diesel Diesel	540 540	319 319	319 637	11/28/2012	1/30/2013	3	172 172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	11/28/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/28/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total PTG46 - FDR & Widening	01			1	1	I		1	ı — I			L	L
Wheel Loader	2	Diesel	197	116	232	11/29/2012	1/30/2013	3	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	11/29/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	11/29/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	11/29/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	11/29/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/29/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/29/2012 11/29/2012	1/30/2013 1/30/2013	3	172 172	4.17	3.14	0.73	0.71
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	11/29/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16	Diesei	0	0	0	11/23/2012	1/30/2013	5	172	4.17	5.14	0.75	0.71
PTG 47 - Widening					1				I				
WL	1	Diesel	197	116	116	11/28/2012	1/30/2013	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	11/28/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/28/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	87	11/28/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Back hoe Paving Machine	2	Diesel Diesel	97 130	57 77	114 153	11/28/2012 11/28/2012	1/30/2013 1/30/2013	3	172 172	4.17 1.53	3.14 2.62	0.73	0.71
Paving Machine	0	Diesel	130	77	0	11/28/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	8												
PB48 - Widening & FDR			107			11/00/0010			170	4.00	0.00	0.40	
Wheel Loader	2	Diesel	197	116	232	11/28/2013 11/28/2013	1/29/2014	3	172 172	1.32	2.62	0.40	0.39
Scraper Reclaimer	1	Diesel Diesel	500 540	295 319	590 319	11/28/2013	1/29/2014 1/29/2014	3	172	1.48 1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	11/28/2013	1/29/2014	3	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	11/28/2013	1/29/2014	3	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	11/28/2013	1/29/2014	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/28/2013	1/29/2014	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	4.17	3.14	0.73	0.71
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	11/28/2013 11/28/2013	1/29/2014 1/29/2014	3	172 172	4.17	3.14 3.14	0.73	0.71
Construction Equipment Total	16	Diesei	J	J	J	11/20/2013	1/23/2014	3	112	4.17	3.14	0.75	0.71
					·								
Cold Planer	0	Diesel	545	322	0	9/1/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Roller	0	Gasoline	147	87	0	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Back hoe	0	Electric	97	57	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Paving Machine	0	Electric	130	77	0	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Construction Equipment Total PB49 - Widening & FDR	0			1	1	L			I				
Wheel Loader	2	Diesel	197	116	232	10/29/2014	12/31/2014	3	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	10/29/2014	12/31/2014	3	172	1.32	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/29/2014	12/31/2014	3	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	10/29/2014	12/31/2014	3	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	10/29/2014	12/31/2014	3	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	10/29/2014	12/31/2014	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/29/2014	12/31/2014	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/29/2014	12/31/2014	3	172	4.17	3.14	0.73	0.71
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	10/29/2014 10/29/2014	12/31/2014 12/31/2014	3	172 172	4.17 4.17	3.14 3.14	0.73	0.71
Construction Equipment Total	16	Diesei	U	U	U	10/29/2014	12/31/2014	3	112	4.17	3.14	0.73	0.71
PB49A - Widening & FDR	10			1	1	I		1	ı – I				
Wheel Loader	2	Diesel	197	116	232	10/29/2014	12/31/2014	3	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	10/29/2014	12/31/2014	3	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	10/29/2014	12/31/2014	3	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	10/29/2014	12/31/2014	3	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	10/29/2014	12/31/2014	3	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	10/29/2014	12/31/2014	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	10/29/2014	12/31/2014	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	10/29/2014	12/31/2014	3	172	4.17	3.14	0.73	0.71

Guam Haul Road Construction Emission Analysis Central2 - Equipment

					Total			Const	ruction				
				Average	Utilized				tivity				
	Number	Туре	Equipment	Equipment	Equipment	Start	End		ation				
Construction Equipment	of	of	Rated	Usage	HP	Date	Date			Die	sel Pollutant E	mission Factor	s ⁽³⁾
	Units	Fuel	HP ⁽²⁾	of HP ⁽²⁾	(all units)				(4)	CO	NOx	PM10	PM _{2.5}
			hp/hr	hrs	hp/hr			Months	hrs/month	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
Wheel Loader	0	Diesel	0	0	0	10/29/2014	12/31/2014	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	10/29/2014	12/31/2014	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PB63 - FDR				-								-	-
Wheel Loader	1	Diesel	197	116	116	11/28/2012	1/30/2013	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	11/28/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	11/28/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/28/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	11/28/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/28/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9												
PB74 - FDR				F								r	
Wheel Loader	1	Diesel	197	116	116	11/28/2013	1/29/2014	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	11/28/2013	1/29/2014	3	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	11/28/2013	1/29/2014	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/28/2013	1/29/2014	3	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	11/28/2013	1/29/2014	3	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	11/28/2013	1/29/2014	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/28/2013	1/29/2014	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9												
PB113 - Widening				r					<u>г т</u>		T	r	[
Wheel Loader	1	Diesel	197	116	116	9/28/2013	11/29/2013	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	9/28/2013	11/29/2013	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	9/28/2013	11/29/2013	3	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	9/28/2013	11/29/2013	3	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	9/28/2013	11/29/2013	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	9/28/2013	11/29/2013	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	9/28/2013	11/29/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader Wheel Loader	0	Diesel	0	0	0	9/28/2013 9/28/2013	11/29/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	9/28/2013	11/29/2013	3	172 172	4.17	3.14 3.14	0.73	0.71
Construction Equipment Total	8	Diesel	U	U	U	3/20/2013	11/29/2013	3	1/2	4.17	3.14	0.73	0.71
PB124 - Widening	0				1	1			1 1		1		
Wheel Loader	1	Diesel	197	116	116	2/28/2013	1/30/2015	24	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	2/28/2013	1/30/2015	24	172	1.32	2.62	0.40	0.39
Grader	1	Diesel	500	295	295	2/28/2013	1/30/2015	24	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	2/28/2013	1/30/2015	24	172	1.48	2.62	0.40	0.39
Back hoe	2	Diesel	97	57	173	2/28/2013	1/30/2015	24	172	4.17	3.14	0.56	0.54
Paving Machine	2	Diesel	97 130	57	77	2/28/2013	1/30/2015	24	172	4.17	2.62	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	2/28/2013	1/30/2015	24	172	4.17	3.14	0.56	0.54
Paving Machine	0	Diesel	130	77	0	2/28/2013	1/30/2015	24	172	1.53	2.62	0.75	0.71
Wheel Loader	0	Diesel	0	0	0	2/28/2013	1/30/2015	24	172	4.17	3.14	0.56	0.54
WINEER LUDUER							1/30/2015	24	172				
Wheel Loader	0	Diesel	0	0	0	2/28/2013				4.17	3.14	0.73	0.71

Guam Haul Road Construction Emission Analysis Apra Harbor- Equipment

					Total			Const	truction				
				Average	Utilized			Act	tivity				
	Number	Туре	Equipment	Equipment	Equipment	Start	End	Dur	ation				
Construction Equipment	of	of	Rated	Usage	HP	Date	Date			Die	sel Pollutant E	mission Factor	s ⁽³⁾
	Units	Fuel	HP ⁽²⁾	of HP ⁽²⁾	(all units)				(4)	СО	NOx	PM10	PM _{2.5}
			hp/hr	hrs	hp/hr			Months	hrs/month	g/hp-hr	g/hp-hr	g/hp-hr	g/hp-hr
PTG4 - Widening & FDR													
Wheel Loader	2	Diesel	197	116	232	1/3/2011	9/28/2011	9	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	1/3/2011	9/28/2011	9	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	1/3/2011	9/28/2011	9	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	1/3/2011	9/28/2011	9	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	1/3/2011	9/28/2011	9	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	1/3/2011	9/28/2011	9	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	1/3/2011	9/28/2011	9	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	1/3/2011	9/28/2011	9	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	1/3/2011	9/28/2011	9	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	1/3/2011	9/28/2011	9	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PTG5 - Widening & FDR													
Wheel Loader	2	Diesel	197	116	232	1/8/2011	10/3/2011	10	172	1.32	2.62	0.40	0.39
Scraper	2	Diesel	500	295	590	1/8/2011	10/3/2011	10	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	1/8/2011	10/3/2011	10	172	1.48	2.62	0.40	0.39
Grader	2	Diesel	540	319	637	1/8/2011	10/3/2011	10	172	1.48	2.62	0.40	0.39
Roller	4	Diesel	147	87	347	1/8/2011	10/3/2011	10	172	1.53	2.62	0.56	0.54
Back hoe	4	Diesel	97	57	229	1/8/2011	10/3/2011	10	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	1/8/2011	10/3/2011	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	1/8/2011	10/3/2011	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	1/8/2011	10/3/2011	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	1/8/2011	10/3/2011	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	16												
PB 24 - FDR													
Wheel Loader	1	Diesel	197	116	116	9/2/2012	6/3/2013	10	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	9/2/2012	6/3/2013	10	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9												
PB50 - FDR													
Wheel Loader	1	Diesel	197	116	116	11/29/2012	1/30/2013	3	172	1.32	2.62	0.40	0.39
Scraper	1	Diesel	500	295	295	11/29/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Reclaimer	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Grader	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	1.48	2.62	0.40	0.39
Roller	2	Diesel	147	87	173	11/29/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Back hoe	2	Diesel	97	57	114	11/29/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Paving Machine	1	Diesel	130	77	77	11/29/2012	1/30/2013	3	172	1.53	2.62	0.56	0.54
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	4.17	3.14	0.73	0.71
Construction Equipment Total	9												<u> </u>

GUAM AIR QUALITY CONSTRUCTION ANALYSIS PM 2.5 Schedule

PM 2.5 Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.000	0.032	0.000	0.000	0.000	0.032	0.032
2010	0.000	0.941	0.000	0.000	0.000	0.941	1.725
2011	3.259	3.752	0.284	3.731	0.000	4.036	14.873
2012	3.803	5.487	1.764	0.617	1.741	7.251	20.585
2013	4.138	11.399	2.955	1.010	2.812	14.354	36.466
2014	2.163	7.181	2.304	0.000	0.000	9.484	19.810
2015	1.212	4.108	0.096	0.000	0.000	4.203	6.548
2016	0.000	0.932	0.000	0.000	0.000	0.932	0.932
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2019	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2021	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2022	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Yearly Value	4.138	11.3989	2.955	3.731	2.8124	14.354	36.466
Year	2013	2013	2013	2011	2013	2013	2013
Highest month from highest year - 2009-							
2015	0.448	1.489	0.723	0.439	0.808	2.190	5.931
Highest Monthly Value - from all years	1.295	1.489	0.723		0.808		
Daily	0.06	0.07	0.04	0.02	0.04	0.11	0.30

GUAM AIR QUALITY CONSTRUCTION ANALYSIS CO Schedule

CO Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2010	0.00	3.01	0.00	0.00	0.00	3.01	6.02
2011	11.72	13.66	1.08	13.54	0.00	14.75	54.75
2012	12.18	20.95	6.75	2.59	6.92	27.70	77.09
2013	12.95	43.27	11.28	4.15	11.09	54.56	137.31
2014	5.92	22.42	8.81	0.00	0.00	31.23	68.38
2015	3.45	3.98	0.36	0.00	0.00	4.35	12.15
2016	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2017	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2018	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2019	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2021	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2022	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum Yearly Value	12.95	43.27	11.28	13.54	11.09	54.56	137.31
Year	2013.00	2013.00	2013.00	2011.00	2013.00	2013.00	2013.00
Highest month from highest year - 2009-							
2015	1.445	5.690	2.770	1.592	3.149	8.460	22.616
Highest Monthly Value - from all years	4.665	5.690	2.770	1.592	3.149	8.460	22.616
Year highest monthly value occurs	0.00	0.28	0.14	0.08	0.16	0.42	1.13

GUAM AIR QUALITY CONSTRUCTION ANALYSIS NOx Schedule

NOx Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2010	0.000	4.702	0.000	0.000	0.000	4.702	9.404
2011	18.250	21.317	1.651	20.920	0.000	22.968	85.107
2012	18.914	32.351	10.328	4.150	10.820	42.679	119.241
2013	20.298	66.928	17.283	6.614	17.297	84.211	212.632
2014	9.428	34.693	13.529	0.000	0.000	48.222	105.872
2015	5.499	6.153	0.555	0.000	0.000	6.708	18.916
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2019	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2021	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2022	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Yearly Value	20.298	66.9280	17.283	20.920	17.2966	84.211	212.632
Year	2013	2013	2013	2011	2013	2013	2013
Highest month from highest year - 2009-							
2015	2.268	8.793	4.275	2.461	4.926	13.068	35.082
Highest Monthly Value - from all years	7.279	8.793	4.275	2.461	4.926	13.068	35.082
Daily	0.36	0.44	0.21	0.12	0.25	0.65	1.75

GUAM AIR QUALITY CONSTRUCTION ANALYSIS PM10 Schedule

PM10 Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.000	0.217	0.000	0.000	0.000	0.217	0.217
2010	0.000	1.875	0.000	0.000	0.000	1.875	2.680
2011	4.516	4.964	0.291	4.984	0.000	5.255	18.700
2012	7.494	6.074	1.809	0.632	1.784	7.883	25.149
2013	8.445	12.749	3.030	1.035	2.883	15.780	42.652
2014	5.545	13.093	2.363	0.000	0.000	15.456	29.372
2015	2.908	17.107	0.098	0.000	0.000	17.206	21.274
2016	0.000	4.775	0.000	0.000	0.000	4.775	4.775
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2019	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2021	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2022	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Yearly Value	8.445	17.1074	3.030	4.984	2.8825	17.206	42.652
Year	2013	2015	2013	2011	2013	2015	2013
Highest month from highest year - 2009-							
2015	0.881	1.655	0.742	0.588	0.828	0.311	6.632
Highest Monthly Value - from all years	1.800	2.082	0.742	0.588	0.828	2.245	6.632
Daily	0.09	0.10	0.04	0.03	0.04	0.11	0.33

GUAM AIR QUALITY CONSTRUCTION ANALYSIS PM 2.5 Schedule

PM25 Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.000	0.032	0.000	0.000	0.000	0.032	0.032
2010	0.000	0.941	0.000	0.000	0.000	0.941	1.725
2011	3.259	3.752	0.284	3.731	0.000	4.036	14.873
2012	3.803	5.487	1.764	0.617	1.741	7.251	20.585
2013	4.138	11.399	2.955	1.010	2.812	14.354	36.466
2014	2.163	7.181	2.304	0.000	0.000	9.484	19.810
2015	1.212	4.108	0.096	0.000	0.000	4.203	6.548
2016	0.000	0.932	0.000	0.000	0.000	0.932	0.932
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2019	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2021	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2022	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Yearly Value	4.138	11.3989	2.955	3.731	2.8124	14.354	36.466
Year	2013	2013	2013	2011	2013	2013	2013
Highest month from highest year - 2009-							
2015	0.448	1.489	0.723	0.439	0.808	2.190	5.931
Highest Monthly Value - from all years	1.295	1.489	0.723	0.439	0.808	2.190	5.931
Daily	0.06	0.07	0.04	0.02	0.04	0.11	0.30

Guam Haul Road Equipment Size and Load Factors

Construction Equipment	Equipment Rated HP (2) hp/hr	Average Equipment HP Avg. load factor applied to rated HP hp/hr	Average Daily Load Factor
Back hoe	97	57	0.59
Cold Planer	545	322	0.59
Grader	540	319	0.59
Paving Machine	130	77	0.59
Reclaimer	540	319	0.59
Roller	147	87	0.59
Scraper	500	295	0.59
Wheel Loader	197	116	0.59

Guam Haul Road Construction Emission Analysis North - Equipment

Construction Equipment	Number of	Type of	Equipment Rated	Average Equipment Usage	Total Utilized Equipment HP	Start Date	End Date	Construction Activity Duration			Diesel Pollutant Emission Factors ⁽³⁾	
	Units	Fuel	HP ⁽²⁾ hp/hr	of HP ⁽²⁾ hrs	(all units) hp/hr			Months	(4) hrs/month	CO2 g/hp-hr	SO2 g/hp-hr	
PTG8 - FDR								1	1 1			
WL	1	Diesel	197	116	116	11/3/2012	8/2/2013	10	172	530.41	1.95	
Scraper	1	Diesel	500	295	295	11/3/2012	8/2/2013	10	172	530.47	1.95	
Reclaimer	1	Diesel	540	319	319	11/3/2012	8/2/2013	10	172	530.47	1.95	
Grader		Diesel	540	319	319	11/3/2012	8/2/2013	10	172	530.47	1.95	
Roller Back hoe	2	Diesel	147 97	87 57	173	11/3/2012	8/2/2013	10	172 172	530.41	1.95 2.17	
Paving Machine	1	Diesel Diesel	130	57	77	11/3/2012 11/3/2012	8/2/2013 8/2/2013	10 10	172	589.74 530.41	1.95	
Wheel Loader	0	Diesel	0	0	0	11/3/2012	8/2/2013	10	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	11/3/2012	8/2/2013	10	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	11/3/2012	8/2/2013	10	172	589.74	2.17	
Construction Equipment Total PTG9 - FDR & Widening	9	Dicaci	0	•	Ŭ	11/3/2012	0/2/2013	10	112	303.74	2.11	
Wheel Loader	2	Diesel	197	116	232	10/1/2011	4/2/2012	7	172	530.41	1.95	
Scraper	2	Diesel	500	295	590	10/1/2011	4/2/2012	7	172	530.47	1.95	
Reclaimer	1	Diesel	540	319	319	10/1/2011	4/2/2012	7	172	530.47	1.95	
Grader	2	Diesel	540	319	637	10/1/2011	4/2/2012	7	172	530.47	1.95	
Roller	4	Diesel	147	87	347	10/1/2011	4/2/2012	7	172	530.41	1.95	
Back hoe	4	Diesel	97	57	229	10/1/2011	4/2/2012	7	172	589.74	2.17	
Paving Machine	1	Diesel	130	77	77	10/1/2011	4/2/2012	7	172	530.41	1.95	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Construction Equipment Total	16				1							
PTG 10 - FDR & Widening												
Wheel Loader	2	Diesel	197	116	232	10/1/2011	4/2/2012	7	172	530.41	1.95	
Scraper	2	Diesel	500	295	590	10/1/2011	4/2/2012	7	172	530.47	1.95	
Reclaimer	1	Diesel	540	319	319	10/1/2011	4/2/2012	7	172	530.47	1.95	
Grader	2	Diesel	540	319	637	10/1/2011	4/2/2012	7	172	530.47	1.95	
Roller	4	Diesel	147	87	347	10/1/2011	4/2/2012	7	172	530.41	1.95	
Back hoe	4	Diesel	97	57	229	10/1/2011	4/2/2012	7	172	589.74	2.17	
Paving Machine	1	Diesel	130	77	77	10/1/2011	4/2/2012	7	172	530.41	1.95	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Wheel Loader Construction Equipment Total	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
PTG 22 - FDR & Widening	10								1 1			
Wheel Loader	2	Diesel	197	116	232	10/1/2011	4/2/2012	7	172	530.41	1.95	
Scraper	2	Diesel	500	295	590	10/1/2011	4/2/2012	7	172	530.47	1.95	
Reclaimer	1	Diesel	540	319	319	10/1/2011	4/2/2012	7	172	530.47	1.95	
Grader	2	Diesel	540	319	637	10/1/2011	4/2/2012	7	172	530.47	1.95	
Roller	4	Diesel	147	87	347	10/1/2011	4/2/2012	7	172	530.41	1.95	
Back hoe	4	Diesel	97	57	229	10/1/2011	4/2/2012	7	172	589.74	2.17	
Paving Machine	1	Diesel	130	77	77	10/1/2011	4/2/2012	7	172	530.41	1.95	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/1/2011	4/2/2012	7	172	589.74	2.17	
Construction Equipment Total	16											
PTG 22A - FDR & Widening												
Wheel Loader	2	Diesel	197	116	232	10/4/2012	9/3/2013	12	172	530.41	1.95	
Scraper	2	Diesel	500	295	590	10/4/2012	9/3/2013	12	172	530.47	1.95	
Reclaimer	1	Diesel	540	319	319	10/4/2012	9/3/2013	12	172	530.47	1.95	
Grader	2	Diesel	540	319	637	10/4/2012	9/3/2013	12	172	530.47	1.95	
Roller	4	Diesel	147	87	347	10/4/2012	9/3/2013	12	172	530.41	1.95	
Back hoe	4	Diesel	97	57	229	10/4/2012	9/3/2013	12	172	589.74	2.17	
Paving Machine	1	Diesel	130	77	77	10/4/2012	9/3/2013	12	172	530.41	1.95	
Wheel Loader	0	Diesel	0	0	0	10/4/2012	9/3/2013	12	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/4/2012	9/3/2013	12	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/4/2012	9/3/2013	12	172	589.74	2.17	
Construction Equipment Total	16				1	1	1	l	I		1	
PTG 23 - Overlay Cold Planer	1	Diocol	545	322	322	9/2/2012	6/3/2013	10	172	530.47	1 OF	
	2	Diesel									1.95	
Roller Back hoe	2	Gasoline Electric	147 97	87 57	173 57	9/2/2012 9/2/2012	6/3/2013 6/3/2013	10 10	172 172	530.41 589.74	1.95 2.17	
Paving Machine	1	Electric	130	57	57	9/2/2012	6/3/2013	10	172	530.41	1.95	
Construction Equipment Total	5	LICUIIU	130			JILILUIL	0/0/2013	10	112	000.4T	1.50	
PTG 38 - FDR & Widening					1	1	1	1	1 1		1	
Wheel Loader	2	Diesel	197	116	232	10/2/2011	12/6/2011	3	172	530.41	1.95	
Scraper	2	Diesel	500	295	590	10/2/2011	12/6/2011	3	172	530.41	1.95	
Reclaimer	1	Diesel	540	319	319	10/2/2011	12/6/2011	3	172	530.47	1.95	
Grader	2	Diesel	540	319	637	10/2/2011	12/6/2011	3	172	530.47	1.95	
Roller	4	Diesel	147	87	347	10/2/2011	12/6/2011	3	172	530.47	1.95	
Back hoe	4	Diesel	97	57	229	10/2/2011	12/6/2011	3	172	589.74	2.17	
Paving Machine	1	Diesel	130	77	77	10/2/2011	12/6/2011	3	172	530.41	1.95	
Wheel Loader	0	Diesel	0	0	0	10/2/2011	12/6/2011	3	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/2/2011	12/6/2011	3	172	589.74	2.17	
Wheel Loader	0	Diesel	0	0	0	10/2/2011	12/6/2011	3	172	589.74	2.17	
Construction Equipment Total	16											
PTG 39 - Widening												
Wheel Loader	1	Diesel	197	116	116	10/5/2011	12/7/2011	3	172	530.41	1.95	
Scraper	1	Diesel	500	295	295	10/5/2011	12/7/2011	3	172	530.47	1.95	
Grader	1	Diesel	540	319	319	10/5/2011	12/7/2011	3	172	530.47	1.95	
Reclaimer	2	Diesel	540	319	637	10/5/2011	12/7/2011	3	172	530.47	1.95	
Back hoe	2	Diesel	97	57	114	10/5/2011	12/7/2011	3	172	589.74	2.17	
Paving Machine	1	Diesel	130	77	77	10/5/2011	12/7/2011	3	172	530.41	1.95	
										-		
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/7/2011	3	172	589.74	2.17	

Guam Haul Road Construction Emission Analysis North - Equipment

					Total			Canal	ruction		
				Average	l otal Utilized				tivity		
	Number	Туре	Equipment	Equipment	Equipment	Start	End		ation	Diesel Pollut	
Construction Equipment	of	of	Rated	Usage	HP	Date	Date	Dui	ation	Facto	ors ⁽³⁾
Construction Equipment	Units	Fuel	HP ⁽²⁾	of HP (2)	(all units)	Date	Date		(4)	CO2	SO2
	onna	1 401	hp/hr	hrs	hp/hr			Months	hrs/month	g/hp-hr	g/hp-hr
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/7/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/7/2011	3	172	589.74	2.17
Construction Equipment Total	8										
PTG 41 - FDR & Widening											
Wheel Loader	1	Diesel	197	116	116	10/5/2011	12/6/2011	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	10/5/2011	12/6/2011	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	10/5/2011	12/6/2011	3	172	530.47	1.95
Reclaimer	2	Diesel	540	319	637	10/5/2011	12/6/2011	3	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	10/5/2011	12/6/2011	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	10/5/2011	12/6/2011	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Construction Equipment Total	8										
PTG 42 - Widening											
Wheel Loader	1	Diesel	197	116	116	10/5/2011	12/6/2011	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	10/5/2011	12/6/2011	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	10/5/2011	12/6/2011	3	172	530.47	1.95
Reclaimer	2	Diesel	540	319	637	10/5/2011	12/6/2011	3	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	10/5/2011	12/6/2011	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	10/5/2011	12/6/2011	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/5/2011	12/6/2011	3	172	589.74	2.17
Construction Equipment Total	8										
PTG 117 - FDR & Widening											
Wheel Loader	1	Diesel	197	116	116	10/28/2015	12/30/2015	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	10/28/2015	12/30/2015	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	10/28/2015	12/30/2015	3	172	530.47	1.95
Reclaimer	2	Diesel	540	319	637	10/28/2015	12/30/2015	3	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	10/28/2015	12/30/2015	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	10/28/2015	12/30/2015	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	10/28/2015	12/30/2015	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/28/2015	12/30/2015	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/28/2015	12/30/2015	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/28/2015	12/30/2015	3	172	589.74	2.17
Construction Equipment Total	8										
PTG 57 - FDR & Widening				1	1						[
Wheel Loader	1	Diesel	197	116	116	10/4/2013	5/6/2015	20	172	530.41	1.95
Scraper	1	Diesel	500	295	295	10/4/2013	5/6/2015	20	172	530.47	1.95
Grader	1	Diesel	540	319	319	10/4/2013	5/6/2015	20	172	530.47	1.95
Reclaimer	2	Diesel	540	319	637	10/4/2013	5/6/2015	20	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	10/4/2013	5/6/2015	20	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	10/4/2013	5/6/2015	20	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/4/2013	5/6/2015	20	172	589.74	2.17

Guam Haul Road Construction Emission Analysis Central1 - Equipment

				Average	Total Utilized	.	End	Ac	tivity		
Construction Equipment	Number	Type of	Equipment Rated HP (2)	Equipment Usage	Equipment HP	Start Date	End Date	Dur	ation	Fact	ant Emission ors ⁽³⁾
	Units	Fuel	hp/hr	of HP ⁽²⁾ hrs	(all units) hp/hr			Months	(4) hrs/month	CO2 g/hp-hr	SO2 g/hp-hr
PB1 - Pavement Strengthening WL	1	Diesel	197	116	116	11/8/2010	6/2/2011	8	172	530.41	1.95
Scraper	1	Diesel	500	295	295	11/8/2010	6/2/2011	8	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	11/8/2010	6/2/2011	8	172	530.47	1.95
Grader	1	Diesel	540	319	319	11/8/2010	6/2/2011	8	172	530.47	1.95
Roller	2	Diesel	147	87	173	11/8/2010	6/2/2011	8	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	11/8/2010	6/2/2011	8	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	11/8/2010	6/2/2011	8	172	530.41	1.95
Wheel Loader Wheel Loader	0	Diesel	0	0	0	11/8/2010 11/8/2010	6/2/2011 6/2/2011	8	172 172	589.74 589.74	2.17
Wheel Loader	0	Diesel Diesel	0	0	0	11/8/2010	6/2/2011	8	172	589.74	2.17
Construction Equipment Total	9	210001	Ŭ			11/0/2010	0/2/2011	Ŭ		000.11	2.00
PTG2 - FDR & Widening											
Wheel Loader	2	Diesel	197	116	232	11/8/2010	6/2/2011	8	172	530.41	1.95
Scraper	2	Diesel	500	295	590	11/8/2010	6/2/2011	8	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	11/8/2010	6/2/2011	8	172	530.47	1.95
Grader	2	Diesel	540	319	637	11/8/2010	6/2/2011	8	172	530.47	1.95
Roller Back hoe	4	Diesel Diesel	147 97	87 57	347 229	11/8/2010 11/8/2010	6/2/2011 6/2/2011	8	172 172	530.41 589.74	1.95 2.17
Paving Machine	4	Diesel	97	57	77	11/8/2010	6/2/2011	8	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/8/2010	6/2/2011	8	172	589.74	2.17
Construction Equipment Total	16				1						
PTG 3 - FDR & Widening									1		
Wheel Loader	0	Diesel	197	116	0	12/1/2010	10/31/2011	11	172	530.41	1.95
Scraper Reclaimer	0	Diesel	500	295 319	0	12/1/2010	10/31/2011	11	172	530.47	1.95 1.95
Reclaimer Grader	0	Diesel Diesel	540 540	319 319	0	12/1/2010 12/1/2010	10/31/2011 10/31/2011	11 11	172 172	530.47 530.47	1.95
Roller	0	Diesel	147	87	0	12/1/2010	10/31/2011	11	172	530.47	1.95
Back hoe	0	Diesel	97	57	0	12/1/2010	10/31/2011	11	172	589.74	2.17
Paving Machine	0	Diesel	130	77	0	12/1/2010	10/31/2011	11	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	12/1/2010	10/31/2011	11	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	12/1/2010	10/31/2011	11	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	12/1/2010	10/31/2011	11	172	589.74	2.17
Construction Equipment Total	0				1						
PTG 6 - FDR & Widening Wheel Loader	2	Diesel	197	116	232	8/5/2012	5/1/2013	10	172	530.41	1.95
Scraper	2	Diesel	500	295	590	8/5/2012	5/1/2013	10	172	530.41	1.95
Reclaimer	1	Diesel	540	319	319	8/5/2012	5/1/2013	10	172	530.47	1.95
Grader	2	Diesel	540	319	637	8/5/2012	5/1/2013	10	172	530.47	1.95
Roller	4	Diesel	147	87	347	8/5/2012	5/1/2013	10	172	530.41	1.95
Back hoe	4	Diesel	97	57	229	8/5/2012	5/1/2013	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	8/5/2012	5/1/2013	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	8/5/2012	5/1/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	8/5/2012	5/1/2013	10	172	589.74	2.17
Wheel Loader Construction Equipment Total	0	Diesel	0	0	0	8/5/2012	5/1/2013	10	172	589.74	2.17
PTG 7 - FDR & Widening	10								1		
Wheel Loader	2	Diesel	197	116	232	9/2/2012	6/3/2013	10	172	530.41	1.95
Scraper	2	Diesel	500	295	590	9/2/2012	6/3/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	530.47	1.95
Grader	2	Diesel	540	319	637	9/2/2012	6/3/2013	10	172	530.47	1.95
Roller	4	Diesel	147	87	347	9/2/2012	6/3/2013	10	172	530.41	1.95
Back hoe	4	Diesel	97	57	229	9/2/2012	6/3/2013	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	9/2/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	9/2/2012 9/2/2012	6/3/2013 6/3/2013	10 10	172 172	589.74 589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Construction Equipment Total	16										
PB17 - Overlay										_	
Cold Planer	1	Diesel	545	322	322	9/1/2012	6/3/2013	10	172	530.47	1.95
Roller	2	Gasoline	147	87	173	9/2/2012	6/3/2013	10	172	530.41	1.95
Back hoe	1	Electric	97	57	57	9/2/2012	6/3/2013	10	172	589.74	2.17
Paving Machine	1	Electric	130	77	77	9/2/2012	6/3/2013	10	172	530.41	1.95
Construction Equipment Total PTG 11 - FDR	5			l	1	1	I	I	1		1
Wheel Loader	1	Diesel	197	116	116	10/2/2010	7/4/2011	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	10/2/2010	7/4/2011	10	172	530.41	1.95
Reclaimer	1	Diesel	540	319	319	10/2/2010	7/4/2011	10	172	530.47	1.95
Grader	1	Diesel	540	319	319	10/2/2010	7/4/2011	10	172	530.47	1.95
Roller	2	Diesel	147	87	173	10/2/2010	7/4/2011	10	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	10/2/2010	7/4/2011	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	10/2/2010	7/4/2011	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	2.17
Wheel Loader	0 9	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	2.17
Construction Equipment Total PTG 12 - FDR	Э			1	1	1	1	1	1		1
Wheel Loader	1	Diesel	197	116	116	10/2/2010	7/4/2011	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	10/2/2010	7/4/2011	10	172	530.47	1.95
Grader	1	Diesel	540	319	319	10/2/2010	7/4/2011	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	10/2/2010	7/4/2011	10	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	10/2/2010	7/4/2011	10	172	589.74	2.17
Paving Machine	2	Diesel	130	77	153	10/2/2010	7/4/2011	10	172	530.41	1.95
Wheel Loader	1	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	2.17

Guam Haul Road Construction Emission Analysis Central1 - Equipment

Construction Equipment	Number of	Type of	Equipment Rated	Average Equipment Usage	Total Utilized Equipment HP	Start Date	End Date	Act	ruction tivity ation		ant Emission ors ⁽³⁾
	Units	Fuel	HP ⁽²⁾ hp/hr	of HP ⁽²⁾ hrs	(all units) hp/hr			Months	(4) hrs/month	CO2 g/hp-hr	SO2
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	g/hp-hr 2.17
Wheel Loader	0	Diesel	0	0	0	10/2/2010	7/4/2011	10	172	589.74	2.17
Construction Equipment Total	9										<u> </u>
PTG 13 - FDR	1	Dissel	197	440	440	0/4/0040	0/4/0040	10	172	500.44	4.05
Wheel Loader Scraper	1	Diesel Diesel	500	116 295	116 295	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10	172	530.41 530.47	1.95
Grader	1	Diesel	540	319	319	9/1/2012	6/1/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/1/2012	6/1/2013	10	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	9/1/2012	6/1/2013	10	172	589.74	2.17
Paving Machine Wheel Loader	2	Diesel Diesel	130 0	77 0	153 0	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10 10	172 172	530.41 589.74	1.95 2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Construction Equipment Total PTG 14 - FDR	9										<u> </u>
Wheel Loader	1	Diesel	197	116	116	9/1/2012	6/1/2013	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/1/2012	6/1/2013	10	172	530.47	1.95
Grader	1	Diesel	540	319	319	9/1/2012	6/1/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/1/2012	6/1/2013	10	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	9/1/2012	6/1/2013	10	172	589.74	2.17
Paving Machine Wheel Loader	2	Diesel Diesel	130 0	77 0	153 0	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10 10	172 172	530.41 589.74	1.95 2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Construction Equipment Total	9				<u> </u>			<u> </u>			<u> </u>
PTG 15 - FDR	4	Dies-1	407	446	446	9/1/2012	6/4/0040	40	470	520.44	4.05
Wheel Loader Scraper	1	Diesel Diesel	197 500	116 295	116 295	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10 10	172 172	530.41 530.47	1.95 1.95
Grader	1	Diesel	540	319	319	9/1/2012	6/1/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/1/2012	6/1/2013	10	172	530.47	1.95
Back hoe	2	Diesel	97	57	114	9/1/2012	6/1/2013	10	172	589.74	2.17
Paving Machine	2	Diesel	130	77	153	9/1/2012	6/1/2013	10	172	530.41	1.95
Wheel Loader	1	Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Wheel Loader Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/1/2013	10	172 172	589.74	2.17
Wheel Loader	0	Diesel Diesel	0	0	0	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10 10	172	589.74 589.74	2.17 2.17
Construction Equipment Total	9	210001	Ŭ		Ŭ	0/1/2012	0/1/2010	10		000.11	2
PTG 16 - Widening & Overlay								T			
Wheel Loader	1	Diesel	197	116	116	9/1/2012	6/1/2013	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/1/2012	6/1/2013	10	172	530.47	1.95
Grader Cold Planer	1	Diesel Diesel	540 545	319 322	319 322	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10 10	172 172	530.47 530.47	1.95 1.95
Back hoe	2	Diesel	97	57	114	9/1/2012	6/1/2013	10	172	589.74	2.17
Roller	4	Diesel	147	87	347	9/1/2012	6/1/2013	10	172	530.41	1.95
Back hoe	3	Diesel	97	57	172	9/1/2012	6/1/2013	10	172	589.74	2.17
Paving Machine	2	Diesel	130	77	153	9/1/2012	6/1/2013	10	172	530.41	1.95
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	9/1/2012 9/1/2012	6/1/2013 6/1/2013	10 10	172 172	589.74 589.74	2.17 2.17
Construction Equipment Total	15	Diesei	0	U	0	9/1/2012	6/1/2013	10	172	589.74	2.17
PB18 - FDR					1			I	1		
Wheel Loader	1	Diesel	197	116	116	9/1/2012	6/3/2013	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/1/2012	6/3/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/1/2012	6/3/2013	10	172	530.47	1.95
Grader Roller	2	Diesel	540 147	319 87	319 173	9/1/2012 9/1/2012	6/3/2013 6/3/2013	10	172	530.47 530.41	1.95
Back hoe	2	Diesel	97	57	173	9/1/2012	6/3/2013	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	9/1/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader Construction Equipment Total	0 9	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17
PB19 - FDR				0	1		0	1	1		1
Wheel Loader	1	Diesel	197	116	116	9/1/2012	6/3/2013	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/1/2012	6/3/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/1/2012	6/3/2013	10	172	530.47	1.95
Grader	1	Diesel	540	319	319	9/1/2012	6/3/2013	10	172	530.47	1.95
Roller Back hoe	2	Diesel Diesel	147 97	87 57	173 114	9/1/2012 9/1/2012	6/3/2013 6/3/2013	10 10	172 172	530.41 589.74	1.95 2.17
Paving Machine	1	Diesel	130	77	77	9/1/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17
Construction Equipment Total	9			1	L						1
PB20 - FDR Wheel Loader	1	Diesel	197	116	116	9/1/2012	6/3/2013	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/1/2012	6/3/2013	10	172	530.41	1.95
Reclaimer	1	Diesel	540	319	319	9/1/2012	6/3/2013	10	172	530.47	1.95
Grader	1	Diesel	540	319	319	9/1/2012	6/3/2013	10	172	530.47	1.95
Roller	2	Diesel	147	87	173	9/1/2012	6/3/2013	10	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	9/1/2012	6/3/2013	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	9/1/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader	0	Diesel Diesel	0	0	0	9/1/2012 9/1/2012	6/3/2013 6/3/2013	10 10	172 172	589.74 589.74	2.17
Wheel Loader					. U		0/3/2013				4.17
Wheel Loader Wheel Loader	0	Diesel	0	0	0	9/1/2012	6/3/2013	10	172	589.74	2.17

Guam Haul Road Construction Emission Analysis Central1 - Equipment

Construction Equipment of Name Rate Name Name of Name Name Name Name Name Name Name <th< th=""><th></th><th>Number</th><th>Туре</th><th>Equipment</th><th>Average Equipment</th><th>Total Utilized Equipment</th><th>Start</th><th>End</th><th>Act</th><th>ruction tivity ation</th><th>Diesel Pollut</th><th>ant Emission</th></th<>		Number	Туре	Equipment	Average Equipment	Total Utilized Equipment	Start	End	Act	ruction tivity ation	Diesel Pollut	ant Emission
Apple A	Construction Equipment		of	Rated	Usage	HP					Fact	ors ⁽³⁾
Code Phene 1 Denetel 197 198 198 64:003 10 172 58:04. 1.68 Bish Ace 1 Desset 07 67 07.0021 64:003 10 172 58:04. 1.68 Bish Ace 1 Desset 07 07 07.0021 64:003 10 172 58:04. 1.68 Bish Ace 0 Desset 1.07 07.0021 64:003 10 172 58:04. 1.68 Bish Ace 0 Desset 0 0 0 07.0021 64:003 10 172 58:07 2.77 Wreat Loader 0 Desset 0 0 0 0 0.021 64:003 10 172 58:07 2.77 Wreat Loader 0 Desset 60 0 0 0.021 64:003 10 172 58:07 2.57 172 58:07 2.57 127 58:07 2.57 172 <th></th> <th></th> <th></th> <th>hp/hr</th> <th>hrs</th> <th></th> <th></th> <th></th> <th>Months</th> <th></th> <th>g/hp-hr</th> <th>g/hp-hr</th>				hp/hr	hrs				Months		g/hp-hr	g/hp-hr
Rader1Deed1.47B.701.700.102010.102010.1021.725.804.41.60Pareig Machine1Deed1.307.77.77.1021.20.102310.101.725.804.41.80Rade A0Deed1.307.77.77.1021.20.102311.011.725.804.41.85Rade A0Deed0.000.102310.102311.011.725.804.41.85Rade A0Deed0.000.00.002311.011.725.804.41.85Valla Lokar0Deed0.000.00.012311.011.725.804.41.85Valla Lokar0Deed1.000.00.012011.2023141.51.725.804.41.85Valla Lokar1Deed1.000.00.012011.2023141.51.725.804.41.85Rade A1Deed1.802.70De20141.51.725.804.41.85Rade A1Deed1.802.700.702011.2024141.51.725.804.41.85Rade A1Deed1.602.700.702011.2024141.51.725.804.41.85Rade A1Deed1.601.701.2024141.51.725.804.41.75Rade A1Deed1.701.7021.2024141.51.72 <t< td=""><td></td><td></td><td>Discol</td><td>407</td><td>110</td><td>440</td><td>0/4/0040</td><td>0/4/004.0</td><td>40</td><td>470</td><td>500.44</td><td>4.05</td></t<>			Discol	407	110	440	0/4/0040	0/4/004.0	40	470	500.44	4.05
Bach hoe10eso100eso100eso100eso100eso100eso10 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Pand Markine1Desc100777791/201210010110117250.411.56Back Non0Diese107877091/2012101/21210117250.841.56Back Non0Diese1007777091/201210117250.841.55Wheel Looler0Diese1000091/2012101/21210117250.841.55Wheel Looler0Diese00091/2012101/201310017250.841.21Wheel Looler0Diese00091/2012101/201310017250.841.21Constantion Eugenent Total7Diese10017110017250.841.31116122100/201311711750.841.36Realman1Diese100277101/2013102/20141517250.841.36Realman1Diese100777777101/2013102/20141517250.841.36Realman1Diese100777777101/2013102/20141517250.841.36Realman1Diese100777771101/2013102/20141517250.841.36Realman1Diese100777771101/2013102/201416 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Rolar0Desc9/7												
Pinelogeneries0.Desc1.00PT0.91/201291/20131.011.7295.811.25Winel Loader0.Desc0.0.0.91/20141.011.7295.812.17Winel Loader0.Desc0.0.91/201491/20131.011.7295.812.17Winel Loader1.0Desc		0	Diesel	147	87	0	9/1/2012	6/1/2013	10	172	530.41	1.95
Nime Loader000 <th< td=""><td>Back hoe</td><td>0</td><td>Diesel</td><td>97</td><td>57</td><td>0</td><td>9/1/2012</td><td>6/1/2013</td><td>10</td><td>172</td><td>589.74</td><td>2.17</td></th<>	Back hoe	0	Diesel	97	57	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Ninesi Loader 0 Desci 0 0 91/2012 91/2013 100 172 98/24 2.17 Construction Equipment Total 6 1 172 98/24 1.15 <td>Paving Machine</td> <td>0</td> <td>Diesel</td> <td>130</td> <td>77</td> <td>0</td> <td>9/1/2012</td> <td>6/1/2013</td> <td>10</td> <td>172</td> <td>530.41</td> <td>1.95</td>	Paving Machine	0	Diesel	130	77	0	9/1/2012	6/1/2013	10	172	530.41	1.95
Ninet Loader 0 0 0 9/10/12 9/12/12 <td></td>												
Construction Subjement Total5ImageJune<				-	-							
PB2.9. ProblemProble			Diesel	0	0	0	9/1/2012	6/1/2013	10	172	589.74	2.17
Nine Loader20001161221013		5										
Scaper 2 Denel 500 127(2014 15 172 500.77 155 Grader 2 Desel 540 319 637 1071/203 122/2014 15 172 530.47 135 Grader 4 Desel 147 87 347 1071/2013 122/2014 15 172 593.41 135 Back hone 4 Desel 130 77 77 1071/2013 122/2014 15 172 593.41 135 Wheel Loader 0 Desel 0 0 101/2013 122/2014 15 172 593.41 2.17 Wheel Loader 0 Desel 10 0 101/2013 122/2014 156/2015 10 172 593.41 155 Vester Loader 0 Desel 540 319 537 87/2014 56/2015 10 172 593.41 155 Kreet 1 Desel 540 319 <td></td> <td>2</td> <td>Diesel</td> <td>107</td> <td>116</td> <td>232</td> <td>10/1/2013</td> <td>12/3/2014</td> <td>15</td> <td>172</td> <td>530.41</td> <td>1 95</td>		2	Diesel	107	116	232	10/1/2013	12/3/2014	15	172	530.41	1 95
Reclament 1 Desel 540 319 101/10103 122/2014 15 172 50.307 1.35 Roler 4 Desel 147 87 347 101/10103 122/2014 15 172 530.41 1.35 Back hoe 4 Desel 147 87 247 101/10103 122/2014 15 172 530.41 1.35 Back hoe 0 Desel 0 0 101/12013 122/2014 15 172 593.74 2.17 Wheel Loader 0 Desel 0 0 101/12013 122/2014 15 172 593.74 2.17 Protechader 0 Desel 190 0.72 116 222 97/2014 54/2015 10 172 530.47 1.35 Sergar 2 Desel 190 577 278 97/2014 54/2015 10 172 530.47 1.35 Sergar 10 Des												
Grader 2 Deeel 540 319 637 101/2013 123/2014 15. 172 530.41 1.35 Back hoe 4 Desel 97 57 223 101/2013 123/2014 15. 172 893.41 1.35 Pandy Machine 1 Desel 0 0 0 101/2013 123/2014 15. 172 893.41 1.35 Morel Loader 0 Desel 0 0 0 101/2013 123/2014 15. 172 593.41 2.17 Wheel Loader 0 Desel 0 0 0 101/2013 123/2014 15. 172 593.41 1.55 Scaper 2 Desel 590 101 172 593.41 1.65 Scaper 2 Desel 590 295 90 97/2014 59/2015 10 172 590.41 1.85 Scaper 2 Desel 590 29/2014												
Rolar 4 Desci 147 87 347 101/2013 122/2014 15 172 580.10 1.32 Pasing Machine 1 Desci 130 77 77 101/2013 123/2014 15 172 580.41 1.35 Neale Loader 0 Desci 0 0 101/2013 123/2014 15 172 589.74 2.17 Wheel Loader 0 Desci 0 0 101/2013 123/2014 15 172 589.74 2.17 Res Machine 16 123/2014 545.2015 10 172 550.41 1.35 Restare 2 Desci 550 228 570.077/2014 542/2015 10 172 550.47 1.35 Scapar 1 Desci 540 379 377 72/2014 542/2015 10 172 550.47 1.35 Scapar 1 Desci 77 77 <td></td>												
Paving Machine 1 Desset 100 77 77 101/2003 12/22014 15 172 58.0.4. 18.5 Moesl Loader 0 Desset 0 0 101/2003 12/22014 155 172 58.9.7.4 2.17 Moesl Loader 0 Desset 0 0 101/2003 12/22014 155 172 58.9.7.4 2.17 Construction Equipment Total 16 Image 101/12013 12/22014 156 101 172 58.0.4.1 158 Rolader 2 Desset 500 255 580 570014 562015 10 172 58.0.4.1 158 Scarger 2 Desset 540 319 637 267.014 462015 10 172 58.0.4.1 158 Scarger 2 Desset 570 259 670014 462015 10 172 58.0.4.1 158 Notel Loader 0 Desset 50				147	87	347			15	172		1.95
Nmel Laader 0 Deset 0 0 107/2031 12/20314 15 172 589.74 2.17 Nmel Laader 0 Deset 0 0 107/2031 12/20314 15 172 589.74 2.17 Meal Laader 0 Deset 10 0 107/2031 12/20314 155 172 589.74 2.17 PB2 - Widening F DR - <td>Back hoe</td> <td>4</td> <td>Diesel</td> <td>97</td> <td>57</td> <td>229</td> <td></td> <td>12/3/2014</td> <td>15</td> <td>172</td> <td>589.74</td> <td>2.17</td>	Back hoe	4	Diesel	97	57	229		12/3/2014	15	172	589.74	2.17
Nmeel Laader 0 Deset 0 0 101/2013 12/2014 15 172 589.74 2.17 Construction Equipment Total 16 I <th< td=""><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>		-										
Wheel Lander O O O IV/2013 12/202014 15 172 58/74 2.17 PB 29-Wikening & FDR I IV IV/2013 58/2014 58/2015 101 172 58/2017 138 Rolar 4 Desel 54/0 339 339 8/7014 56/2015 101 172 58/217 138 Rolar 4 Desel 97 57 229 8/72014 56/2015 101 172 58/214 217 Wreet Lander 0 Desel 0 0 8/72014 56/2015 101 172 58/214 217 Wreet Lander 0 Desel 0 0 0 8/72014 101 172 58/214												
Construction Equipment Total 16 17 <												
PE 29. Withoning & FDR			Diesel	0	0	0	10/1/2013	12/3/2014	15	172	589.74	2.17
Winel Loader 2 Diesel 197 116 222 2772014 SF02015 10 172 630.47 135 Reclamer 1 Desel 560 319 319 872014 5F02015 10 172 630.47 135 Gader 2 Desel 540 319 637 872014 5F02015 10 172 630.47 135 Gader 4 Desel 147 87 347 8772014 5F02015 10 172 630.41 195 Shekhoe 4 Desel 0 0 0 8772014 5F02015 10 172 580.44 2.17 Wheel Loader 0 Desel 0 0 0 872014 5F02015 10 172 580.74 2.17 Coastruction Equipment Total 1 Desel 512 322 872014 5F02015 10 172 580.47 1.95 S60.47 1.95 S60.47<		10										
Scraper 2 Desal 500 226 590 87/2014 55/2015 10 172 630.47 195 Grader 1 Diesel 540 319 677.014 55/2015 10 172 630.47 195 Grader 4 Diesel 147 67 347 677.014 55/2015 10 172 530.47 195 Back hoe 4 Diesel 77 77 877.2014 55/2015 10 172 530.41 4.95 Back hoe 1 Diesel 0 0 0 877.2014 55/2015 10 172 538.74 2.17 Wheel Loader 0 Diesel 0 0 0 877.2014 55/2015 10 172 538.74 2.17 Paso-Overbay		2	Diesel	107	116	232	8/7/2014	5/6/2015	10	172	530.41	1 95
Braclamer 1 Desel 540 319 319 97/2014 56/2015 10 172 630.47 195 Roler 4 Desel 147 87 347 87/2014 5/6/2015 10 172 530.47 195 Roler 4 Desel 197 57 223 87/2014 5/6/2015 10 172 5/80.41 195 Paving Machine 1 Desel 100 0 87/2014 5/6/2015 10 172 5/80.41 1.95 Wheel Loader 0 Desel 0 0 87/2014 5/6/2015 10 172 5/80.74 2.17 Wheel Loader 0 Desel 0 0 87/2014 5/1/2014 10 172 5/80.47 1.95 Roler 1 Desel 147 87 173 8/2/2013 5/1/2014 10 172 5/80.47 1.95 Roler 0 Deseel 177												
Grader 2 Diesel 540 319 637 87/2014 569/2015 10 172 50.47 195 Backhoe 4 Diesel 97 57 229 87/2014 569/2015 10 172 50.41 195 Backhoe 0 Diesel 07 77 87/2014 568/2015 10 172 50.80.11 195 Wheel Loader 0 Diesel 0 0 0 87/2014 568/2015 10 172 50.89.74 2.17 Wheel Loader 0 Diesel 0 0 0 87/2014 568/2015 10 172 50.89.74 2.17 Pass Oversym T T T T T 569/201 10 172 50.89.74 2.17 Pass Oversym T T T 87/2014 56/2015 10 172 50.47 195 Roler 1 Diesel 545 322 322												
Back hoe 4 Diesel 97 57 229 87/2014 56/8015 10 172 58/974 21.1 Paving Machine 0 Diesel 0 0 0 67/2014 56/8015 10 172 58/974 2.17 Wheel Loader 0 Diesel 0 0 0 87/2014 56/2015 10 172 58/974 2.17 Wheel Loader 0 Diesel 0 0 0 87/2014 56/2015 10 172 58/974 2.17 Construction Equipment Total 16 87/2014 56/2015 10 172 58/974 2.17 Pasion Contragent 1 Diesel 545 322 322 8/22013 51/2014 10 172 58/974 2.17 Pasing Machine 1 Diesel 130 77 77 8/22013 51/2014 10 172 58/974 2.17 Paving Machine <t< td=""><td>Grader</td><td>2</td><td>Diesel</td><td>540</td><td>319</td><td>637</td><td></td><td></td><td>10</td><td>172</td><td>530.47</td><td>1.95</td></t<>	Grader	2	Diesel	540	319	637			10	172	530.47	1.95
Paving Machine 1 Desel 130 77 77 87/2014 54/2015 100 172 530.41 195 Wheel Loader 0 Diesel 0 0 87/2014 56/2015 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 87/2014 56/2015 10 172 589.74 2.17 Wheel Loader 0 Diesel 545 322 322 87/2014 10 172 589.74 2.17 Cold Pliner 1 Diesel 545 322 322 87/2014 10 172 530.47 1.95 Roller 1 Diesel 97 57 67 8/2/2013 51/2014 10 172 530.41 1.95 Back hoe 0 Diesel 97 77 0 8/2/2013 51/2014 10 172 589.74 2.17 Paving Machine 0 Diesel 77 0	Roller	4	Diesel	147	87	347	8/7/2014	5/6/2015	10	172	530.41	1.95
Wheel Loader 0 Dissel 0 0 87/2014 568/2015 10 172 599.74 2.17 Wheel Loader 0 Dissel 0 0 87/2014 56/2015 10 172 589.74 2.17 Wheel Loader 0 Dissel 0 0 87/2014 56/2015 10 172 589.74 2.17 Construction Equipment Total 16 57 57 87/2014 10 172 589.74 2.17 Paso -Overay 545 322 322 87/2014 10 172 530.47 195 Back hoe 1 Dissel 130 77 77 8/22013 51/2014 10 172 530.41 1.95 Back hoe 0 Dissel 130 77 0 8/22013 51/2014 10 172 539.74 2.17 Wheel Loader 0 Dissel 0 0	Back hoe	4	Diesel	97	57	229	8/7/2014	5/6/2015	10	172	589.74	2.17
Wheel Loader 0 Diesel 0 0 87/2014 56/2015 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 87/2014 56/2015 10 172 589.74 2.17 PB30-Overlay												
Wheel Loader 0 Diesel 0 0 87/2014 56/2015 10 172 589.74 2.17 Construction Equipment Total 16												
Construction Equipment Total 16 16 17 <				-								
PB30-Overlay Image: Cold Planer State St		1 1	Diesel	0	0	0	8/7/2014	5/6/2015	10	1/2	589.74	2.17
Cold Planer 1 Diesel 545 322 322 8/2/2013 5/1/2014 10 172 530.47 1.95 Roller 2 Diesel 147 87 113 8/2/2013 5/1/2014 10 172 530.47 1.95 Back hoe 1 Diesel 97 57 57 8/2/2013 5/1/2014 10 172 530.41 1.95 Back hoe 0 Diesel 130 77 77 8/2/2013 5/1/2014 10 172 530.41 1.95 Back hoe 0 Diesel 97 57 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Back hoe 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Stack hoe 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 530.47 1.95 Construction Equipment Total <td></td> <td>10</td> <td></td> <td></td> <td>I</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td>		10			I			1				
Roller 2 Diesel 147 87 173 8/2/2013 5/1/2014 10 172 5/30.41 1.95 Back hoe 1 Diesel 130 77 77 8/2/2013 5/1/2014 10 172 5/30.41 1.95 Boler 0 Diesel 147 87 0 8/2/2013 5/1/2014 10 172 5/30.41 1.95 Back hoe 0 Diesel 97 57 0 8/2/2013 5/1/2014 10 172 5/80.41 1.95 Back hoe 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 5/80.74 2.17 Wheel Loader 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 5/80.74 2.17 Wheel Loader 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 5/80.74 2.17 PB31 - FDR 1<		1	Diesel	545	322	322	8/2/2013	5/1/2014	10	172	530.47	1.95
Paxing Machine 1 Diesel 130 77 77 8/2/2013 5/1/2014 10 172 530.41 1.95 Roller 0 Diesel 147 87 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Back hoe 0 Diesel 97 57 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 0 8/2/2013 5/1/2014 10 172 530.47 1.95 Scraper 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1												
Roller 0 Diesel 147 87 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Back hoe 0 Diesel 97 57 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 2.17 592.75 11 11/2 12 592.74 2.17 Construction Equipment Total 1 Diesel 500 295 296 11/1/2012 5/2/2014 19 172 530.47 1.95 5 1.95 5<	Back hoe	1	Diesel	97	57	57	8/2/2013	5/1/2014	10	172	589.74	2.17
Back hoe 0 Diesel 97 57 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Paving Machine 0 Diesel 130 77 0 8/2/2013 5/1/2014 10 172 530.41 195 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Onsurction Equipment Total 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Paving Machine 1 Diesel 500 20 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 0 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1 Die	Paving Machine	1	Diesel	130	77	77	8/2/2013	5/1/2014	10	172	530.41	1.95
Paving Machine 0 Diesel 130 77 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 0 0 8/2/2013 5/1/2014 10 172 530.41 1.95 Scraper 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Roller 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Roller 1	Roller	0	Diesel	147	87	0	8/2/2013	5/1/2014	10	172	530.41	
Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 5/1/2014 10 172 589.74 2.17 Wheel Loader 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Scraper 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Back hoe 2 Diesel 0 0<	Back hoe	0	Diesel	97	57	0	8/2/2013		10	172	589.74	2.17
Wheel Loader 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 2.17 589.74 2.17 Construction Equipment Total 5 11/1/2012 5/2/2014 19 172 530.41 1.95 Scraper 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 2 Diesel 77 77 11/1/2012 5/2/2014 19 172 589.74 2.17 Reclainer D												
Wheel Loader 0 Diesel 0 0 8/2/2013 5/1/2014 10 172 589.74 2.17 Construction Equipment Total 5 2.17 PB31 - FDR 2.17 Bast - FDR Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Scraper 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Raclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Raclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 580.41 1.95 <tr< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr<>												
Construction Equipment Total 5												
PB31 - FDR - Wheel Loader 1 Diesel 197 116 116 11/1/2012 5/2/2014 19 172 530.41 1.95 Scraper 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Back hoe 2 Diesel 147 87 173 11/1/2012 5/2/2014 19 172 530.41 1.95 Back hoe 1 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172			Diesei	0	0	0	8/2/2013	5/1/2014	10	172	589.74	2.17
Wheel Loader 1 Diesel 197 116 116 11/1/2012 5/2/2014 19 172 530.41 1.95 Scraper 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Roller 2 Diesel 97 57 114 11/1/2012 5/2/2014 19 172 530.41 1.95 Back hoe 2 Diesel 97 57 114 11/1/2012 5/2/2014 19 172 580.41 1.95 Wheel Loader 0 Diesel 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Lo					I	1		I	1	1		ı
Scraper 1 Diesel 500 295 295 11/1/2012 5/2/2014 19 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Roller 2 Diesel 147 87 173 11/1/2012 5/2/2014 19 172 530.41 1.95 Back hoe 2 Diesel 97 57 114 11/1/2012 5/2/2014 19 172 589.74 2.17 Paving Machine 1 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Construction E		1	Diesel	197	116	116	11/1/2012	5/2/2014	19	172	530.41	1.95
Reclaimer 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Grader 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Roller 2 Diesel 147 87 173 11/1/2012 5/2/2014 19 172 530.47 1.95 Back hoe 2 Diesel 97 57 114 11/1/2012 5/2/2014 19 172 589.74 2.17 Paving Machine 1 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17												
Grader 1 Diesel 540 319 319 11/1/2012 5/2/2014 19 172 530.47 1.95 Roller 2 Diesel 147 87 173 11/1/2012 5/2/2014 19 172 530.41 1.95 Back hoe 2 Diesel 97 57 114 11/1/2012 5/2/2014 19 172 530.41 1.95 Paving Machine 1 Diesel 100 0 0 11/1/12012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 <td></td>												
Back hoe 2 Diesel 97 67 114 11/1/2012 5/2/2014 19 172 589.74 2.17 Paving Machine 1 Diesel 130 77 77 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Construction Equipment Total 9 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Mheel Loader 0 Diesel 10 0 0 0 11/1/2012 5/2/2014 13 172 589.74 2.17<	Grader		Diesel	540	319	319		5/2/2014	19	172	530.47	1.95
Paving Machine 1 Diesel 130 77 77 11/1/2012 5/2/2014 19 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 10 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 2 Diesel 197 116 232 8/1/2013 8/2/2014 13 172 530.47 1.95 Scraper 2												
Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Construction Equipment Total 9 9 110 5/2/2014 19 172 589.74 2.17 PB 33 - Widening & FDR	Back hoe	2	Diesel	97	57	114	11/1/2012		19	172	589.74	2.17
Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Construction Equipment Total 9 1 172 589.74 2.17 PB 33 - Widening & FDR 1 172 530.41 1.95 Scraper 2 Diesel 197 116 232 8/1/2013 8/2/2014 13 172 530.47 1.95 Scraper 2 Diesel 540 319 319 8/1/2013 8/2/2014 13 172 530.47 1.95 Roller 1 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Roller 4 Diesel 540 319 637 8/1/2013	· ·	1			77	77						
Wheel Loader 0 Diesel 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 Construction Equipment Total 9 0 0 0 11/1/2012 5/2/2014 19 172 589.74 2.17 PB 33 - Widening & FDR 172 530.41 1.95 Scraper 2 Diesel 197 116 232 8/1/2013 8/2/2014 13 172 530.41 1.95 Scraper 2 Diesel 500 295 590 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.41 1.95 Back hoe 4 Diesel 97												
Construction Equipment Total 9 -												
PB 33 - Widening & FDR v Wheel Loader 2 Diesel 197 116 232 8/1/2013 8/2/2014 13 172 530.41 1.95 Scraper 2 Diesel 500 295 590 8/1/2013 8/2/2014 13 172 530.41 1.95 Reclaimer 1 Diesel 540 319 319 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Roller 4 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 580.41 1.95 Back hoe 1 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 </td <td></td> <td></td> <td>Diesei</td> <td>U</td> <td>J</td> <td>0</td> <td>11/1/2012</td> <td>JIZIZU14</td> <td>13</td> <td>1/2</td> <td>JUJ.14</td> <td>2.17</td>			Diesei	U	J	0	11/1/2012	JIZIZU14	13	1/2	JUJ.14	2.17
Wheel Loader 2 Diesel 197 116 232 8/1/2013 8/2/2014 13 172 530.41 1.95 Scraper 2 Diesel 500 295 590 8/1/2013 8/2/2014 13 172 530.41 1.95 Reclaimer 1 Diesel 540 319 319 8/1/2013 8/2/2014 13 172 530.47 1.95 Reclaimer 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Roller 4 Diesel 147 87 347 8/1/2013 8/2/2014 13 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 530.41 1.95 Back hoe 4 Diesel 130 77 77 8/1/2013 8/2/2014 13 172 530.41 1.95					1	1		1				·
Scraper 2 Diesel 500 295 590 8/1/2013 8/2/2014 13 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Roller 4 Diesel 147 87 347 8/1/2013 8/2/2014 13 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 589.74 2.17 Paving Machine 1 Diesel 130 77 77 8/1/2013 8/2/2014 13 172 589.74 2.17 <t< td=""><td></td><td>2</td><td>Diesel</td><td>197</td><td>116</td><td>232</td><td>8/1/2013</td><td>8/2/2014</td><td>13</td><td>172</td><td>530.41</td><td>1.95</td></t<>		2	Diesel	197	116	232	8/1/2013	8/2/2014	13	172	530.41	1.95
Reclaimer 1 Diesel 540 319 319 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 540 319 637 8/1/2013 8/2/2014 13 172 530.47 1.95 Grader 2 Diesel 147 87 8/1/2013 8/2/2014 13 172 530.47 1.95 Boller 4 Diesel 147 87 347 8/1/2013 8/2/2014 13 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 530.41 1.95 Paving Machine 1 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17 Wheel Loader 0												
Roller 4 Diesel 147 87 347 8/1/2013 8/2/2014 13 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 530.41 1.95 Paving Machine 1 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 8/1/2013 8/2/2014 13 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17												
Back hoe 4 Diesel 97 57 229 8/1/2013 8/2/2014 13 172 589.74 2.17 Paving Machine 1 Diesel 130 77 77 8/1/2013 8/2/2014 13 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17	Grader	2	Diesel	540	319	637	8/1/2013	8/2/2014	13	172	530.47	1.95
Paving Machine 1 Diesel 130 77 8/1/2013 8/2/2014 13 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 8/1/2013 8/2/2014 13 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17												
Wheel Loader 0 Diesel 0 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17												
Wheel Loader 0 Diesel 0 0 8/1/2013 8/2/2014 13 172 589.74 2.17												
0 0/1/2013 0/2/2014 13 1/2 309./4 2.1/												
Construction Equipment Total 16			Diesei	U	U	U	0/1/2013	0/2/2014	13	1/2	309.74	2.17

Guam Haul Road Construction Emission Analysis Central 2- Equipment

Units Fuel HP ⁽²⁾ of HP ⁽²⁾ (all units) (4) CO2 SO2	Construction Equipment	Number of	Type of	Equipment Rated	Average Equipment Usage	Total Utilized Equipment HP	Start Date	End Date	Ac	tivity ration	Diesel Pollut Factor	
PTOP. Problem of the serie		Units		HP ⁽²⁾	of HP ⁽²⁾	(all units)			Months			SO2 g/hp-hr
Some1Dere360285693190190001290172693.47180Graw1Deres147070719020119020124172693.4193Graw2Deres1470719719020119020124172693.4193Graw2Deres10019020119020124172693.4193Graw00019020119020124172693.4193Graw000019020119020124172693.4193Graw0000019020119020124172693.4193Graw0000019020119020124172693.4193	PTG36 - Widening											
Snahe <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
BaheDateDatePar <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Bach harm2Denset9711.091.021191.021191.021191.0294.097.095.0Paring Marton0Denset0.07700101.01191.021184.097.097.09		-										
Panel MathmaQDiselSignT/TSignUPU211UPU211ALT/TSignN/TSignN/TSignN/TSignN/T </td <td></td>												
Pace algomina0Desc1909700190701490701241701908040180Vine Loars019070119070124170590701241705907024170590702417059070241705907024170590702417059070241705907024170590702559070255907025590702559070255907025590702507025590702507002559070250700 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>												
Numel Lossen0Desci000100201191200324107980202.02.07.												
Number0Dest00												
Neet over and a set of												
Control Calamine TealII <th< td=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>				-								
PTC4F - C6A AVMARINGImage <t< td=""><td></td><td></td><td>Diesei</td><td>0</td><td>0</td><td>0</td><td>10/1/2011</td><td>9/10/2013</td><td>24</td><td>172</td><td>589.74</td><td>2.17</td></t<>			Diesei	0	0	0	10/1/2011	9/10/2013	24	172	589.74	2.17
Neel sector2Desc192192192102021317253.0713.Reclamer1Desc490276172172172173.0713.Reclamer2Desc180170172172172172.0713.Reclamer4Desc180170170170.02013172152.0713.Reclamer4Desc170170170.02013172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.172152.0713.13.17213		0								l l		
Sequence 1 Denset 960 1928 1929 1928071 3 172 589.47 198.5 Grader 2 Denset 580 39 671 19282072 1928073 3 172 589.47 198.5 Grader 4 Denset 580 37 12282072 1928073 3 172 588.41 158.5 Steader 4 Denset 60 0 17282072 1928073 3 172 588.41 2.5 Weed Londer 0 Denset 0 0 0 17282072 1928073 3 172 588.74 2.17 Weed Londer 0 0 0 0 17282072 1928073 3 172 588.47 1.58 Steader 1 172 172 172 172 172 172 172 183 Steader 1 172 172 172 153 172 153 <t< td=""><td></td><td>2</td><td>Diocol</td><td>107</td><td>116</td><td>222</td><td>11/28/2012</td><td>1/20/2012</td><td>2</td><td>172</td><td>520.41</td><td>1.05</td></t<>		2	Diocol	107	116	222	11/28/2012	1/20/2012	2	172	520.41	1.05
Second 1 Densel 540 349 172 172 530.77 153 Solar 4 Desel 147 177 77 17222012 3 172 530.74 153 Solar 4 Desel 177 77 1722021 3 172 530.74 153 Solar 10 Desel 100 77 17120217 1002013 3 172 530.74 153 Solar 0 Desel 0 0 0 12022012 3 172 530.74 153 Solar 0 Desel 100 10 12022012 1002013 3 172 530.47 153 Solar 116 22 11202012 1002013 3 172 530.47 153 Solar 116 1202012 10202013 3 172 530.47 153 Solar 116 1120 110202013 3 172				-								
Cander9000010010010<												
Scher4.Dead147B747102202110202013.172580580Pang Machine1Dead13077771122021210202133.1725802.17Pang Machine0Dead100010220211.3020133.1725802.17Whell Lowine0Dead000112202011.3020133.172580.242.17Whell Lowine0Dead000112202011.3020133.172580.442.17Schartzenke Agement1Dead1.701162.301.70220133.1.7258.041.85Stage2Dead5003.191.721.2020133.1.7258.041.85Stage2Dead5003.191.721.2020133.1.7258.041.85Stage2Dead5003.197.721.1020133.1.7258.041.85Stage2Dead500001.1220211.0220133.1.7258.041.85Stage2Dead500001.1220121.0220133.1.7258.041.55Stage2Dead1.701.161.1220121.0220133.1.7258.041.55Stage2Dead1.701.161.1220121.022013<												
Bach hoe4Desc1077711/2200110.007133.17.250.84.417.5Paring Machine0Desc0.00.00.011/2202110.007133.17.250.84.42.17Under Loder0Desc0.00.00.011/2202110.007133.17.250.84.42.17Under Loder0.0Desc0.00.011/2202110.007133.17.250.84.42.17Under Loder2.0Desc0.02.011/2202110.007133.17.250.84.41.15Under Loder2.0Desc0.02.002.0011/2202110.007133.17.250.84.41.15Recharer1Desc0.02.002.0011/2202110.007133.17.250.84.41.15Recharer1Desc0.02.002.001.12202110.007133.17.250.84.41.15Recharer0Desc0.00.011/2202110.007133.17.250.84.41.15Recharer0Desc0.00.00.11/2202110.007133.17.250.84.41.15Recharer0Desc1.00.00.011/2202110.007133.17.250.84.41.15Recharer0Desc1.00.00.011/2202110.007133.17.250.84.41.15 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Panda Marchan 1 Desc 100 PT												
wheel Lookar00001/1220011.0020133172988.742.17Wheel Lookar0Dege001/1220021.0020133172988.742.17Wheel Lookar0Dege001/1220021.0020133172988.742.17Pride J. FOR WheelmanPride J. FOR Wheelman<												
wheel loader00001/2200713172980.742.17Construction Equignent Total10001/220071100.0013172980.742.17Construction Equignent Total10001/220071100.00133172980.742.17Construction Equignent Total2000.000206.0206.01/2200721/0200713.117250.011.15Construction Equignent Total00.000206.0206.01/2200721/0200713.117250.011.15Construction Equignent Total00.000206.0206.01/2200721/2000713.117250.011.15Construction Equignent Total0.0000.0001/2200710.00013.117250.011.151/200713.117250.011.15Start Equipment Total0.0000.0000.0001/2200710.00013.117250.011.15												
Nixel Looder00001/12200121/020013317258.942.1PTG6. PCB X166eingVVVVVVVVVPTG6. PCB X166eing2Deset1971170.121/12200121/032013317253.04.71.55Staper2Deset46031992011/2200121/032013317253.04.71.55Staper2Deset54031992011/2200121/032013317253.04.71.55Staper2Deset54031962011/2200121/032013317253.04.71.55Staper1Deset540777711/220121/020013317253.04.72.17Staper0000011/2200121/020013317253.04.72.17Staper0000011/2200121/020013317253.04.71.15Neel Looder0Deset100011/2200121/020013317253.04.71.15Staper1Deset100000011/2200121/020013317253.04.71.15Staper1Deset1000011/2200121/020013317253.04.71.15Staper1Deset1002												
Construction Equipation Equ												
Nine Loader 2 Dieset 197 116 22 11/2/2012 13/02/011 3 172 53.047 135. Reatimer 1 Dieset 540 319 317 172 53.047 135. Reatimer 2 Dieset 540 319 317 172 53.047 135. Reatimer 4 Dieset 640 319 317 172 53.047 135. Bisch Non 4 Dieset 610 77 77 11/28/2012 13/02/213 3 172 63.041 21.7 Wieel Loader 0 Dest 0 0 11/02/2012 13/02/213 3 172 63.041 21.7 Wieel Loader 0 Dieset 0 0 0 11/02/2012 13/02/213 3 172 63.041 21.7 Wieel Loader 0 Dieset 0 2 11/02/2012 13/02/213 3 172 63.041	Construction Equipment Total											
Singer 2 Diese 500 296 580 11/22/012 10/20013 3 172 50.047 1.85 Grader 2 Diesel 540 319 11/22/012 10/20013 3 172 50.047 1.85 Sinder 4 Diesel 107 677 229 11/22/012 10/20013 3 172 50.041 1.85 Wheel Loader 0 Diesel 0 0 11/22/012 10/20213 3 172 69.074 2.17 Wheel Loader 0 Diesel 0 0 11/22/012 10/20213 3 172 69.074 2.17 Wheel Loader 0 Diesel 0 0 11/22/012 10/20213 3 172 69.074 1.85 Singlor 1 Diesel 10 0 116 1182/012 10/20213 3 172 69.04 1.85 Singlor 1 Diesel 0.0 0		2	Diesol	107	116	222	11/20/2012	1/30/2012	2	172	530 44	1 05
Beclame 1 Desci 540 319 316 11/2/2012 130/2013 3 172 530.47 1.85 Roler 4 Desci 147 87 147 150/2011 330 3 172 530.47 1.85 Back ne 4 Desci 177 177 171 120/2011 330 172 630.41 1.85 Back ne 4 Desci 100 0 110/2012 130/2013 3 172 630.41 1.15 Meel Loader 0 Desci 0 0 111/202012 130/2013 3 172 630.41 1.15 Construction Eighpment Total Desci 507 677 111 110/2012 130/2013 3 172 630.47 1.15 Starger 1 Desci 507 71 111 110/2012 130/2013 3 172 530.47 1.15 Starger 1 Desci 507 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Grader 2 0 meal 540 379 487 11/28/2012 10/2013 3 172 590.47 1.55 Back Ince 4 Dissal 0 meal 0 T 75 239 11/28/2012 10/2013 3 172 590.41 1.55 Back Ince 0 Dessel 0 0 0 11/28/2012 11/28/2012 10/2013 3 172 590.41 1.55 Wheel Loader 0 Dessel 0 0 0 11/28/2012 11/28/2012 10/2013 3 172 590.74 2.57 Wheel Loader 0 Dessel 0 0 0 11/28/2012 10/2013 3 172 590.47 1.56 Dessel 0.00 2.99 2.99 1.98 1.98 1.98 1.92 1.99 1.93 1.92 1.93 1.93 1.92 1.93 1.93 1.92 1.93 1.92 1.93 1.93 1.92 1.93												
Bater 4 Desel 147 87 347 11202012 1020013 3 172 59.014 153 Paving Machine 1 Desel 130 77 77 11202012 1020213 3 172 59.014 1.55 Wheel Loader 0 Desel 0 0 11202012 1020213 3 172 59.04 2.17 Wheel Loader 0 Desel 0 0 11202012 1020213 3 172 59.04 2.17 Construction Equipment Teal 0 0 0 11202012 1020213 3 172 59.04 1.85 Songer 1 Desel 197 116 11220212 1102013 3 172 59.04 1.85 Songer 1 Desel 130 77 114 11220212 1102013 3 172 59.04 1.85 Back hee Desel 130 77 114 112202												
Back hoo 4 Desel 97 57 229 11/22/021 130/2013 3 172 899.44 2.17 Pring Machine 0 Desel 0 0 0 11/22/021 130/2013 3 172 589.44 2.17 Wheel Loader 0 Desel 0 0 11/22/021 130/2013 3 172 589.44 2.17 Construction Equipment Total 0 Desel 0 0 11/22/021 130/2013 3 172 550.41 1.85 Scaper 1 Desel 550 225 225 11/22/021 130/2013 3 172 550.41 1.85 Scaper 1 Desel 540 319 319 11/22/021 130/2013 3 172 550.41 1.85 Scaper 1 Desel 500 77 153 11/22/021 130/2013 3 172 550.41 1.85 Scaper Deseel												
Paing Machine 1 Desid 132 77 110202012 13020013 3 172 930.41 135 Wheel Loader 0 Desel 0 0 0 110202012 13020013 3 172 939.74 2.17 Wheel Loader 0 Desel 0 0 110202012 1302013 3 172 939.74 2.17 Construction Equipment Total 16 1020213 1102013 3 172 530.41 1.85 Songer 1 Desel 500 225 225 11020213 3 172 530.47 1.85 Grader 1 Desel 500 7 141 11020212 1102013 3 172 530.41 1.85 Back hoe 2 Desel 130 77 163 11020213 3 172 530.41 1.85 Paring Machine 0 Desel 0 0 111020211 11020213												
Nmell Loader 0 Desel 0 0 11292012 1020013 3 172 593.74 2.17 Wheel Loader 0 0 0 0 11292012 1020013 3 172 593.74 2.17 Construction Equipment Total 16 773.7 1032012 1032013 3 172 593.74 2.17 Construction Equipment Total 0 Desel 500 295 295 11282012 1032013 3 172 593.47 135 Gonder 1 Desel 540 319 319 11282012 1032013 3 172 593.47 135 Roler 0 Desel 130 77 114 11282012 1102013 3 172 593.41 135 Roler 0 Desel 130 77 111282012 11202013 3 172 593.41 135 Wared Loader D												
Nmel Ladar 0 Dese 0 0 11/28/2012 1/20/2013 3 1/2 58/9/4 2.17 Construction Equipment Toal 16 I I I/20/2013 3 1/2 58/9/4 2.17 Construction Equipment Toal 16 I I/22/2013 3 1/2 58/0/4 1.0 Priof A'. Widenign 1 Dese 500 2.85 2.95 11/28/2012 1/30/2013 3 1/2 58/0/4 1.95 Grader 1 Dese 500 2.87 2.87 11/28/2012 1/30/2013 3 1.72 58/0/4 2.17 Stack noo 2 Dese 1.97 7.7 1.14 11/28/2012 1/30/2013 3 1.72 58/0/4 2.17 Winee Loader 0 Dese 0 0 0 11/28/2012 1/30/2013 3 1.72 58/0/4 2.17 Winee Loader 0 Dese 0 0 0 11						0						
Nmesl Loader 0 0 0 11/292012 1392013 3 172 589.74 2.17 Construction Equipment Total 0 0 0 11/282012 13902013 3 172 550.47 155 Scaper 1 Desse 560 285 1282021 13902013 3 172 550.47 155 Scaper 1 Desse 540 379 319 11282021 13902013 3 172 550.41 155 Scaper 1 Desse 97 57.7 114 11282021 13902013 3 172 550.41 155 Paring Machine 0 Desse 0 0 0 11282021 13902013 3 172 550.41 155 Paring Machine 0 Desse 0 0 0 11282021 13902013 3 172 550.41 155 Paring Machine 0 Desse 100 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Construction Equipment Total161751761751751761751761751761751761751761751761751761751761751761751761751761751761751761		0	Diesel	0	0	0				172		2.17
NL. 1 Dises! 197 116 11282012 1392012 139 172 530.41 195 Grader 1 Dises! 550 286 285 285 11282012 1302013 3 172 530.47 195 Back hon 2 Dises! 147 87 87 11282012 1302013 3 172 550.47 195 Paving Machine 2 Dises! 130 77 163 11282012 1302013 3 172 550.41 195 Paving Machine 0 Dises! 130 77 11282012 1302013 3 172 550.41 195 Wheel Loader 0 Dises! 0 0 11282012 1302013 3 172 550.41 195 Operation Rational Ration												
Scraper 1 Disesti 500 295 11282012 1392012 130 172 530.47 185 Roler 1 Disesti 147 87 11222012 1302013 3 172 553.41 185 Back hos 2 Disesti 130 77 153 11282012 1302013 3 172 553.41 195 Parking Machine 0 Disesti 130 77 0 11282012 1302013 3 172 553.41 195 Wheel Loader 0 Disesti 0 0 0 11282012 1302013 3 172 658.74 2.17 Wheel Loader 0 Disesti 0 0 0 11282012 1302013 3 172 550.41 155 Scraper 2 Disesti 500 225 550 11282013 1282014 3 172 550.47 155 Rolar 4 Disesti <td>PTG 47 - Widening</td> <td></td>	PTG 47 - Widening											
Grader 1 Diesel 540 319 11222012 1732012 172 530.47 195 Bolt hom 2 Diesel 97 57 114 11222012 130 172 553.41 195 Paving Machine 2 Diesel 130 77 153 11282012 1302013 3 172 550.41 195 Paving Machine 0 Diesel 130 77 13 11282012 1302013 3 172 550.41 195 Wheel Loader 0 Diesel 0 0 0 11282012 1302013 3 172 550.41 195 Wheel Loader 0 Diesel 0 0 0 11282012 1302013 3 172 550.41 195 Orastruction Equipment Total 0 Eastructure 1172 550.41 195 57 11282013 1242014 3 172 550.47 195 Grader 2 </td <td>WL</td> <td>1</td> <td>Diesel</td> <td>197</td> <td>116</td> <td>116</td> <td>11/28/2012</td> <td>1/30/2013</td> <td>3</td> <td>172</td> <td>530.41</td> <td>1.95</td>	WL	1	Diesel	197	116	116	11/28/2012	1/30/2013	3	172	530.41	1.95
Patter 1 Desci 147 87 11/22/2014 15/2014 17/2 15/2014 15/2014 17/2 15/2014 15/2014 17/2 15/2014 15/2014 15/2014 15/2014 <	Scraper	1	Diesel	500	295	295	11/28/2012	1/30/2013	3	172	530.47	1.95
Back hom 2 Desel 97 57 114 11/28/2012 13/2013 3 172 689.7 2.1 Paving Machine 0 Desel 130 77 10 11/28/2012 13/02/013 3 172 630.41 195 Wheel Loader 0 Desel 0 0 0 11/28/2012 13/02/013 3 172 689.74 2.17 Wheel Loader 0 Desel 0 0 0 11/28/2012 13/02/013 3 172 689.74 2.17 Outschein Equipment Total 8	Grader	1	Diesel	540	319	319	11/28/2012	1/30/2013	3	172	530.47	1.95
Paving Machine 2 Desel 130 77 153 11/22/2012 130/2013 3 172 630.41 195 Paving Machine 0 Desel 0 0 0 11/22/2012 1/30/2013 3 172 630.41 195 Wheel Loader 0 Desel 0 0 0 11/22/2012 1/30/2013 3 172 589.74 2.17 Wheel Loader 0 Desel 0 0 0 11/22/2014 1/27 589.74 2.17 Construction Equipment Total 8	Roller	1	Diesel	147	87	87	11/28/2012	1/30/2013	3	172	530.41	1.95
Paving Machine 0 Diesel 130 77 0 11/28/2012 130/2013 3 172 580.41 1.95 Wheel Loader 0 Diesel 0 0 0 11/28/2012 130/2013 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2012 130/2013 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 129/2014 3 172 530.41 1.95 Scraper 2 Diesel 500 2.95 590 11/28/2013 129/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 317/28/2013 129/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 37 172/28/2013 129/2014 3 172 530.47 1.95 Scraper <td>Back hoe</td> <td>2</td> <td>Diesel</td> <td>97</td> <td>57</td> <td>114</td> <td>11/28/2012</td> <td>1/30/2013</td> <td>3</td> <td>172</td> <td>589.74</td> <td>2.17</td>	Back hoe	2	Diesel	97	57	114	11/28/2012	1/30/2013	3	172	589.74	2.17
Nine Loader 0 Diesel 0 0 11/28/2012 13/202013 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/28/2012 13/202013 3 172 589.74 2.17 Construction Equipment Total 8 -	Paving Machine	2	Diesel	130	77	153	11/28/2012	1/30/2013	3	172	530.41	1.95
Wined Loader 0 Diesel 0 0 11/28/2012 1/30/2013 3 172 589.74 2.17 Construction Equipment Total 8	Paving Machine	0	Diesel	130	77	0	11/28/2012	1/30/2013	3	172	530.41	1.95
Wheel Loader 0 0 1/28/2012 1/30/2013 3 1/72 589.74 2.17 Construction Equipment Total 8 </td <td>Wheel Loader</td> <td>0</td> <td>Diesel</td> <td>0</td> <td>0</td> <td>0</td> <td>11/28/2012</td> <td>1/30/2013</td> <td>3</td> <td>172</td> <td>589.74</td> <td>2.17</td>	Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	589.74	2.17
Construction Equipment Total 8 Image: Construction Equipment Total 9 Image: Construction Equipment Total 197 116 232 11/28/2013 129/2014 3 172 530.41 1.95 Brander 2 Diesel 540 319 319 11/28/2013 129/2014 3 172 530.47 1.95 Bradeaimer 1 Diesel 540 319 637 11/28/2013 129/2014 3 172 530.47 1.95 Grader 2 Diesel 147 87 347 11/28/2013 129/2014 3 172 530.47 1.95 Back hoe 4 Diesel 0 0 11/128/2013 129/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/128/2013 129/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/128/2013 129/2012 6/3/2013 10	Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	589.74	
PAGE - Widening & FDR view			Diesel	0	0	0	11/28/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader 2 Diesel 197 116 232 11/28/2013 1/27 530.41 1.95 Scraper 2 Diesel 500 295 590 11/28/2013 1/29/2014 3 172 530.47 1.95 Grader 1 Diesel 540 319 637 11/28/2013 1/29/2014 3 172 530.47 1.95 Grader 4 Diesel 147 87 347 11/28/2013 1/29/2014 3 172 530.47 1.95 Back hoe 4 Diesel 0 0 11/28/2013 1/29/2014 3 172 580.74 2.17 Wheel Loader 0 Desel 0 0 11/28/2013 1/29/2014 3 172 580.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 530.47 1.95 Construction Equipment Total 0 Diesel <td></td> <td>8</td> <td></td>		8										
Scraper 2 Desel 500 2285 590 11/28/2013 1/29/2014 3 172 530.47 1.95 Reclaimer 1 Diesel 540 319 613 11/28/2013 1/29/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 11/28/2013 1/29/2014 3 172 530.47 1.95 Back hoe 4 Diesel 147 87 347 11/28/2013 1/29/2014 3 172 589.74 2.17 Paving Machine 1 Diesel 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Construction Equipment Total 0 Diesel 0 0 11/28/2013 1/29/2014 3 172 530.47 1.95 Cold Planer <td< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						1						
Reclaimer 1 Diesel 540 319 319 11/28/2013 1/28/2014 3 1172 530.47 195 Grader 4 Diesel 147 87 347 11/28/2013 1/29/2014 3 172 530.47 1.95 Back hoe 4 Diesel 147 87 347 11/28/2013 1/29/2014 3 172 530.41 1.95 Back hoe 4 Diesel 0 0 0 11/28/2013 1/28/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Mohel Loader 0 Diesel 545 322 0 91/2012 6/3/2013 10 172 530.41 195												
Orader 2 Diesel 540 319 637 11/28/2013 1/29/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 11/28/2013 1/29/2014 3 172 530.41 1.95 Back hoe 4 Diesel 10 77 11/28/2013 1/22/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 11/128/2013 1/22/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Construction Equipment Total 0 Diesel 545 322 0 91/2012 6/3/2013 10 172 530.47 1.95 Construction Equ												
Roller 4 Diesel 147 87 347 11/28/2013 1/22/214 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 11/28/2013 1/29/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 11/28/2013 1/29/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 530.47 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/28/2014 3 172 530.47 2.17 Construction Equipment Total 16 1/28/2013 10 172 530.47 1.95 Roller 0 Gasoline 147 87 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Roller 0 Electric <td></td>												
Back hoe 4 Diesel 97 57 229 11/28/2013 1/29/2014 3 172 589.74 2.17 Paving Machine 1 Diesel 0 0 0 1/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 1/128/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 1/128/2013 1/29/2014 3 172 589.74 2.17 Construction Equipment Total 16 1/128/2013 1/29/2014 3 172 580.74 2.17 Construction Equipment Total 0 Diesel 545 322 0 9/1/2012 6/3/2013 10 172 580.41 1.95 Rolier 0 Electric 97 57 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Construction Equipment Tot												
Paving Machine 1 Diesel 130 77 77 11/28/2013 1/29/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Construction Equipment Total 16 0 0 11/28/2013 1/29/2014 3 172 530.47 1.95 Roller 0 Gasoline 147 87 0 9/2/2012 6/3/2013 10 172 530.47 1.95 Roller 0 Electric 97 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Construction Equipment Total 0 Electric 130 77 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Stace 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Wheel Loader 0 Diesel 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Construction Equipment Total 16		4			57	229			3			
Wheel Loader 0 Diesel 0 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 0 11/28/2013 11/29/2014 3 172 589.74 2.17 Construction Equipment Total 16 2.17 Cold Planer 0 Gasoline 147 87 0 9/1/2012 6/3/2013 10 172 530.47 1.95 Back hoe 0 Electric 97 57 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Construction Equipment Total 0 Electric 97 57 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Construction Equipment Total 0 Electric 130 77 0 9/2/2014 12/3/2014 3 172 530.41 1.95 </td <td></td> <td>1</td> <td></td> <td></td> <td>77</td> <td>77</td> <td></td> <td></td> <td>3</td> <td></td> <td></td> <td></td>		1			77	77			3			
Wheel Loader 0 Diesel 0 0 11/28/2013 1/29/2014 3 172 589.74 2.17 Construction Equipment Total 16 1 <th1< th=""> 1 1</th1<>												
Construction Equipment Total 16 No <												
Roller 0 Gasoline 147 87 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Back hoe 0 Electric 97 57 0 9/2/2012 6/3/2013 10 172 589.74 2.17 Pawing Machine 0 Electric 130 77 0 9/2/2012 6/3/2013 10 172 589.74 2.17 Pawing Machine 0 Electric 130 77 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Construction Equipment Total 0 147 87 10/29/2014 12/31/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95			Diesei	U	U	U	11/20/2013	1/23/2014	3	1/2	303.74	2.17
Roller 0 Gasoline 147 87 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Back hoe 0 Electric 97 57 0 9/2/2012 6/3/2013 10 172 589.74 2.17 Paving Machine 0 Electric 130 77 0 9/2/2012 6/3/2013 10 172 580.41 1.95 Construction Equipment Total 0 9/2/2014 1/2/31/2014 3 172 530.41 1.95 Meel Loader 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Rolier 4										·		
Back hoe 0 Electric 97 57 0 9/2/2012 6/3/2013 10 172 589.74 2.17 Paving Machine 0 Electric 130 77 0 9/2/2012 6/3/2013 10 172 589.74 2.17 Paving Machine 0 Obstruction Equipment Total 0 116 222 10/29/2014 12/31/2014 3 172 530.41 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 4 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 177						0		6/3/2013			530.47	
Paving Machine 0 Electric 130 77 0 9/2/2012 6/3/2013 10 172 530.41 1.95 Construction Equipment Total 0 1.95 B49. Widening & FDR 1.95 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 580.44 2.17												
Construction Equipment Total 0 r r r r r r r r r PB49 - Widening & FDR -												
PB49 - Widening & FDR Image: Normal Section of the sectin of the sectin of the section			Electric	130	77	0	9/2/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader 2 Diesel 197 116 232 10/29/2014 12/31/2014 3 172 530.41 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 530.41 1.95		0				1	I					
Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17			_		1	1			1			
Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 1 Diesel 0 0 0 12/31/2014 3 172 589.74 2.17 Paving Machine 1 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader </td <td></td>												
Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 130 77 77 10/29/2014 12/31/2014 3 172 589.74 2.17 Paving Machine 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>												
Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 577 229 10/29/2014 12/31/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Construction Equipment Total 16												
Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 589.74 2.17 Paving Machine 1 Diesel 130 77 77 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Construction Equipment Total 16 10/29/2014 12/31/2014 3 172 589.74 2.17 PB49A Widening & FDR 10/29/2014 12/31/2014 3 172 530.41 1.95 Scraper <td></td>												
Paving Machine 1 Diesel 130 77 77 10/29/2014 12/31/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 530.41 1.95 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Construction Equipment Total 16 12/31/2014 3 172 589.74 2.17 Wheel Loader 2 Diesel 197 116 232 10/29/2014 12/31/2014 3 172 530.47 1.95 Scraper												
Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Construction Equipment Total 16 1/2 589.74 2.17 PB49A. Widening & FDR 1/2 589.74 2.17 Wheel Loader 2 Diesel 197 116 232 10/29/2014 12/31/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 319 10/29/2014												
Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Construction Equipment Total 16 72 589.74 2.17 Construction Equipment Total 16 72 589.74 2.17 B49A - Widening & FDR 72 530.41 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/		-										
Wheel Loader 0 Diesel 0 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17 Construction Equipment Total 16 Image: Construction Equipment Total 16 Image: Construction Equipment Total 16 Image: Construction Equipment Total 16 2 1 172 589.74 2.17 PB49A - Widening & FDR Image: Construction Equipment Total 16 223 10/29/2014 12/31/2014 3 172 530.41 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Scraper 2 Diesel 540 319 617 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 147 87 347 10/29/2014												
Construction Equipment Total 16 r r r r r r r r r r r PB49A Wideling & FDR r<												
PB49A - Widening & FDR V Wheel Loader 2 Diesel 197 116 232 10/29/2014 12/31/2014 3 172 530.41 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 <td></td> <td>_</td> <td>Diesel</td> <td>0</td> <td>0</td> <td>0</td> <td>10/29/2014</td> <td>12/31/2014</td> <td>3</td> <td>1/2</td> <td>589.74</td> <td>2.17</td>		_	Diesel	0	0	0	10/29/2014	12/31/2014	3	1/2	589.74	2.17
Wheel Loader 2 Diesel 197 116 232 10/29/2014 12/31/2014 3 172 530.41 1.95 Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.41 1.95 Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 589.74 2.17 <td></td> <td>16</td> <td></td> <td></td> <td>I</td> <td>1</td> <td>I</td> <td></td> <td>l</td> <td>1</td> <td></td> <td>I</td>		16			I	1	I		l	1		I
Scraper 2 Diesel 500 295 590 10/29/2014 12/31/2014 3 172 530.47 1.95 Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 589.74 2.17 <td></td> <td>2</td> <td>Diccol</td> <td>107</td> <td>140</td> <td>222</td> <td>10/20/2014</td> <td>12/21/2014</td> <td>2</td> <td>170</td> <td>520.44</td> <td>1.05</td>		2	Diccol	107	140	222	10/20/2014	12/21/2014	2	170	520.44	1.05
Reclaimer 1 Diesel 540 319 319 10/29/2014 12/31/2014 3 172 530.47 1.95 Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 30/29/2014 12/31/2014 3 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 530.47 1.95												
Grader 2 Diesel 540 319 637 10/29/2014 12/31/2014 3 172 530.47 1.95 Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.47 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 589.74 2.17												
Roller 4 Diesel 147 87 347 10/29/2014 12/31/2014 3 172 530.41 1.95 Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 589.74 2.17		-										
Back hoe 4 Diesel 97 57 229 10/29/2014 12/31/2014 3 172 589.74 2.17												
Praving Machine 1 Diesel 130 77 77 10/29/2014 12/31/2014 3 172 530.41 1.95												
Wheel Loader 0 Diesel 0 0 10/29/2014 12/31/2014 3 172 589.74 2.17												

Guam Haul Road Construction Emission Analysis Central 2- Equipment

Construction Equipment	Number of Units	Type of Fuel	Equipment Rated HP ⁽²⁾	Average Equipment Usage of HP ⁽²⁾	Utilized Equipment HP	Start Date	End Date		tivity ation	Diesel Pollut Facto	
	Units	Fuel	hp/hr	hrs	(all units) hp/hr			Months	(4) hrs/month	g/hp-hr	SO2 g/hp-hr
Wheel Loader	0	Diesel	0	0	0	10/29/2014	12/31/2014	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	10/29/2014	12/31/2014	3	172	589.74	2.17
Construction Equipment Total	16			L							
PB63 - FDR							I				
Wheel Loader	1	Diesel	197	116	116	11/28/2012	1/30/2013	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	11/28/2012	1/30/2013	3	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	11/28/2012	1/30/2013	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	11/28/2012	1/30/2013	3	172	530.47	1.95
Roller	2	Diesel	147	87	173	11/28/2012	1/30/2013	3	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	11/28/2012	1/30/2013	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	11/28/2012	1/30/2013	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	11/28/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	11/28/2012	1/30/2013	3	172 172	589.74 589.74	2.17
Construction Equipment Total	9	Diesei	0	U	U	11/28/2012	1/30/2013	3	172	589.74	2.17
PB74 - FDR	9			<u></u>							
Wheel Loader	1	Diesel	197	116	116	11/28/2013	1/29/2014	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	11/28/2013	1/29/2014	3	172	530.41	1.95
Reclaimer	1	Diesel	540	319	319	11/28/2013	1/29/2014	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	11/28/2013	1/29/2014	3	172	530.47	1.95
Roller	2	Diesel	147	87	173	11/28/2013	1/29/2014	3	172	530.41	1.95
Back hoe	2	Diesel	97	57	113	11/28/2013	1/29/2014	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	11/28/2013	1/29/2014	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/28/2013	1/29/2014	3	172	589.74	2.17
Construction Equipment Total	9										
PB113 - Widening											
Wheel Loader	1	Diesel	197	116	116	9/28/2013	11/29/2013	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/28/2013	11/29/2013	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	9/28/2013	11/29/2013	3	172	530.47	1.95
Roller	2	Diesel	147	87	173	9/28/2013	11/29/2013	3	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	9/28/2013	11/29/2013	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	9/28/2013	11/29/2013	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	9/28/2013	11/29/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/28/2013	11/29/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/28/2013	11/29/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/28/2013	11/29/2013	3	172	589.74	2.17
Construction Equipment Total	8			L	L						
PB124 - Widening	4				1						
Wheel Loader	1	Diesel	197	116	116	2/28/2013	1/30/2015	24	172	530.41	1.95
Scraper	1	Diesel	500	295	295	2/28/2013	1/30/2015	24	172	530.47	1.95
Grader	1	Diesel	540	319	319	2/28/2013	1/30/2015	24	172	530.47	1.95
Roller	2	Diesel	147	87	173	2/28/2013	1/30/2015	24	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	2/28/2013	1/30/2015	24	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	2/28/2013	1/30/2015	24	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	2/28/2013	1/30/2015	24	172	589.74	2.17
Paving Machine	0	Diesel	130 0	77	0	2/28/2013	1/30/2015	24	172	530.41	1.95
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	2/28/2013	1/30/2015	24 24	172 172	589.74 589.74	2.17
Wheel Loader Construction Equipment Total	8	Diesei	U	U	U	2/28/2013	1/30/2015	24	172	589.74	2.17

Guam Haul Road Construction Emission Analysis Apra Harbor-Equipment

					Total			Const	ruction		
				Average	Utilized			Act	ivity		
	Number	Туре	Equipment	Equipment	Equipment	Start	End		ation	Diesel Polluta	ant Emission
Construction Equipment	of	of	Rated	Usage	HP	Date	Date			Facto	
	Units	Fuel	HP ⁽²⁾	of HP (2)	(all units)				(4)	CO2	SO2
			hp/hr	hrs	hp/hr			Months	hrs/month	g/hp-hr	g/hp-hr
PTG4 - Widening & FDR											
Wheel Loader	2	Diesel	197	116	232	1/3/2011	9/28/2011	9	172	530.41	1.95
Scraper	2	Diesel	500	295	590	1/3/2011	9/28/2011	9	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	1/3/2011	9/28/2011	9	172	530.47	1.95
Grader	2	Diesel	540	319	637	1/3/2011	9/28/2011	9	172	530.47	1.95
Roller	4	Diesel	147	87	347	1/3/2011	9/28/2011	9	172	530.41	1.95
Back hoe	4	Diesel	97	57	229	1/3/2011	9/28/2011	9	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	1/3/2011	9/28/2011	9	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	1/3/2011	9/28/2011	9	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	1/3/2011	9/28/2011	9	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	1/3/2011	9/28/2011	9	172	589.74	2.17
Construction Equipment Total	16										
PTG5 - Widening & FDR											
Wheel Loader	2	Diesel	197	116	232	1/8/2011	10/3/2011	10	172	530.41	1.95
Scraper	2	Diesel	500	295	590	1/8/2011	10/3/2011	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	1/8/2011	10/3/2011	10	172	530.47	1.95
Grader	2	Diesel	540	319	637	1/8/2011	10/3/2011	10	172	530.47	1.95
Roller	4	Diesel	147	87	347	1/8/2011	10/3/2011	10	172	530.41	1.95
Back hoe	4	Diesel	97	57	229	1/8/2011	10/3/2011	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	1/8/2011	10/3/2011	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	1/8/2011	10/3/2011	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	1/8/2011	10/3/2011	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	1/8/2011	10/3/2011	10	172	589.74	2.17
Construction Equipment Total	16										
PB 24 - FDR											
Wheel Loader	1	Diesel	197	116	116	9/2/2012	6/3/2013	10	172	530.41	1.95
Scraper	1	Diesel	500	295	295	9/2/2012	6/3/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	530.47	1.95
Grader	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	530.47	1.95
Roller	2	Diesel	147	87	173	9/2/2012	6/3/2013	10	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	9/2/2012	6/3/2013	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	9/2/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Construction Equipment Total	9										
PB50 - FDR											
Wheel Loader	1	Diesel	197	116	116	11/29/2012	1/30/2013	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	11/29/2012	1/30/2013	3	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	530.47	1.95
Roller	2	Diesel	147	87	173	11/29/2012	1/30/2013	3	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	11/29/2012	1/30/2013	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	11/29/2012	1/30/2013	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
THIGH EVAUEI	9	Diesel	v	v	V	11/23/2012	1/30/2013	5	1/2	303.14	2.17

Guam Haul Road Construction Emission Analysis South- Equipment

Construction Equipment	Number of	Type of	Equipment Rated	Average Equipment Usage	Total Utilized Equipment HP	Start Date	End Date	Act	ruction ivity ation	Diesel Pollut Factor	ant Emission ors ⁽³⁾
	Units	Fuel	HP ⁽²⁾ hp/hr	of HP ⁽²⁾ hrs	(all units)			Months	(4) hrs/month	CO2 g/hp-hr	SO2 g/hp-hr
PB25 - Widening & FDR								1		.	3
Wheel Loader	2	Diesel	197	116	232	9/2/2012	6/3/2013	10	172	530.41	1.95
Scraper	2	Diesel	500	295	590	9/2/2012	6/3/2013	10	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	9/2/2012	6/3/2013	10	172	530.47	1.95
Grader	2	Diesel	540	319	637	9/2/2012	6/3/2013	10	172	530.47	1.95
Roller	4	Diesel	147	87	347	9/2/2012	6/3/2013	10	172	530.41	1.95
Back hoe	4	Diesel	97	57	229	9/2/2012	6/3/2013	10	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	9/2/2012	6/3/2013	10	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/2/2012	6/3/2013	10	172	589.74	2.17
Construction Equipment Total	16										
PB27 - Widening & FDR	_										
Wheel Loader	2	Diesel	197	116	232	9/2/2012	5/1/2013	9	172	530.41	1.95
Scraper	2	Diesel	500	295	590	9/2/2012	5/1/2013	9	172	530.47	1.95
Reclaimer		Diesel	540	319	319	9/2/2012	5/1/2013	9	172	530.47	1.95
Grader	2	Diesel	540 147	319 87	637 347	9/2/2012	5/1/2013	9	172 172	530.47	1.95
Roller Back bac		Diesel				9/2/2012	5/1/2013			530.41	1.95
Back hoe Paving Machine	4	Diesel Diesel	97 130	57 77	229 77	9/2/2012 9/2/2012	5/1/2013 5/1/2013	9	172 172	589.74 530.41	2.17 1.95
	0		0	0	0			9	172		2.17
Wheel Loader Wheel Loader	0	Diesel Diesel	0	0	0	9/2/2012 9/2/2012	5/1/2013 5/1/2013	9	172	589.74 589.74	2.17
Wheel Loader	0	Diesel	0	0	0	9/2/2012	5/1/2013	9	172	589.74	2.17
Construction Equipment Total	16	Diesei	0	0	0	9/2/2012	5/1/2013	9	1/2	569.74	2.17
PB52 - FDR	10										
Wheel Loader	1	Diesel	197	116	116	11/29/2012	1/30/2013	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	11/29/2012	1/30/2013	3	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	530.47	1.95
Roller	2	Diesel	147	87	173	11/29/2012	1/30/2013	3	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	11/29/2012	1/30/2013	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	11/29/2012	1/30/2013	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Construction Equipment Total	9										
PB50 - FDR											
Wheel Loader	1	Diesel	197	116	116	11/29/2012	1/30/2013	3	172	530.41	1.95
Scraper	1	Diesel	500	295	295	11/29/2012	1/30/2013	3	172	530.47	1.95
Reclaimer	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	530.47	1.95
Grader	1	Diesel	540	319	319	11/29/2012	1/30/2013	3	172	530.47	1.95
Roller	2	Diesel	147	87	173	11/29/2012	1/30/2013	3	172	530.41	1.95
Back hoe	2	Diesel	97	57	114	11/29/2012	1/30/2013	3	172	589.74	2.17
Paving Machine	1	Diesel	130	77	77	11/29/2012	1/30/2013	3	172	530.41	1.95
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Construction Equipment Total	9				1			1	1		1
PB52 - FDR	1	Dicasl	197	140	146	11/29/2012	1/30/2013	2	170	530.41	1.05
Wheel Loader	1	Diesel		116	116			3	172		1.95
Scraper Reclaimer		Diesel	500	295	295	11/29/2012	1/30/2013	3	172	530.47	1.95
Reclaimer Grader	1	Diesel Diesel	540 540	319 319	319 319	11/29/2012 11/29/2012	1/30/2013 1/30/2013	3	172 172	530.47 530.47	1.95
Roller	2	Diesel	147	87	173	11/29/2012	1/30/2013	3	172	530.47	1.95
Back hoe	2	Diesel	97	57	113	11/29/2012	1/30/2013	3	172	589.74	2.17
- · · · · ·	1	Diesel	130	77	77	11/29/2012	1/30/2013	3	172	530.41	1.95
Paving Machine Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Wheel Loader	0	Diesel	0	0	0	11/29/2012	1/30/2013	3	172	589.74	2.17
Construction Equipment Total	9			-					_		
PTG 26 - Overlay											
Cold Planer	1	Diesel	545	322	322	8/3/2012	5/2/2013	10	172	530.47	1.95
Roller	2	Gasoline	147	87	173	8/3/2012	5/2/2013	10	172	530.41	1.95
Back hoe	1	Electric	97	57	57	8/3/2012	5/2/2013	10	172	589.74	2.17
Paving Machine	1	Electric	130	77	77	8/3/2012	5/2/2013	10	172	530.41	1.95

GUAM AIR QUALITY CONSTRUCTION ANALYSIS CO2 Schedule

CO₂ Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2010	0.00	944.59	0.00	0.00	0.00	944.59	1889.17
2011	3665.49	4282.16	331.05	4199.75	0.00	4613.20	17091.65
2012	3699.35	6395.81	2072.02	703.38	2042.24	8467.83	23380.63
2013	3881.26	13239.94	3467.70	1166.02	3309.91	16707.64	41772.47
2014	1896.00	6965.54	2714.91	0.00	0.00	9680.45	21256.90
2015	1106.00	1235.22	111.36	0.00	0.00	1346.58	3799.16
2016	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2017	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2018	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2019	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2020	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2021	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2022	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Maximum Yearly Value	3881.26	13239.94	3467.70	4199.75	3309.91	16707.64	41772.47
Year	2013.00	2013.00	2013.00	2011.00	2013.00	2013.00	2013.00
Highest month from highest year - 2009-							
2015	422.889	1732.440	858.186	494.088	956.734	2590.626	6880.118
Highest Monthly Value - from all years	1462.176	1732.440	858.186	494.088	956.734	2590.626	6880.118
Year highest monthly value occurs	0.00	86.62	42.91	24.70	47.84		

GUAM AIR QUALITY CONSTRUCTION ANALYSIS SO2 Schedule

SO₂ Summary Table

Year	North	Central	Central 2	Apra	South	Central Total	All Locations
2009	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2010	0.000	3.473	0.000	0.000	0.000	3.473	6.947
2011	13.478	15.746	1.217	15.443	0.000	16.963	62.848
2012	14.094	24.009	7.619	3.241	8.165	31.629	88.757
2013	15.254	49.667	12.751	5.106	12.990	62.419	158.187
2014	6.972	25.613	9.983	0.000	0.000	35.596	78.164
2015	4.067	4.542	0.409	0.000	0.000	4.952	13.970
2016	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2017	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2018	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2019	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2020	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2021	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2022	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Maximum Yearly Value	15.254	49.6674	12.751	15.443	12.9896	62.419	158.187
Year	2013	2013	2013	2011	2013	2013	2013
Highest month from highest year - 2009-							
2015	1.719	6.534	3.156	1.817	3.682	9.690	26.118
Highest Monthly Value - from all years	5.377	6.534	3.156	1.817	3.682	9.690	26.118
Daily	0.27	0.33	0.16	0.09	0.18	0.48	1.31

Guam Haul Road Equipment Size and Load Factors

Construction Equipment	Equipment Rated HP (2) hp/hr	Average Equipment HP Avg. load factor applied to rated HP hp/hr	Average Daily Load Factor
Back hoe	97	57	0.59
Cold Planer	545	322	0.59
Grader	540	319	0.59
Paving Machine	130	77	0.59
Reclaimer	540	319	0.59
Roller	147	87	0.59
Scraper	500	295	0.59
Wheel Loader	197	116	0.59

CAL3QHC Input and Output Files

Site 1

	Existi	ng AM - 1E	XAM.DAT		60.	0321.0.00	00.000240.3	0480	000	1
1 SE MID SE 164 SE 82 S SE CNR SE 82 E NE 82 E NE 82 N NE 82 N NE 164 I NW MID I NW MID I	S S N N N N		650. 792. 874. 960. 947. 1016. 1022. 1094. 1175. 1298. 1318. 1218.	13 13 13 13 13 13 13 13 14 14	869. 875. 879. 883. 804. 806. 891. 896. 896. 196. 196. 193.	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0				-
NW 82 N NW CNR			1136. 1054.		188. 503.	5.0 5.0				
NW 82 W NW 164			1043. 1057.		586. 567.	5.0 5.0				
NW MID	W		1083.	17	784.	5.0				
SW MID SW 164			1024. 994.		777. 550.	5.0 5.0				
SW 82 W			975.	15	570.	5.0				
SW CNR SW 82 S			935. 853.		195. 174.	5.0 5.0				
SW 164			771. 631.		170.	5.0				
SW MID Site 1		ng AM	631.	14	463. 24	5.0 1 0				
1 NB	R+1	aprch AG	З	1362	559	1390	72515.5	0.	56	30.
1										
NB 2	Rt1	th+rt AG	559.	1390.	1016.	1410.	58515.5	0.	56	30.
NB	Rt1 167	th+rt AG 57				1390. 1679 1 3	0. 36	3		
1 NB	Rt1	left AG	552.	1408.	1013.	1432.	14015.5	0.	32	30.
		left AG		1428.		1409.	0. 12	1		
1	167	145	2.0	140	141.4	1752 1 3				
NB 1	Rt1	departAG	1017.	1410.	1345.	1432.	69015.5	0.	56	30.
NB	Rt1	departAG	1345.	1432.	1632.	1463.	69015.5	0.	44	30.
1 NB	Rt1	departAG	1632.	1463.	1999.	1510.	69015.5	0.	44	30.
1 SB	Rt1	aprch AG	1995.	1546.	1680.	1502.	152015.5	0.	44	30.
1 SB	Rt1	aprch AG	1680.	1502.	1429.	1473.	152015.5	0.	44	30.
1 SB	Rtl	aprch AG	1429.	1473.	1228.	1465.	152015.5	0.	44	30.
1 SB	Rtl	th+rt AG	1228.	1465.	1017.	1455.	150015.5	0.	56	30.
2 SB	Rt1 167	th+rt AG 72	1066. 2.0	1457. 1500	1221. 141.4	1465. 1668 1 3	0. 36	3		

1							
SB 2	Rtl left AG	1165. 1444.	1020. 1436.	2015.5	0.	32	30.
SB 1	Rt1 left AG 167 160	1068. 1439. 2.0 20	1161. 1444. 141.4 1752 1 3	0. 12	1		
SB 1	Rt1 departAG	1017. 1455.	2. 1403.	176015.5	0.	56	30.
EB 1	Rt28 aprchAG	1191. 2428.	1007. 1603.	39515.5	0.	32	30.
EB 2	Rt28 aprchAG	1007. 1603.	961. 1435.	39515.5	0.	44	30.
EB	Rt28 aprchAG 167 147		1000. 1578. 141.4 1688 1 3	0. 24	2		
1 EB 1	Rt28 deparAG	987. 1425.	978. 1298.	4515.5	0.	32	30.
WB 2	Rt28 aprchAG	986. 1300.	997. 1445.	8515.5	0.	44	30.
WB	_	993. 1391. 2.0 85	986. 1306. 141.4 1694 1 3	0. 24	2		
1 WB 1	Rt28 deparAG	999. 1445.	1024. 1615.	23015.5	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1024. 1615. 0 72	1201. 2425.	23015.5	0.	32	30.

RUN: Site 1 Existing AM

JOB: Site 1 Existing AM - 1EXAM.DAT DATE: 05/08/2009 TIME: 17:42:17.24

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	ZO = 321. CM			
U =	1.0 M/S	CLAS =	4 (D)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = .0 PF	Mc

LINK VARIABLES

LIN	, , ,	* L * X1	INK COORDI	X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C (QUEUE (VEH)
1. NE 2. NE 3. NE 5. NE 5. NE 6. NE 7. NE 8. NE 9. SE 10. SE	Rt1 aprch Rt1 th+rt Rt1 th+rt Rt1 left Rt1 left Rt1 depart Rt1 depart Rt1 depart Rt1 aprch	* 3.0 * 559.0 * 936.0 * 552.0 * 934.0 * 1017.0 * 1345.0 * 1632.0 * 1632.0 * 1680.0	1362.0 1390.0 1407.0 1408.0 1428.0 1410.0 1432.0 1463.0 1546.0 1502.0	559.0 1016.0 875.3 1013.0 816.0 1345.0 1632.0 1999.0 1680.0 1429.0	1390.0 * 1410.0 * 1404.2 * 1432.0 * 1421.9 * 1432.0 * 1463.0 * 1510.0 * 1502.0 *	557. 457. 61. 462. 118. 329. 289. 370. 318. 253.	87. AG 87. AG 267. AG 267. AG 267. AG 86. AG 84. AG 83. AG 262. AG 263. AG	725. 585. 388. 140. 329. 690. 690. 690. 1520. 1520.	$\begin{array}{c} 15.5\\ 15.5\\ 100.0\\ 15.5\\ 100.0\\ 15.5\\ 100.0\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ \end{array}$. 0 56. 0 . 0 44. 0	18 74	3. 1 6. 0
11. SE 12. SE 13. SE 14. SE	Rt1 th+rt ' Rt1 th+rt '	* 1228.0 * 1066.0	1473. 0 1465. 0 1457. 0 1444. 0	1228. 0 1017. 0 1262. 6 1020. 0	1465.0 * 1455.0 * 1467.1 * 1436.0 *	201. 211. 197. 145.	268. AG 267. AG 87. AG 267. AG	1520. 1500. 491. 20.	15.5 15.5 100.0 15.5	.0 44.0 .0 56.0 .0 36.0 . .0 32.0	55	10. 0
15. SE 16. SE 17. EE 18. EE	Rt1 left Rt1 depart Rt28 aprch Rt28 aprch Rt28 aprch	* 1068.0 * 1017.0 * 1191.0 * 1007.0	1439. 0 1455. 0 2428. 0 1603. 0	1088.5 2.0 1007.0 961.0	1440.1 * 1403.0 * 1603.0 * 1435.0 *	21. 1016. 845. 174.	87. AG 267. AG 193. AG 195. AG	363. 1760. 395. 395.	100.0 15.5 15.5 15.5	.0 12.0 . .0 56.0 .0 32.0 .0 44.0	65	1.0
19. EE 20. EE 21. WE 22. WE 23. WE 24. WE	Rt28 depar ³ Rt28 aprch ³ Rt28 aprch ³ Rt28 aprch ³ Rt28 depar ³	* 987.0 * 986.0 * 993.0 * 999.0	1500. 0 1425. 0 1300. 0 1391. 0 1445. 0 1615. 0	1131.9 978.0 997.0 990.1 1024.0 1201.0	2067.9 * 1298.0 * 1445.0 * 1356.2 * 1615.0 * 2425.0 *	588. 127. 145. 35. 172. 829.	15. AG 184. AG 4. AG 185. AG 8. AG 12. AG	668. 45. 85. 690. 230. 230.	100. 0 15. 5 15. 5 100. 0 15. 5 15. 5	.0 24.0 1. .0 32.0 .0 44.0 .0 24.0 . .0 32.0 .0 32.0	22 : 38	29. 9 1. 8

RUN: Site 1 Existing AM

JOB: Site 1 Existing AM - 1EXAM.DAT DATE: 05/08/2009 TIME: 17:42:17.24

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION * APPROACH SATURATION IDLE VOL FLOW RATE EM FAC (VPH) (VPH) (gm/hr) CYCLE RED TIME (SEC) CLEARANCE LOST TIME (SEC) SI GNAL ARRI VAL LENGTH (SEC) TYPE RATE 3. NB 5. NB 13. SB 15. SB 19. EB 22. WB 141. 40 141. 40 141. 40 141. 40 141. 40 141. 40 141. 40 2.0 2.0 2.0 2.0 2.0 2.0 2.0 585 140 1500 20 395 85 1679 1752 1668 1752 1688 1694 ---Rt1 th+rt * Rt1 left * Rt1 th+rt * Rt1 left * 167 1 3 3 3 3 3 3 3 167 167 167 167 167 167 145 72 160 147 1 1 1 Rt28 aprch* Rt28 aprch* 152

RECEPTOR LOCATIONS

RECEPTOR	*	х	COORD	INATES (FT) Y	z		*
RECEPTOR 1. SE MID S 2. SE 164 S 3. SE 82 S 4. SE CNR 5. SE 82 E 6. NE 82 E 7. NE CNR 8. NE 82 N 9. NE 164 N 10. NE MID N 11. NW MID N 12. NW 164 N 13. NW 82 N 14. NW CNR 15. NW 82 W 16. NW 164 W 17. NW MID W 18. SW MID W 19. SW 164 W 20. SW 82 W 21. SW CNR 22. SW 82 S 23. SW 164 S 24. SW MID S	· * * * * * * * * * * * * * * * * * * *	650. 792. 874. 960. 947. 1016. 1022. 1094. 1298. 1218. 1218. 1136. 1054. 1054. 1054. 1054. 1054. 1083. 1024. 994. 975. 935.		1 1369.0 1375.0 1377.0 1387.0 1304.0 1304.0 1306.0 1387.0 1391.0 1387.0 1391.0 1387.0 1405.0 14405.0 14405.0 14405.0 1560.0 1570.0 1570.0 1474.0 1474.0 1474.0 1474.0 1474.0 1476.0 1477.0 1478.0 1477.0 1478.0 1477.0 1478.0 1478.0 1477.0 1478.0 1478.0 1477.0 1478.0 1478.0 1478.0 1478.0 1478.0 1477.0 1478.0	2	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	. * * * * * * * * * * * * * * * * * * *

1

JOB: Site 1 Existing AM - 1EXAM.DAT

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. - 360.

WIND * CONCENTRATION ANGLE * (PPM)

RUN: Site 1 Existing AM

PAGE 3

PAGE 2

1

1

00. * 2 4 8 16 0 0 0 3 2 2 7 1 1 1 2 2 2 2 1 2 1 4 1 9 2 8 1 8 1.8 4 2 0 2 0 2 3 2 3 1 2 1 2 2 3 4 1 5 0 0 2 0 1 7 2 2 1 2 3 4 1 5 0 0 2 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 2 1 2 3 4 1 5 0 1 7 2 1 2 1 2 4 1 2 2 0 2 0 3 0 2 2 0 8 2 1 2 1 2 5 2 2 2 1 2 5 0 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 2 3 3 2 0 2 0 8 1 2 1 2 2 2 2 7 1 3 1 2 1 2 6 2 2 5 0 4 0 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1	40. 45. 50. 55. 60. 65. 70. 75. 80. 85. 90. 95.	* * * * * * * * * *	1.3 1.5 1.6 1.7 1.7 1.5 1.5 1.3 1.2 .8	2.0 2.1 2.2 2.4 2.1 2.1 2.1 1.8 1.5 1.2 .9	3.0 3.1 3.0 2.7 2.8 2.7 2.4 2.0 1.9 1.4 1.0	1.3 1.4 1.7 2.2 2.3 2.4 2.3 2.3 2.1 2.3 2.1 8	1.3 1.0 1.1 1.0 .8 .7 .5 .4 .0 .0	.8 .9 .7 .6 .6 .4 .0 .0	1.6 1.7 2.0 1.9 1.8 1.9 1.8 1.5 1.2 .9 .5	1.8 1.8 1.8 1.7 1.7 1.6 1.4 1.3 1.1 .8 .4	1.6 1.5 1.4 1.4 1.4 1.2 .9 .8 .7 .5	.9 .9 .9 1.1 1.0 1.3 1.2 1.2 1.0 .9 .7	.0 .0 .1 .2 .3 .5 .6 1.0 1.1 1.3	.0 .0 .0 .1 .2 .4 .6 1.0 1.5 1.6	.1 .1 .2 .3 .5 .8 1.2 1.7 2.2 2.7	.0 .0 .0 .0 .0 .3 .5 .8 1.3 1.7	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 2 . 3	.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1	.1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.5 2.4 2.3 2.2 2.2 2.1 2.0 2.0 2.0 2.0 2.0 2.0	2.9 2.8 2.6 2.5 2.4 2.3 2.2 2.2 2.2 2.2 2.2 2.2 2.4		
JOB: Site 1 Existing AM - 1EXAM. DAT RUN: Site 1 Existing AM NUNE * CONCENTRATION (PPM) (PPM) REC1 REC2 REC4 REC5 REC6 REC7 REC8 REC10 REC11 REC12 REC1 REC1 REC1 REC1 REC13 REC14 REC16 REC17 REC1 REC13 REC14 REC16 REC17 REC1 10 0 0 0 0 0 0 0 <td co<="" td=""><td>100. 105. 110. 115. 120. 125. 130. 135. 140. 145. 155. 160. 165. 170. 180. 185. 180. 185. 190. 190. 200. 205.</td><td>* * * * * * * * * *</td><td>.2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>.4 .3 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>. 8 . 4 . 3 . 2 . 2 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td><td>$\begin{array}{c} 1.6\\ 1.6\\ 1.5\\ 1.4\\ 1.3\\ 1.1\\ 1.0\\ .8\\ .7\\ .5\\ .4\\ .3\\ .2\\ .1\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0$</td><td>. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td><td>. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td><td>. 3 . 2 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td><td>221 .11 .11 .00 .00 .00 .00 .00 .00 .00 .0</td><td>.2 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>.2 .2 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td>$\begin{array}{c} 1.4\\ 1.32\\ 1.1\\ 1.1\\ 1.0\\ 1.0\\ 1.0\\ .99\\ .99\\ 1.0\\ 1.0\\ .99\\ .99\\ .99\\ .99\\ .99\\ .99\\ .99\\ .$</td><td>$\begin{array}{c} 1.9\\ 2.00\\ 2.23\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.43\\ 2.33\\ 2.43\\ 2.33\\ 2.43\\ 2.33\\$</td><td>$\begin{array}{c} 2.8 \\ 3.01 \\ 3.9 \\ 2.3.9 \\ 2.2.2 \\ 2.2.$</td><td>$\begin{array}{c} 1.8\\ 2.00\\ 2.02\\ 2.09\\ 1.9\\ 1.7\\ 1.8\\ 1.7\\ 1.5\\ 1.2\\ 1.2\\ 0\\ 9\\ 1.0\\ 1.0\\ 1.2\\ 1.0\\ 0\\ 1.0\\ 0\\ 1.0\\ 0\\ 1.0\\ 0\\ 0\\ 1.0\\ 0\\ 0\\ 1.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$</td><td>. 4 . 4 . 7 . 8 . 9 . 9 . 9 . 8 . 7 . 6 6 . 8 7 . 9 . 9 . 8 . 7 . 6 6 . 8 . 7 . 1</td><td>2222324566666666881149 </td><td>.0 .12 .22 .11 .22 .35 .54 .567 .05 .4567 .0580 .1.580</td><td>$\begin{array}{c} 2.0\\ 2.2\\ 2.1\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2$</td><td>$\begin{array}{c} 2&3&3\\2&2&2&5\\2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2$</td><td></td></td>	<td>100. 105. 110. 115. 120. 125. 130. 135. 140. 145. 155. 160. 165. 170. 180. 185. 180. 185. 190. 190. 200. 205.</td> <td>* * * * * * * * * *</td> <td>.2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td> <td>.4 .3 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td> <td>. 8 . 4 . 3 . 2 . 2 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td> <td>$\begin{array}{c} 1.6\\ 1.6\\ 1.5\\ 1.4\\ 1.3\\ 1.1\\ 1.0\\ .8\\ .7\\ .5\\ .4\\ .3\\ .2\\ .1\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0$</td> <td>. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td> <td>. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td> <td>. 3 . 2 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0</td> <td>221 .11 .11 .00 .00 .00 .00 .00 .00 .00 .0</td> <td>.2 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td> <td>.2 .2 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td> <td>$\begin{array}{c} 1.4\\ 1.32\\ 1.1\\ 1.1\\ 1.0\\ 1.0\\ 1.0\\ .99\\ .99\\ 1.0\\ 1.0\\ .99\\ .99\\ .99\\ .99\\ .99\\ .99\\ .99\\ .$</td> <td>$\begin{array}{c} 1.9\\ 2.00\\ 2.23\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.43\\ 2.33\\ 2.43\\ 2.33\\ 2.43\\ 2.33\\$</td> <td>$\begin{array}{c} 2.8 \\ 3.01 \\ 3.9 \\ 2.3.9 \\ 2.2.2 \\ 2.2.$</td> <td>$\begin{array}{c} 1.8\\ 2.00\\ 2.02\\ 2.09\\ 1.9\\ 1.7\\ 1.8\\ 1.7\\ 1.5\\ 1.2\\ 1.2\\ 0\\ 9\\ 1.0\\ 1.0\\ 1.2\\ 1.0\\ 0\\ 1.0\\ 0\\ 1.0\\ 0\\ 1.0\\ 0\\ 0\\ 1.0\\ 0\\ 0\\ 1.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$</td> <td>. 4 . 4 . 7 . 8 . 9 . 9 . 9 . 8 . 7 . 6 6 . 8 7 . 9 . 9 . 8 . 7 . 6 6 . 8 . 7 . 1</td> <td>2222324566666666881149 </td> <td>.0 .12 .22 .11 .22 .35 .54 .567 .05 .4567 .0580 .1.580</td> <td>$\begin{array}{c} 2.0\\ 2.2\\ 2.1\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2$</td> <td>$\begin{array}{c} 2&3&3\\2&2&2&5\\2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2$</td> <td></td>	100. 105. 110. 115. 120. 125. 130. 135. 140. 145. 155. 160. 165. 170. 180. 185. 180. 185. 190. 190. 200. 205.	* * * * * * * * * *	.2 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.4 .3 .2 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 8 . 4 . 3 . 2 . 2 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	$\begin{array}{c} 1.6\\ 1.6\\ 1.5\\ 1.4\\ 1.3\\ 1.1\\ 1.0\\ .8\\ .7\\ .5\\ .4\\ .3\\ .2\\ .1\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0$. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 3 . 2 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	221 .11 .11 .00 .00 .00 .00 .00 .00 .00 .0	.2 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.2 .2 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} 1.4\\ 1.32\\ 1.1\\ 1.1\\ 1.0\\ 1.0\\ 1.0\\ .99\\ .99\\ 1.0\\ 1.0\\ .99\\ .99\\ .99\\ .99\\ .99\\ .99\\ .99\\ .$	$\begin{array}{c} 1.9\\ 2.00\\ 2.23\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.33\\ 2.43\\ 2.33\\ 2.43\\ 2.33\\ 2.43\\ 2.33\\ $	$\begin{array}{c} 2.8 \\ 3.01 \\ 3.9 \\ 2.3.9 \\ 2.2.2 \\ 2.2.$	$\begin{array}{c} 1.8\\ 2.00\\ 2.02\\ 2.09\\ 1.9\\ 1.7\\ 1.8\\ 1.7\\ 1.5\\ 1.2\\ 1.2\\ 0\\ 9\\ 1.0\\ 1.0\\ 1.2\\ 1.0\\ 0\\ 1.0\\ 0\\ 1.0\\ 0\\ 1.0\\ 0\\ 0\\ 1.0\\ 0\\ 0\\ 1.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$. 4 . 4 . 7 . 8 . 9 . 9 . 9 . 8 . 7 . 6 6 . 8 7 . 9 . 9 . 8 . 7 . 6 6 . 8 . 7 . 1	2222324566666666881149 	.0 .12 .22 .11 .22 .35 .54 .567 .05 .4567 .0580 .1.580	$\begin{array}{c} 2.0\\ 2.2\\ 2.1\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2$	$\begin{array}{c} 2&3&3\\2&2&2&5\\2&2&2&2&2\\2&2&2&2&2&2\\2&2&2&2&2$	
NGLE * O			<u></u>																	PAGE	4		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					0	AM - 1E	exam. D <i>i</i>	AT				RUN: S	Site 1	Existi	ing AM								
IAX * 1.7 2.4 3.3 2.4 1.6 1.8 2.7 2.5 2.2 2.3 2.7 3.5 3.1 2.2 2.4 2.7 3.1 2.9 3.1	VI ND ANGLE (DEGR	* (CONCEN (I REC1 I	TRATION PPM) REC2 F	N REC3 F	REC4 F	REC5 F	REC6				EC10 I	REC11	REC12	REC13							RE	

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WI ND ANGLE (DEGR	*	CONCENT (P REC21 R	PM)		REC24
0. 5. 10.	-*- * *	. 3 . 6 . 8	. 0 . 1 . 1	. 0 . 0 . 0	. 0 . 0 . 0
15.	*	1.2	. 3	. 1	. 0

20. 25.	* 1. * 1.		. 1 . 3	. 0 . 1	1EXAM. OUT
30. 35. 40.	* 2. * 2. * 1.) .9) 1.0	. 4 . 6 . 7	. 2 . 3 . 3	
45. 50. 55.	* 1. * 1. * 1.	3 1.0 3 .9	. 6 . 6 . 6	. 4 . 4 . 5	
60. 65. 70.	* 1. * 1. * 1.	5 1.0 5 .9	. 7 . 8 . 9	. 6 . 6 . 7	
75. 80.	* 1. * 1.	4 1.3 5 1.5	1.0 1.3	1.0 1.3	
85. 90. 95.	* 1. * 2.	9 2.0 1 2.0	1.7 2.0 2.2	1.6 1.9 2.0	
100. 105. 110.	* 2. * 2. * 1.	1 2.0 7 2.0	2.2 2.3 2.4	2.0 1.9 1.8	
115. 120. 125.	* 1. * 1. * 1.	4 2.2 1 2.1	2.1 2.0 2.0	1.7 1.5 1.3	
130. 135. 140.	* 1. * 1. * 1.	2 2.1 3 2.0	1.8 1.6 1.4	1.2 1.2 1.1	
145. 150. 155.	* 1. * 1. * 1.	1 2.0 1 1.8	1.3 1.2 1.1	1. 1 1. 1 1. 0	
160. 165. 170.	* 1. * 1. * 1.	2 1.7 3 1.7	1.0 1.0 1.1	1.0 1.0 1.1	
175. 180. 185.	* 1. * 1. * 1.	2 1.6 4 1.6	1.1 1.1 1.1	1.1 1.1 1.1	
190. 195. 200.	* 1. * 1. * 1.	5 1.4 5 1.4	1. 0 1. 0 1. 0	1.0 1.0 1.0	
205. 1	* 1.	7 1.4	1.1	1.1	
WIND	JOB: SI		sting <i>i</i> 0360.		EXAM. DAT RUN: Site 1 Existing AM
WI ND ANGLE	* CONC	ENTRATI C			
ANGLE (DEGE	E * R)* REC2 *	(PPM) 1 REC22	N REC23	REC24	
ANGLE (DEGF 210. 215. 220.	E * R)* REC2 * 1. * 1. * 1.	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4	REC23 1.1 1.1 1.2	REC24 1.1 1.1 1.2	
ANGLE (DEGF 210. 215. 220. 225. 230. 235.	E * R) * REC2 * 1. * 1. * 1. * 1. * 1. * 1. * 1. * 1.	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.4 5 1.4 5 1.5	REC23 I 1.1 1.1 1.2 1.2 1.2 1.3 1.4	REC24 1.1 1.1 1.2 1.2 1.3 1.5	
ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240. 245. 250.	E * R) * REC2 * 1 * 1	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.4 5 1.5 3 1.5 3 1.6 3 1.7	REC23 I 1.1 1.1 1.2 1.2 1.3 1.4 1.6 1.5 1.6	REC24 1.1 1.2 1.2 1.3 1.5 1.5 1.4 1.5 1.6	
ANGLE (DEGF 215. 220. 225. 230. 240. 245. 255. 255. 260. 265.	E * REC2 * 1. * 1. * 1. * 1. * 1. * 1. * 1. * 1.	(PPM) 1 REC22 7 1. 4 7 1. 3 5 1. 4 4 1. 4 5 1. 5 3 1. 5 3 1. 6 3 1. 7 3 1. 7 3 1. 7 3 1. 7 3 1. 7 3 1. 5 3 1. 6 3 1. 4 4 1. 4 5 1. 5 3 1. 5 3 1. 5 3 1. 5 3 1. 5 3 1. 5 3 1. 6 3 1. 7 3 1. 7 3 1. 7 3 1. 7 3 1. 7 3 1. 7 3 1. 5 3 1. 6 3 1. 7 3 1. 7 3 1. 7 3 1. 7 3 1. 5 3 1. 7 3 1. 7 3 1. 5 3 1. 7 3 1. 5 3 1. 5 5 5 5 5 5 5 5 5 5 5 5 5 5	N REC23 I 1.1 1.2 1.2 1.3 1.4 1.6 1.5 1.6 1.7 1.6 1.7 1.6 1.4	REC24 1.1 1.2 1.2 1.3 1.5 1.6 1.6 1.4	
ANGLE (DEGG 210. 215. 220. 235. 240. 245. 255. 260. 255. 260. 265. 270. 275. 280.	E * REC2 *	(PPM) 1 RE222 5 1.4 7 1.3 5 1.4 7 1.3 5 1.4 5 1.4 5 1.4 5 1.4 5 1.5 3 1.6 3 1.7 3 1.7 1 1.6 7 1.2 44 9 26 9 1.2 44 9 26 9 1.4 1.4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	N REC23 1.1 1.2 1.2 1.3 1.4 1.6 1.6 1.7 1.6 1.7 1.6 1.4 1.2 1.0 .6	REC24 1.1 1.2 1.2 1.3 1.5 1.6 1.6 1.6 1.6 1.4 1.2 .9 .6	
ANGLE (DEGF 210. 215. 220. 225. 230. 240. 245. 250. 245. 260. 265. 270. 275. 280. 285. 280. 295.	E * * * * * * * * * * * * * * * * * * *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 5 1.4 5 1.4 5 1.4 5 1.5 3 1.7 1 1.6 3 1.7 1 1.6 9 1.5 7 1.2 4 .9 2 .6 1 .4 1 .4 3 .7 1 .2 6 .4 .3 .3	REC23 I 1.1 1.1 1.2 1.2 1.3 1.4 1.6 1.5 1.6 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.7 1.0 6 .4 .2	REC24 1.1 1.2 1.2 1.3 1.4 1.6 1.6 1.6 1.6 1.6 1.4 1.2 .9 .6 .4 .9 .4 .2 .9 .4 .2 .9 .4 .2 .2 .4 .2 .5 .4 .2 .5 .4 .5 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	
ANGLE (DEGF 210. 215. 225. 230. 245. 240. 245. 255. 260. 255. 260. 255. 260. 275. 280. 285. 285. 290.	E * * * * * * * * * * * * * * * * * * *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.5 3 1.5 3 1.5 3 1.7 1 1.6 2 .6 1 .4 .9 .26 .1.7 .24 .9 .26 .1.4 .3 .20 .22 .1.4 .9	REC23 I 	REC24 1.1 1.2 1.2 1.5 1.6 1.6 1.6 1.6 1.4 1.9 .6 1.4 1.2 .9 .4 .3 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	
ANGLE (DEGF 210. 215. 220. 225. 230. 240. 245. 245. 245. 245. 245. 245. 245. 245	E * * T. *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.5 3 1.7 3 1.7 1 1.6 3 1.7 1 1.6 9 1.5 1 1.4 9 1.5 1 2.6 1 .4 1 .4 0 .2 0 .2 0 .2 0 .2 0 .2 0 .1 0 .1 0 .1	REC23 1 	REC24 1.1 1.2 1.2 1.3 1.5 1.6 1.6 1.6 1.6 1.4 2.9 .4 .3 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .3 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	
ANGLE (DEG) 210. 215. 220. 225. 230. 240. 245. 255. 240. 245. 255. 265. 275. 280. 275. 280. 295. 300. 305. 310. 315. 320. 335.	E * * C2 * 1 * 1 *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.5 3 1.5 3 1.5 3 1.7 3 1.7 9 1.5 7 1.2 4 9 2 6 1 3 3 1.7 1 3 2 6 1 3 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 3 1.7 <t< td=""><td>REC23 I 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.6 1.7 1.6 1.4 1.2 1.0 1.4 1.2 1.3 1.4 1.5 1.6 1.6 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.6 1.6 1.5 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6</td><td>REC24 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.6 1.6 1.4 1.4 1.2 .9 .6 .1 .1 .1 .1 .1 .2 .3 .4 .5 .4 .5 .4 .5 .4 .5 .2 .6 .4 .3 .2 .6 .6 .1 .4 .5 .2 .6 .6 .1 .6 .6 .1 .2 .5 .6 .6 .6 .1 .6 .6 .1 .6 .6 .6 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td></td></t<>	REC23 I 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.6 1.7 1.6 1.4 1.2 1.0 1.4 1.2 1.3 1.4 1.5 1.6 1.6 1.1 1.1 1.1 1.1 1.2 1.3 1.4 1.5 1.6 1.6 1.6 1.5 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	REC24 1.1 1.2 1.2 1.3 1.5 1.4 1.6 1.6 1.6 1.4 1.4 1.2 .9 .6 .1 .1 .1 .1 .1 .2 .3 .4 .5 .4 .5 .4 .5 .4 .5 .2 .6 .4 .3 .2 .6 .6 .1 .4 .5 .2 .6 .6 .1 .6 .6 .1 .2 .5 .6 .6 .6 .1 .6 .6 .1 .6 .6 .6 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	
ANGLI (DEG) 210. 215. 220. 225. 230. 240. 245. 255. 240. 245. 255. 260. 265. 270. 275. 280. 265. 280. 290. 305. 315. 320. 305. 315. 320. 335. 340. 345. 350.	E * * 1 * 1 *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.7 3 1.5 3 1.6 3 1.7 1 1.6 9 1.5 7 1.2 9 1.5 1 3 1 3 1 3 1 1.6 9 1.5 1 3 1 3 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N REC23 I 1.1 1.2 1.2 1.3 1.4 1.5 1.6 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.6 .4 1.2 1.0 .6 .4 .1 .1 .1 .1 1.1 1.3 1.4 1.2 1.3 1.4 1.5 1.6 .1 .1 1.1 1.3 1.4 1.5 1.6 .1 .1 1.4 1.5 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.7 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	REC24 1.1 1.2 1.3 1.5 1.6 1.6 1.6 1.6 1.6 1.4 1.2 .9 .6 .1 .1 .1 .1 .1 .1 .1 .1 .2 .3 .5 .6 .6 .6 .6 .6 .6 .1 .1 .1 .1 .5 .6 .6 .6 .6 .6 .6 .6 .6 .1 .1 .5 .6 .6 .6 .6 .6 .6 .6 .6 .6 .6	
ANGLI (DEG) 210. 215. 220. 225. 230. 235. 240. 245. 255. 260. 255. 260. 255. 280. 285. 280. 295. 300. 305. 310. 325. 320. 295. 330. 335. 340. 345. 340. 355. 360. 355. 355. 355. 355. 355. 355. 355. 35	E * * 1. * . *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.4 5 1.7 8 1.7 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 9 1.5 1 3 1 1 1 1 1 1 1 1 1 1 10 1 10	REC23 I - 1. 1 1. 1 1. 2 1. 2 1. 2 1. 3 1. 4 1. 5 1. 6 1. 7 1. 6 1. 7 1. 6 . 4 1. 2 1. 0 . 1. 7 1. 6 . 4 . 2 . 2 . 1 . 1 . 1 . 1 . 1 . 2 . 2 . 3 . 4 . 4 . 4 . 4 . 5 . 6 . 4 . 4 . 4 . 5 . 6 . 4 . 1 . 6 . 4 . 1 . 6 . 4 . 1 . 1 . 6 . 4 . 1 . 1 . 1 . 4 . 4 . 4 . 4 . 4 . 4 . 5 . 1. 6 . 4 . 4 . 1 . 6 . 4 . 1 . 6 . 4 . 1 . 6 . 4 . 1 . 1 . 6 . 4 . 1 . 1 . 1 . 6 . 4 . 1 . 1 . 6 . 4 . 1 . 1 . 1 . 1 . 6 . 4 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	REC24 1.1 1.2 1.2 1.3 1.5 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	
ANGLI (DEG) 210. 215. 220. 225. 230. 235. 240. 245. 255. 256. 256. 265. 275. 255. 265. 275. 280. 275. 280. 275. 280. 300. 305. 310. 315. 320. 335. 340. 325. 325. 326. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 275. 285. 290. 305. 310. 315. 325. 325. 325. 325. 290. 295. 295. 295. 295. 295. 295. 295. 295	E * * * * * * * * * * * * * * * * * * *	(PPM) 1 REC22 5 1.4 7 1.3 5 1.4 4 1.4 5 1.4 5 1.4 5 1.5 3 1.7 1 1.6 3 1.7 1 1.6 9 1.5 1 2.6 1 2.4 9 2.6 1 3.0 2 3.0 1 1.6 3 1.7 1 1.6 3 1.7 1 1.6 3 1.7 1 1.6 2 1.2 2 1.2 1 1.4 1 1.6 1 1.1 1 1.4 1 1.4 1 1.4 1 1.5	REC23 I 1.1 1.2 1.2 1.3 1.4 1.6 1.5 1.6 1.7 1.6 1.7 1.6 1.7 1.6 1.4 1.2 1.4 1.2 1.3 1.4 1.4 1.2 1.3 1.4 1.4 1.2 1.3 1.4 1.5 1.4 1.2 1.3 1.4 1.4 1.5 1.4 1.2 1.4 1.5 1.4 1.4 1.2 1.4 1.5 1.4 1.4 1.2 1.4 1.5 1.4 1.4 1.2 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4	REC24 1.1 1.2 1.3 1.5 1.4 1.6 1.6 1.4 1.2 9 .6 .4 .3 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	3. 50 PPM AT 250 DEGREES FROM REC12.

1EXAM. OUT

PAGE 6

	Existi	ng PM - 1E	XPM.DAT		60.	0321.0.00	00.000240.3	0480	000	1
1 SE MID SE 164 SE 82 SE CNR SE 82 NE 82 NE 82 NE 22 NE 82 NE 164 NW MID NW 164 NW 82 NW 164 NW 82 NW 164 NW MID SW 164 SW 82 SW CNR	S S E E N N N N N W W W W W W W W		650. 792. 874. 960. 947. 1016. 1022. 1094. 1175. 1298. 1318. 1218. 1136. 1054. 1054. 1043. 1057. 1083. 1024. 994. 975. 935.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	369. 375. 379. 383. 304. 306. 387. 391. 396. 405. 496. 493. 488. 503. 586. 667. 784. 777. 650. 570. 495.	5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0				
SW 82	S		853.	1	474.	5.0				
SW 164 SW MID	S		771. 631.		470. 463.	5.0				
Site 1 1	Existi	ng PM			24	£ 1 0				
NB 1	Rtl	aprch AG	3.	1362.	559.	1390.	173015.5	0.	56	30.
NB 2	Rt1	th+rt AG	559.	1390.	1016.	1410.	136015.5	0.	56	30.
NB 1	Rt1 206	th+rt AG 65			568. 141.4	1390. 1678 1 3	0. 36	3		
NB 2	Rt1	left AG	552.	1408.	1013.	1432.	37015.5	0.	32	30.
NB	Rt1 206	left AG 157	934. 2.0			. 1409. 1752 1 3	0. 12	1		
1 NB	Rtl	departAG	1017.	1410.	1345.	1432.	153015.5	0.	56	30.
1 NB	Rtl	departAG	1345.	1432.	1632.	1463.	153015.5	0.	44	30.
1 NB	Rt1	departAG	1632.	1463.	1999.	1510.	153015.5	0.	44	30.
1 SB	Rt1	aprch AG	1995.	1546.	1680.	1502.	114515.5	0.	44	30.
1 SB	Rt1	aprch AG	1680.	1502.	1429.	1473.	114515.5	0.	44	30.
1 SB	Rt1	aprch AG	1429.	1473.	1228.	1465.	114515.5	0.	44	30.
1 SB	Rtl	th+rt AG	1228.	1465.	1017.	1455.	114015.5	0.	56	30.
2 SB	Rt1 206	th+rt AG 111	1066. 2.0	1457. 1140		1465. 1653 1 3	0. 36	3		

1									
SB 2	Rt1 left	AG 1165.	1444.	1020.	1436.	515.5	0.	32	30.
SB	Rt1 left 206 203		1439. 5		1444. 752 1 3	0. 12	1		
1 SB 1	Rt1 depart	AG 1017.	1455.	2.	1403.	130015.5	0.	56	30.
EB 1	Rt28 aprch	AG 1191.	2428.	1007.	1603.	39015.5	0.	32	30.
EB 2	Rt28 aprch	AG 1007.	1603.	961.	1435.	39015.5	0.	44	30.
EB	Rt28 aprch 206 180				1578. 684 1 3	0. 24	2		
1 EB 1	Rt28 depar	AG 987.	1425.	978.	1298.	3015.5	0.	32	30.
WB 2	Rt28 aprch	AG 986.	1300.	997.	1445.	16015.5	0.	44	30.
WB	Rt28 aprch 206 186				1306. 706 1 3	0. 24	2		
1 WB 1	Rt28 depar	AG 999.	1445.	1024.	1615.	56515.5	0.	32	30.
WB 1.0	Rt28 depar 04 1000. 0Y	AG 1024. 5 0 72	1615.	1201.	2425.	56515.5	0.	32	30.

RUN: Site 1 Existing PM

PAGE 2

PAGE 3

JOB: Site 1 Existing PM - 1EXPM.DAT DATE: 05/08/2009 TIME: 22:45:46.85

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD =	.0 CM/S	ZO = 321. CM				
U =	1.0 M/S	CLAS =	4 (D)	ATIM = 60. MINUTES	MIXH =	1000. M	AMB =	.O PPM

LINK VARIABLES

LINK DESCR	I PTI ON * *	X1	NK COORDIN. Y1	ATES (FT) X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. NB 2. NB 3. NB 4. NB 5. NB 6. NB 7. NB 8. NB 9. SB 10. SB 11. SB	Rt1 aprch * Rt1 th+rt * Rt1 th+rt * Rt1 left * Rt1 left * Rt1 depart* Rt1 depart* Rt1 aprch * Rt1 aprch *	3.0 559.0 936.0 552.0 934.0 1017.0 1345.0 1632.0 1995.0 1680.0 1429.0	1362.0 1390.0 1407.0 1408.0 1428.0 1410.0 1432.0 1463.0 1546.0 1502.0 1473.0	559.0 1016.0 775.2 1013.0 546.7 1345.0 1632.0 1999.0 1680.0 1429.0 1228.0	1390.0 * 1410.0 * 1399.6 * 1407.8 * 1407.8 * 1422.0 * 1463.0 * 1510.0 * 1510.0 * 1473.0 *	557. 457. 161. 462. 388. 329. 289. 370. 318. 253. 201.	87. AG 87. AG 267. AG 87. AG 86. AG 84. AG 83. AG 262. AG 263. AG 268. AG	1730. 1360. 359. 370. 289. 1530. 1530. 1530. 1145. 1145. 1145.	$\begin{array}{c} 15.5\\ 15.5\\ 100.0\\ 15.5\\ 100.0\\ 15.5\\ 100.0\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\\ 15.5\end{array}$	$\begin{array}{c} . 0 56. 0 \\ . 0 56. 0 \\ . 0 36. 0 \\ . 0 32. 0 \\ . 0 12. 0 \\ . 0 56. 0 \\ . 0 44. 0 \\ . 0 44. 0 \\ . 0 44. 0 \\ . 0 44. 0 \\ . 0 44. 0 \\ . 0 44. 0 \end{array}$		8. 2 19. 7
11. SB 12. SB 13. SB 14. SB 15. SB 16. SB	Rt1 th+rt * Rt1 th+rt * Rt1 left * Rt1 left * Rt1 left *	1427.0 1228.0 1066.0 1165.0 1068.0 1017.0	1473.0 1465.0 1457.0 1444.0 1439.0 1455.0	1017. 0 1296. 3 1020. 0 1074. 3 2. 0	1455. 0 * 1455. 0 * 1468. 9 * 1436. 0 * 1439. 3 * 1403. 0 *	201. 211. 231. 145. 6. 1016.	267. AG 267. AG 267. AG 267. AG 87. AG 267. AG	1140. 613. 5. 374. 1300.	15.5 100.0 15.5 100.0 15.5	.0 56.0		11. 7 . 3
17. EB 18. EB 19. EB 20. EB 21. WB 22. WB 23. WB 24. WB	Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 depar* Rt28 depar* Rt28 depar*	1191. 0 1007. 0 979. 0 987. 0 986. 0 993. 0 999. 0 1024. 0	2428. 0 1603. 0 1500. 0 1425. 0 1300. 0 1391. 0 1445. 0 1615. 0	1007.0 961.0 1088.2 978.0 997.0 986.2 1024.0 1201.0	1603.0 * 1435.0 * 1905.5 * 1298.0 * 1445.0 * 1309.0 * 1615.0 * 2425.0 *	845. 174. 420. 127. 145. 82. 172. 829.	193. AG 195. AG 15. AG 184. AG 4. AG 185. AG 8. AG 12. AG	390. 390. 663. 30. 160. 685. 565. 565.	15.5 15.5 100.0 15.5 15.5 100.0 15.5 100.5	.0 32.0 .0 44.0 .0 24.0 1. .0 32.0 .0 44.0	09 61	21. 3 4. 2

RUN: Site 1 Existing PM

JOB: Site 1 Existing PM - 1EXPM.DAT DATE: 05/08/2009 TIME: 22:45:46.85

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION * APPROACH SATURATION IDLE VOL FLOW RATE EM FAC (VPH) (VPH) (gm/hr) CYCLE RED TIME (SEC) CLEARANCE LOST TIME (SEC) SI GNAL ARRI VAL LENGTH (SEC) TYPE RATE 3. NB 5. NB 13. SB 15. SB 19. EB 22. WB 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1360 370 1140 5 390 160 141. 40 141. 40 141. 40 141. 40 141. 40 141. 40 141. 40 - - -1678 1752 1653 1752 1684 1706 Rt1 th+rt * Rt1 left * Rt1 th+rt * Rt1 left * 206 206 206 206 206 206 65 157 111 203 180 1 3 3 3 3 3 3 3 1 1 1 Rt28 aprch* Rt28 aprch* 186

RECEPTOR LOCATIONS

RECEPTOR	*	COOR X	DINATES (FT) Y	z	* *
1. SE MID S	*	650.0	1369.0	5.0	*
2. SE 164 S	*	792.0	1375.0	5.0	*
3. SE 82 S	*	874.0	1379.0	5.0	*
SE CNR	*	960.0	1383.0	5.0	*
5. SE 82 E	*	947.0	1304.0	5.0	*
6. NE 82 E	*	1016.0	1306.0	5.0	*
7. NE CNR	*	1022.0	1387.0	5.0	*
8. NE 82 N	*	1094.0	1391.0	5.0	*
9. NE 164 N	*	1175.0	1396.0	5.0	*
10. NE MID N	*	1298.0	1405.0	5.0	*
11. NW MID N	*	1318.0	1496.0	5.0	*
12. NW 164 N	*	1218.0	1493.0	5.0	*
13. NW 82 N	*	1136.0	1488.0	5.0	*
14. NW CNR	*	1054.0	1503.0	5.0	*
15. NW 82 W	*	1043.0	1586.0	5.0	*
16. NW 164 W	*	1057.0	1667.0	5.0	*
17. NW MID W	*	1083.0	1784.0	5.0	*
18. SW MID W	*	1024.0	1777.0	5.0	*
19. SW 164 W	*	994.0	1650.0	5.0	*
20. SW 82 W	*	975.0	1570.0	5.0	*
21. SW CNR	*	935.0	1495.0	5.0	*
22. SW 82 S	*	853.0	1474.0	5.0	*
23. SW 164 S	*	771.0	1470.0	5.0	*
24. SW MID S	*	631.0	1463.0	5.0	*

1

JOB: Site 1 Existing PM - 1EXPM.DAT

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. - 360.

WIND * CONCENTRATION ANGLE * (PPM)

RUN: Site 1 Existing PM

1

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WI ND ANGLE (DEGR	*	CONCENT (P REC21 R	PM)	-	REC24
0. 5. 10. 15.	* * *	. 2 . 6 . 8 1. 1	. 0 . 0 . 1 . 3	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	IEXPM. OUT
JOB: Site 1 Existing PM - 1EXPM WIND ANGLE RANGE: 0360.	DAT RUN: Site 1 Existing PM
WIND * CONCENTRATION ANGLE * (PPM)	
(DEGR)* REC21 REC22 REC23 REC24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	PPM AT 255 DEGREES FROM REC11. 4.00 PPM AT 245 DEGREES FROM REC12.

1EXPM. OUT

PAGE 6

Site 1 M 1	No Bui	ld 2014 AM	- 1NBAI	M14.DAT	60.	.0321.0.00	00.000240.3	0480	000	1
SE MID S			650.		369. 75	5.0				
SE 164 S SE 82 S	5		792. 874.		375. 379.	5.0 5.0				
SE CNR			960.	13	383.	5.0				
SE 82 E			947.		304.	5.0				
NE 82 E NE CNR			1016. 1022.		306. 387.	5.0 5.0				
NE 82 N			1094.		391.	5.0				
NE 164 N			1175.		396.	5.0				
NE MID N NW MID N			1298. 1318.		405. 496.	5.0 5.0				
NW 164 N			1218.		190. 193.	5.0				
NW 82 N			1136.	14	188.	5.0				
NW CNR			1054.		503.	5.0				
NW 82 W NW 164 V	M.		1043. 1057.		586. 567.	5.0 5.0				
NW MID V			1083.		/84.	5.0				
SW MID V	N		1024.		77.	5.0				
SW 164 V	M		994.		550.	5.0				
SW 82 W SW CNR			975. 935.		570. 195	5.0 5.0				
SW CNR SW 82 S			853.		195. 174.	5.0				
SW 164 S	5		771.		170.	5.0				
SW MID S			631.		163.	5.0				
	No Bui	ld 2014 AM			24	1 1 O				
1 NB	Rt1	aprch AG	3.	1362.	559.	. 1390.	140411.4	0.	56	30.
1 NB	Rt1	th+rt AG	559.	1390.	1016.	. 1410.	96611.4	0.	56	30.
2 NB	R+1	th+rt AG	936	1407	568	. 1390.	0. 36	3		
	120	60				1679 1 3	0. 50	5		
1										
NB 2	Rt1	left AG	552.	1408.	1013.	. 1432.	43811.4	0.	32	30.
	Rt1	left AG	934.	1428.	569.	. 1409.	0. 12	1		
1		103				1752 1 3				
1	D + 1	1	1010	1 4 1 0	1245	1420	110011 4	0	БC	20
NB 1	Rti	departAG	1017.	1410.	1345.	. 1432.	110211.4	Ο.	56	30.
NB 1	Rt1	departAG	1345.	1432.	1632.	. 1463.	110211.4	0.	44	30.
NB	Rt1	departAG	1632.	1463.	1999.	. 1510.	110211.4	0.	44	30.
1 SB	Rt1	aprch AG	1995.	1546.	1680.	. 1502.	256511.4	0.	44	30.
1 SB	Rt1	aprch AG	1680.	1502.	1429.	. 1473.	256511.4	0.	44	30.
1 SB	Rt1	aprch AG	1429.	1473.	1228.	. 1465.	256511.4	0.	44	30.
1 SB	Rt1	th+rt AG	1228.	1465.	1017.	. 1455.	254511.4	0.	56	30.
2	D + 1	thirt NC	1066	1457	1001	1165	0 36	С		
SB 1	REI 120	th+rt AG 73	1066. 2.0	1457. 2545	1221. 102.2	. 1465. 1667 1 3	0. 36	3		

1							
SB 2	Rt1 left AG	1165. 1444.	1020. 1436.	2011.4	0.	32	30.
SB 1	Rt1 left AG 120 115	1068. 1439. 2.0 20	1161. 1444. 102.2 1752 1 3	0. 12	1		
SB 1	Rt1 departAG	1017. 1455.	2. 1403.	311611.4	0.	56	30.
EB 1	Rt28 aprchAG	1191. 2428.	1007. 1603.	79311.4	0.	32	30.
EB 2	Rt28 aprchAG	1007. 1603.	961. 1435.	79311.4	0.	44	30.
EB	Rt28 aprchAG 120 91		1000. 1578. 102.2 1686 1 3	0. 24	2		
1 EB 1	Rt28 deparAG	987. 1425.	978. 1298.	4511.4	0.	32	30.
WB 2	Rt28 aprchAG	986. 1300.	997. 1445.	8511.4	0.	44	30.
WB	Rt28 aprchAG 120 109	993. 1391. 2.0 85	986. 1306. 102.2 1694 1 3	0. 24	2		
1 WB 1	Rt28 deparAG	999. 1445.	1024. 1615.	58411.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1024. 1615. 0 72	1201. 2425.	58411.4	0.	32	30.

PAGE 1

JOB: Site 1 No Build 2014 AM - 1NBAM14.DAT	RUN: Site 1 No Build 2014 AM
DATE: 05/09/2009 TIME: 14:11:10.98	

SITE & METEOROLOGICAL VARIABLES

VS = .0 CM/S VD = .0 CM/S ZO = 321. CM		
U = 1.0 M/S $CLAS = 4 (D)$ $ATTM = 60. MINUTES$ $MIXH = 1000. M$ $AMB =$.0 PPM	

LINK VARIABLES

1

1

	LINK		* X1	LINK COORDI Y1	NATES (FT) X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W V/C QUEUE (FT) (FT) (VEH)
	NB	Rt1 aprch) 1362.0	559.0	*- 1390.0 *	557.	87. AG	1404.		. 0 56. 0
2.	NB	Rt1 th+rt			1016.0	1410.0 *	457.	87. AG	966.	11.4	.0 56.0
3	NB	Rt1 th+rt			830.5	1402.1 *	106.	267. AG	411.	100.0	.0 36.0 .41 5.4
4.	NB	Rt1 Left			1013.0	1432.0 *	462.	87. AG	438.	11.4	.0 32.0
5.	NB	Rt1 left			-1914.9	1279.7 *	2853.	267. AG	235.	100.0	. 0 12. 0 2. 32 144. 9
6.	NB	Rt1 depart			1345.0	1432.0 *	329.	86. AG	1102.	11.4	. 0 56. 0
7.	NB	Rt1 depart			1632.0	1463.0 *	289.	84. AG	1102.	11.4	. 0 44. 0
8.	NB	Rt1 depart	* 1632.0		1999.0	1510.0 *	370.	83. AG	1102.	11.4	. 0 44. 0
9.	SB	Rt1 aprch	* 1995.0		1680.0	1502.0 *	318.	262. AG	2565.	11.4	. 0 44. 0
10.	SB	Rt1 aprch	* 1680.0		1429.0	1473.0 *	253.	263. AG	2565.	11.4	. 0 44. 0
11.	SB	Rt1 aprch			1228.0	1465.0 *	201.	268. AG	2565.	11.4	. 0 44. 0
12.	SB	Rt1 th+rt			1017.0	1455.0 *	211.	267. AG	2545.	11.4	.0 56.0
13.	SB	Rt1 th+rt			4039.7	1610.5 *	2978.	87. AG	500.	100.0	. 0 36. 0 1. 42 151. 3
14.	SB	Rt1 left			1020.0	1436.0 *	145.	267. AG	20.	11.4	.0 32.0
15.	SB	Rt1 left			1165.7	1444.3 *	98.	87. AG	263.	100.0	.0 12.0 1.43 5.0
16.	SB EB	Rt1 depart			2.0	1403.0 * 1603.0 *	1016.	267. AG	3116.	11.4	. 0 56. 0
17. 18.	EB	Rt28 aprch ³ Rt28 aprch ³			1007.0 961.0	1435.0 *	845. 174.	193. AG 195. AG	793. 793.	11.4 11.4	.0 32.0 .0 44.0
19.		Rt28 aprch			1172.1	2217.2 *	743.	15. AG	416.	100.0	.0 24.0 1.13 37.7
20.	EB	Rt28 depar			978.0	1298.0 *	127.	184. AG	410.	11.4	.0 32.0
21.	WB	Rt28 aprch			997.0	1445.0 *	145.	4. AG	85.	11.4	.0 44.0
22.	WB	Rt28 aprch			990.9	1366.1 *	25.	185. AG	498.	100.0	.0 24.0 .43 1.3
23.		Rt28 depar			1024.0	1615.0 *	172.	8. AG	584.	11.4	.0 32.0
24.		Rt28 depar			1201.0	2425.0 *	829.	12. AG	584.	11.4	. 0 32. 0

RUN: Site 1 No Build 2014 AM

JOB: Site 1 No Build 2014 AM - 1NBAM14.DAT DATE: 05/09/2009 TIME: 14:11:10.98

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATI ON FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB Rt1 th+rt 5. NB Rt1 left 13. SB Rt1 th+rt 15. SB Rt1 left 19. EB Rt28 apro 22. WB Rt28 apro	* * *	120 120 120 120 120 120 120	60 103 73 115 91 109	2.0 2.0 2.0 2.0 2.0 2.0 2.0	966 438 2545 20 793 85	1679 1752 1667 1752 1686 1694	102. 20 102. 20 102. 20 102. 20 102. 20 102. 20 102. 20	1 1 1 1 1	3 3 3 3 3 3 3

RECEPTOR LOCATIONS

-								
		*		COORD	INATES (FT)		*
	RECEPTOR	*	Х		Y	Ź		*
		-*						*
1.	SE MID S	*	650	. 0	1369.0		5.0	*
2.	SE 164 S	*	792	. 0	1375.0		5.0	*
3.	SE 82 S	*	874	. 0	1379.0		5.0	*
4.	SE CNR	*	960	. 0	1383.0		5.0	*
5.		*	947	0	1304.0		5.0	*
6.		*	1016	0	1306.0		5.0	*
7.		*	1022	0	1387.0		5.0	*
8.		*	1094	0	1391.0		5.0	*
9.		*	1175		1396.0		5.0	*
10.		*	1298		1405.0		5.0	*
11.		*	1318		1496.0		5.0	*
12.		*	1218		1493.0		5.0	*
13.		*	1136		1488.0		5.0	*
14.		*	1054		1503.0		5.0	*
15.		*	1043		1586.0		5.0	*
16.		*	1057		1667.0		5.0	*
17.		*	1083		1784.0		5.0	*
18.		*	1024		1777.0		5.0	*
19.		*		0	1650.0		5.0	*
20.		*		0	1570.0		5.0	*
21.		*	935		1495.0		5.0	*
22.		*		. 0	1474.0		5.0	*
23.		*		. 0	1470.0		5.0	*
24.	SW MID S	*	631		1463.0		5.0	*
	0		551				0.0	

1

JOB: Site 1 No Build 2014 AM - 1NBAM14.DAT

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM) (DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 * 1.5 1.5 2.9 2.1 1.5 1.8 2.1 2.7 2.3 2.0 .0 .1 .5 1.0 1.7 1.9 2.0 .6 .6 .7 Page 1

RUN: Site 1 No Build 2014 AM

PAGE 3

PAGE 2

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * ANGLE * (DEGR) *		NTRATI ((PPM) REC22		REC24
0. *	. 2	. 0	. 0	. 0
5. *	. 4	. 1	. 0	. 0
10. *	. 7	. 1	. 0	. 0

20. * 1.3. .6 .2 .1 25. * 1.4 .7 .4 .2 30. * 1.5 .8 .4 .2 35. * 1.6 .8 .4 .2 35. * 1.6 .8 .4 .2 35. * 1.6 .8 .6 .4 40. * 1.6 .8 .6 .4 50. * 1.3 .9 .7 .5 55. * 1.2 .8 .6 .4 60. * 1.1 1.0 .8 .7 70. * 1.2 1.2 .8 .7 75. * 1.5 1.7 1.4 1.3 80. * 2.0 2.3 1.9 1.8 85. * 2.4 2.0 2.8 3.1 3.1 90. * 2.8 3.1 3.1 2.9 90. * 2.8 3.1 3.0 3.3 110. * 2.5 2.8 3.1 2.7 120. * 2.0 2.6	
35. * 1.6 .8 .6 .2 $40. *$ 1.6 .8 .6 .4 $55. *$ 1.2 .6 .4 $50. *$ 1.3 .9 .7 .5 $55. *$ 1.2 .8 .6 .4 $60. *$ 1.1 .8 .5 .5 $65. *$ 1.1 1.0 .8 .7 $70. *$ 1.2 1.2 1.2 .8 $75. *$ 1.5 1.7 1.4 1.3 $80. *$ 2.0 2.3 1.9 1.8 $85. *$ 2.4 2.8 2.7 2.4 $90. *$ 2.8 3.1 3.1 2.9 $95. *$ 3.0 3.0 3.3 3.1 $100. *$ 2.6 2.8 3.1 3.1 $110. *$ 2.5 2.8 3.1 2.7 $110. *$ 2.6 2.6 2.3 1.7 $12. *$ 1.9 2.3 2.5 2.2 $130. *$ 1.7 2	
50. * 1.13 .9 .7 .5 $55. *$ 1.2 .8 .6 .4 $60. *$ 1.1 1.0 .8 .5 .5 $65. *$ 1.1 1.0 .8 .7 $70. *$ 1.2 1.2 .8 $75. *$ 1.5 1.7 1.4 1.3 $80. *$ 2.0 2.3 1.9 1.8 $85. *$ 2.4 2.8 2.7 2.4 $90. *$ 2.0 3.3 3.1 $100. *$ 2.9 2.9 2.8 $110. *$ 2.5 2.8 3.1 3.0 $105. *$ 2.6 2.7 2.4 $110. *$ 2.5 2.8 3.1 2.7 $115. *$ 2.1 2.6 2.6 2.3 $120. *$ 2.0 2.6 2.6 2.3 $135. *$ 1.6 2.5 2.3 2.0 $135. *$ 1.6 2.4 2.0 $135. *$ 1.6 2.4 2.1 1.8 <td></td>	
60. * 1.1 .8 .5 .5 $65.$ * 1.1 1.0 .8 .7 $70.$ * 1.2 1.2 1.2 .8 $75.$ * 1.5 1.7 1.4 1.3 $80.$ * 2.0 2.3 1.9 1.8 $85.$ * 2.4 2.8 2.7 2.4 $90.$ * 3.0 3.3 3.1 $100.$ * 2.9 2.9 2.8 $110.$ * 2.5 2.8 3.1 3.0 $110.$ * 2.5 2.8 3.1 2.7 $110.$ * 2.5 2.8 3.1 2.7 $110.$ * 2.6 2.6 2.3 $120.$ * 2.0 2.6 2.6 $130.$ * 1.9 2.3 2.5 $133.$ * 1.6 2.5 2.3 2.0 $135.$ * 1.6 2.4 2.0 <	
70. * 1.2 1.2 1.2 8 $75. *$ 1.5 1.7 1.4 1.3 $80. *$ 2.0 2.3 1.9 1.8 $85. *$ 2.4 2.8 2.7 2.4 $90. *$ 2.8 3.1 3.1 2.9 $95. *$ 3.0 3.3 3.1 2.9 $95. *$ 3.0 3.0 3.3 3.1 $100. *$ 2.9 2.9 2.8 $110. *$ 2.5 2.8 3.1 2.7 $110. *$ 2.5 2.8 3.1 2.7 $110. *$ 2.6 2.6 2.3 $120. *$ 2.0 2.6 2.6 $130. *$ 1.7 2.4 2.0 $133. *$ 1.6 2.5 2.3 2.0 $140. *$ 1.6 2.4 2.0	
80. * 2.0 2.3 1.9 1.8 $85.$ * 2.4 2.8 2.7 2.4 $90.$ * 2.8 3.1 3.1 2.9 $95.$ * 3.0 3.3 3.1 2.9 $95.$ * 3.0 3.3 3.1 2.9 $105.$ * 2.6 2.9 2.9 2.8 $110.$ * 2.5 2.8 3.1 2.7 $115.$ * 2.6 2.7 2.4 $120.$ * 2.0 2.6 2.6 2.3 $125.$ * 1.9 2.3 2.5 2.2 $130.$ * 1.6 2.5 2.3 2.0 $140.$ * 1.6 2.4 2.0	
90. * 2.8 3.1 3.1 2.9 95. * 3.0 3.0 3.3 3.1 100. * 2.9 2.9 3.1 3.0 105. * 2.6 2.9 2.9 2.8 110. * 2.5 2.8 3.1 2.7 115. * 2.1 2.6 2.7 2.4 120. * 2.0 2.6 2.6 2.3 125. * 1.9 2.3 2.5 2.2 130. * 1.7 2.4 2.0 135. * 1.6 2.5 2.3 2.0 135. * 1.6 2.4 2.0 135. * 1.6 2.5 2.3 140. * 1.6 2.4 2.0	
100. * 2.9 2.9 3.1 3.0 105. * 2.6 2.9 2.8 110. * 2.5 2.8 3.1 2.7 115. * 2.1 2.6 2.7 2.4 120. * 2.0 2.6 2.6 2.3 125. * 1.9 2.3 2.5 2.2 130. * 1.7 2.4 2.0 135. * 1.6 2.5 2.3 2.0	
110. * 2.5 2.8 3.1 2.7 115. * 2.1 2.6 2.7 2.4 120. * 2.0 2.6 2.6 2.3 125. * 1.9 2.3 2.5 2.2 130. * 1.7 2.4 2.0 135. * 1.6 2.5 2.3 2.0 140. * 1.6 2.4 1.8	
135. * 1.6 2.5 2.3 2.0 140 * 16 2.4 2.1 1.8	
135. * 1.6 2.5 2.3 2.0 140 * 16 2.4 2.1 1.8	
140. * 1.6 2.4 2.1 1.8 145. * 1.5 2.4 2.0 1.8 150. * 1.5 2.3 1.9 1.7 155 * 1.5 2.4 1.8 1.7	
150. ^ 1.5 2.3 1.9 1.7 155 * 1.5 2.4 1.8 1.7	
155. * 1.5 2.4 1.8 1.7 160. * 1.5 2.4 1.8 1.7	
165 * 1 5 2 4 1 7 1 7	
175. * 1.7 2.4 1.8 1.8 180. * 1.7 2.4 1.8 1.8	
185. * 1.8 2.2 1./ 1./ 190. * 1.8 2.2 1.7 1.7	
195. * 1.9 2.1 1.7 1.7 200. * 1.9 2.0 1.7 1.7 205. * 2.0 1.9 1.7 1.7	
203. 2.0 1.9 1.7 1.7 1 PAGE 6	
JOB: Site 1 No Build 2014 AM - 1NBAM14. DATRUN: Site 1 No Build 2014 AM	
WIND ANGLE RANGE: 0360. WIND * CONCENTRATION	
ANGLE * (PPM) (DEGR)* REC21 REC22 REC23 REC24	
210. * 2.1 2.0 1.8 1.9	
220. * 2.1 2.1 2.0 2.1	
225. * 2.1 2.1 2.2 2.2 230. * 2.0 2.2 2.2 235. * 2.0 2.2 2.3	
240. * 2.1 2.4 2.4 2.5 245 * 2.2 5 2.5 2.4	
250. * 2.2 2.8 2.8 2.6 255. * 2.0 2.7 2.8 2.6	
260. * 1.8 2.7 2.7 2.6 265. * 1.5 2.4 2.4 2.2	
270. * 1.0 1.9 1.8 1.8 275. * .7 1.4 1.4 1.4 280. * .4 .9 .9 .9	
280. * .4 .9 .9 285. * .2 .7 .6 .6 290. * .1 .4 .4 .4	
295. * .0 .3 .3 .3 300. * .0 .2 .2 .2	
305. * .0 .2 .2 .2 310. * .0 .1 .1 .1	
315. * .0 .1 .1 .1 320. * .0 .1 .1 .1	
325. * .0 .1 .1 .1 330. * .0 .1 .1 .1 335. * .0 .1 .1 .1	
340. * .0 .0 .0 .0 345. * .0 .0 .0 .0	
350. * .0 .0 .0 .0 355. * .1 .0 .0 .0	
MAX * 3.0 3.1 3.3 3.1 DEGR. * 95 90 95 95	
THE HIGHEST CONCENTRATION IS 4.20 PPM AT 255 DEGREES FROM REC11. THE 2ND HIGHEST CONCENTRATION IS 4.20 PPM AT 100 DEGREES FROM REC13. THE 3RD HIGHEST CONCENTRATION IS 4.00 PPM AT 100 DEGREES FROM REC12.	

Site 1 No 1	o Buil	ld 2030	D AM	- 1NBAN	M30.DAT	60.	.0321.0.00	00.0002	240.	30480	000	1
SE MID S				650.		69.	5.0					
SE 164 S SE 82 S				792. 874.		75. 79.	5.0 5.0					
SE CNR				960.	13	83.	5.0					
SE 82 E NE 82 E				947. 1016.		04. 06.	5.0 5.0					
NE CNR				1022.		87.	5.0					
NE 82 N				1094.		91.	5.0					
NE 164 N NE MID N				1175. 1298.		96. 05.	5.0 5.0					
NW MID N				1318.		96.	5.0					
NW 164 N NW 82 N				1218. 1136.		93. 88.	5.0 5.0					
NW CNR				1054.		03.	5.0					
NW 82 W				1043.		86.	5.0					
NW 164 W NW MID W				1057. 1083.		67. 84.	5.0 5.0					
SW MID W				1024.		77.	5.0					
SW 164 W SW 82 W				994. 975.		50. 70.	5.0 5.0					
SW 82 W SW CNR				935.		95.	5.0					
SW 82 S				853.	14	74.	5.0					
SW 164 S SW MID S				771. 631.		70. 63.	5.0 5.0					
Site 1 N	o Bui	ld 2030) AM			24						
1 NB	₽ +1	aprch	۸C	3.	1362.	550	. 1390.	1720	a 2	0.	56	30.
1	RCI	apren	AU	5.	1302.	557.	. 1990.	1/20	9.2	0.	50	50.
NB 2	Rt1	th+rt	AG	559.	1390.	1016.	. 1410.	1200	9.2	0.	56	30.
NB		th+rt					. 1390.	0.	36	3		
1	21	40	5	2.0	1200	84.1	1679 1 3					
NB 2	Rt1	left	AG	552.	1408.	1013.	. 1432.	520	9.2	0.	32	30.
	Rt1	left	AG	934.	1428.	569.	. 1409.	0.	12	1		
	21	98	3	2.0	520	84.1	1752 1 3					
	Rtl	depart	LAG	1017.	1410.	1345.	. 1432.	1345	9.2	0.	56	30.
1 NB	Rt1	depart	LAG	1345.	1432.	1632.	. 1463.	1345	9.2	0.	44	30.
1 NB	Rt1	depart	LAG	1632.	1463.	1999.	. 1510.	1345	9.2	0.	44	30.
1	D = 1		7.0	1005	1 - 4	1 < 0 0	1 5 0 0	2025	<u> </u>	0		2.0
SB 1	Rti	aprch	AG	1995.	1546.	1680.	. 1502.	3035			44	30.
SB 1	Rt1	aprch	AG	1680.	1502.	1429.	. 1473.	3035	9.2	0.	44	30.
SB 1	Rt1	aprch	AG	1429.	1473.	1228.	. 1465.	3035	9.2	0.	44	30.
SB 2	Rt1	th+rt	AG	1228.	1465.	1017.	. 1455.	3015	9.2	0.	56	30.
SB		th+rt		1066.	1457.	1221.		0.	36	3		
μ.	21	65	C	∠.0	3015	84.⊥	1668 1 3					

1						
SB 2	Rt1 left AG	1165. 1444.	1020. 1436.	20 9.2	0.3	32 30.
SB 1	Rt1 left AG 121 116	1068. 1439. 2.0 20	1161. 1444. 84.1 1752 1 3	0. 12	1	
SB 1	Rt1 departAG	1017. 1455.	2. 1403.	3630 9.2	0.5	30.
EB 1	Rt28 aprchAG	1191. 2428.	1007. 1603.	860 9.2	0. 3	32 30.
EB 2	Rt28 aprchAG	1007. 1603.	961. 1435.	860 9.2	0. 4	30.
EB	Rt28 aprchAG 121 102	979. 1500. 2.0 860	1000. 1578. 84.1 1686 1 3	0. 24	2	
1 EB 1	Rt28 deparAG	987. 1425.	978. 1298.	45 9.2	0. 3	32 30.
WB 2	Rt28 aprchAG	986. 1300.	997. 1445.	85 9.2	0.4	4 30.
WB	Rt28 aprchAG 121 114	993. 1391. 2.0 85	986. 1306. 84.1 1694 1 3	0. 24	2	
1 WB 1	Rt28 deparAG	999. 1445.	1024. 1615.	680 9.2	0. 3	32 30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1024. 1615. 0 72	1201. 2425.	680 9.2	0. 3	32 30.

				1NBAM30. OUT	
CAL3QHC: L	I NE SOURCE	DI SPERSI ON	MODEL -	- VERSION 2.2	, JUNE 2000

Site 1 No Build 2030 AM

PAGE 1

JOB: Site 1 No Bui	ld 2030 AM - 1NBAM30 DAT	RUN:
DATE: 05/09/2009	TIME: 20: 31: 21, 54	

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .00	CM/S 70 =	= 321. CM				
	1.0 M/S	CLAS = 4		60. MINUTES	MIXH =	1000. M	AMB =	. O PPM
0		0210	(5) ////			1000	7 4112	

LINK VARIABLES

1

1

	LI NK	DESCRI PTI ON *	L	INK COORDII	NATES (FT)	*	LENGTH	BRG TYPE	VPH	EF	H W V/C QUEUE
		*	X1	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT) (VEH)
1.	NB	Rt1 aprch *		1362.0	559.0	1390.0 *	557.	87. AG	1720.	9.2	. 0 56. 0
2.	NB	Rt1 th+rt *	559.0	1390.0	1016.0	1410.0 *	457.	87. AG	1200.	9.2	. 0 56. 0
3.	NB	Rt1 th+rt *		1407.0	835.5	1402.4 *	101.	267. AG	257.	100.0	. 0 36. 0 . 41 5. 1
4.	NB	Rt1 left *		1408.0	1013.0	1432.0 *	462.	87. AG	520.	9.2	. 0 32. 0
5.	NB	Rt1 left *		1428.0	-1904.8	1280.2 *	2843.	267. AG	183.	100.0	.0 12.0 1.89 144.4
6.	NB	Rt1 depart*		1410.0	1345.0	1432.0 *	329.	86. AG	1345.	9.2	. 0 56. 0
7.	NB	Rt1 depart*		1432.0	1632.0	1463.0 *	289.	84. AG	1345.	9.2	. 0 44. 0
8.	NB	Rt1 depart*	1632.0	1463.0	1999. 0	1510.0 *	370.	83. AG	1345.	9.2	. 0 44. 0
9.	SB	Rt1 aprch *	1995.0	1546.0	1680. 0	1502.0 *	318.	262. AG	3035.	9.2	. 0 44. 0
10.	SB	Rt1 aprch *	1680.0	1502.0	1429.0	1473.0 *	253.	263. AG	3035.	9.2	. 0 44. 0
11.	SB	Rt1 aprch *		1473.0	1228.0	1465.0 *	201.	268. AG	3035.	9.2	. 0 44. 0
12.	SB	Rt1 th+rt *		1465.0	1017.0	1455.0 *	211.	267. AG	3015.	9.2	.0 56.0
13.	SB	Rt1 th+rt *		1457.0	4445.8	1631.4 *	3384.	87. AG	364.	100.0	. 0 36. 0 1. 40 171. 9
14.	SB	Rt1 left *		1444.0	1020.0	1436.0 *	145.	267. AG	20.	9.2	. 0 32. 0
15.	SB	Rt1 left *		1439.0	1165.8	1444.3 *	98.	87. AG	216.	100.0	. 0 12. 0 1. 43 5. 0
16.	SB	Rt1 depart*		1455.0	2.0	1403.0 *	1016.	267. AG	3630.	9.2	.0 56.0
17.	EB	Rt28 aprch*		2428.0	1007.0	1603.0 *	845.	193. AG	860.	9.2	. 0 32. 0
18.	EB	Rt28 aprch*	1007.0	1603.0	961.0	1435.0 *	174.	195. AG	860.	9.2	.0 44.0
19.	EB	Rt28 aprch*		1500.0	1644.5	3971.9 *	2560.	15. AG	380.	100.0	. 0 24. 0 2. 06 130. 0
20.	EB	Rt28 depar*		1425.0	978.0	1298.0 *	127.	184. AG	45.	9.2	. 0 32. 0
21.	WB	Rt28 aprch*	986.0	1300.0	997.0	1445.0 *	145.	4. AG	85.	9.2	.0 44.0
22.	WB	Rt28 aprch*		1391.0	988.2	1333.3 *	58.	185. AG	425.	100.0	. 0 24. 0 1. 00 2. 9
23.	WB	Rt28 depar*		1445.0	1024.0	1615.0 *	172.	8. AG	680.	9.2	. 0 32. 0
24.	WB	Rt28 depar*	1024.0	1615.0	1201.0	2425.0 *	829.	12. AG	680.	9.2	. 0 32. 0

RUN: Site 1 No Build 2030 AM

JOB: Site 1 No Build 2030 AM - 1NBAM30.DAT DATE: 05/09/2009 TIME: 20:31:21.54

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESC	RIPTION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB 5. NB 13. SB 15. SB 19. EB	Rt1 th+rt * Rt1 left * Rt1 th+rt * Rt1 left * Rt28 aprch*	121 121 121 121 121 121	46 98 65 116 102	2.0 2.0 2.0 2.0 2.0	1200 520 3015 20 860	1679 1752 1668 1752 1686	84. 10 84. 10 84. 10 84. 10 84. 10	1 1 1 1	3 3 3 3 3
22. WB	Rt28 aprch*	121	114	2.0	85	1694	84.10	1	3

RECEPTOR LOCATIONS

RECEPTOR	* * *	COOR X	DINATES (FT) Y	z	*
1. SE MID S	*	650.0		5.0	*
2. SE 164 S	*	792.0	1375.0	5.0	*
3. SE 82 S	*	874.0	1379.0	5.0	*
SE CNR	*	960.0	1383.0	5.0	*
5. SE 82 E	*	947.0	1304.0	5.0	*
6. NE 82 E	*	1016.0	1306.0	5.0	*
NE CNR	*	1022.0	1387.0	5.0	*
8. NE 82 N	*	1094.0	1391.0	5.0	*
9. NE 164 N	*	1175.0	1396.0	5.0	*
10. NE MID N	*	1298.0		5.0	*
11. NW MID N	*	1318.0	1496.0	5.0	*
12. NW 164 N	*	1218.0	1493.0	5.0	*
13. NW 82 N	*	1136.0	1488.0	5.0	*
14. NW CNR	*	1054.0		5.0	*
15. NW 82 W	*	1043.0	1586.0	5.0	*
16. NW 164 W	*	1057.0		5.0	*
17. NW MID W	*	1083.0	1784.0	5.0	*
18. SW MID W	*	1024.0	1777.0	5.0	*
19. SW 164 W	*	994.0		5.0	*
20. SW 82 W	*	975.0	1570. 0	5.0	*
21. SW CNR	*	935.0	1495.0	5.0	*
22. SW 82 S	*	853.0		5.0	*
23. SW 164 S	*	771.0	1470.0	5.0	*
24. SW MID S	*	631.0	1463.0	5.0	*

1

JOB: Site 1 No Build 2030 AM - 1NBAM30.DAT

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

RUN: Site 1 No Build 2030 AM

PAGE 3

PAGE 2

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WI ND ANGLE (DEGR		CONCENT (P REC21 R	PM)	-	EC24
0.		. 2	. 1	. 0	. 0
5.	*	. 5	. 1	. 1	. 0
10.	*	. 8	. 2	. 1	. 0
15.	*	1. 0	. 4	. 2	. 1

20. *	1.3	. 8	. 4	2	1NBAM30. OUT	
25. * 30. *	1.4 1.4	. 8 . 8	. 5 . 6	. 2 . 3 . 3		
35. * 40. * 45. *	1.6 1.5 1.2	. 8 . 8 7	.6 .6 .5	. 4 . 4 . 3		
45. * 50. * 55. *	1. 2 1. 2 1. 1	. 7 . 9 . 7	. 5 . 5 . 5	. 3 . 3 . 4		
60. * 65. *	1.1 1.1	.7 .9	. 5 . 7	. 4 . 5		
70. * 75. *	1.2 1.3 1.7	1.2 1.5 2.0	.9 1.3 1.7	.8 1.2 1.6		
80. * 85. * 90. *	2.2 2.5	2. 0 2. 4 2. 7	2.3 2.8	2.2		
95. * 100. *	2.6 2.6	2.7 2.7	2.9 2.7	2.7 2.6		
105. * 110. * 115. *	2.4 2.1 1.9	2.7 2.4 2.3	2.7 2.6 2.5	2.6 2.5 2.2		
120. * 125. *	1.8 1.8	2.4 2.2	2.4 2.3	2.1 1.9		
130. * 135. * 140. *	1.6 1.6 1.6	2.3 2.1 2.0	2.3 2.0 1.9	1.9 1.8 1.7		
145. * 150. *	1.6 1.5	2. 1 2. 0	1. 8 1. 7	1.7 1.7 1.6		
155. * 160. *	1.4 1.4	1.9 1.9	1.7 1.5	1.6 1.5		
165. * 170. * 175. *	1.5 1.7 1.6	1.9 2.0 2.0	1.5 1.6 1.6	1.5 1.6 1.6		
180. * 185. *	1.6 1.5	1.9 1.9	1.6 1.6	1.6 1.6		
190. * 195. * 200. *	1.5 1.6 1.6	1.8 1.7 1.8	1.5 1.5 1.6	1.5 1.5 1.6		
205. * 1	1.7	1.8	1.7	1.7		
JOB	: Site	1 No E	Build :	2030 AM	I - 1NBAM30.DAT RUN: Site 1 No Build 2030 AM	PAGE 6
WIND ANG			0360			
WIND ANG WIND * ANGLE * (DEGR) *	CONCENT	FRATI ON PPM)	N			
WI ND * ANGLE * (DEGR)* *- 210. * 215. *	CONCENT (F REC21 F 1. 7 1. 7	FRATI ON PPM) REC22 F 1. 8 1. 9	N REC23 1.7 1.8	REC24 1.8 1.9		
WI ND * ANGLE * (DEGR) * * 210. * 215. * 220. * 225. *	CONCENT (F REC21 F 1.7 1.7 1.8 1.8 1.7	FRATION PPM) REC22 F 1.8 1.9 1.8 1.9 1.8	REC23 1.7 1.8 1.8 1.8 1.9	REC24 1.8 1.9 1.9 2.0		
WI ND * ANGLE * (DEGR) * 210. * 215. * 220. * 225. * 230. * 235. * 240. *	CONCENT (F REC21 F 1.7 1.7 1.8 1.8 1.8 1.8 1.8 1.8	FRATION PPM) REC22 F 1.8 1.9 1.8 1.9 2.0 2.1 2.2	REC23 1.7 1.8 1.8 1.9 2.0 2.1 2.2	REC24 1.8 1.9 1.9 2.0 2.1 2.1 2.2		
WIND * ANGLE * (DEGR)* 210. * 210. * 220. * 225. * 235. * 240. * 245. * 240. *	CONCENT REC21 F 1.7 1.7 1.8 1.7 1.8 1.8 1.8 2.0 1.9	FRATION PPM) REC22 F 1.8 1.9 1.8 1.9 2.0 2.1 2.2 2.3 2.6	REC23 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.5	REC24 1.8 1.9 2.0 2.1 2.1 2.2 2.2 2.4		
WIND * ANGLE * (DEGR) * 210. * 215. * 220. * 225. * 235. * 235. * 240. * 245. *	CONCENT (F REC21 F 1.7 1.7 1.8 1.7 1.8 1.8 1.8 1.8 2.0 1.9 1.9 1.9 1.7	RATION PPM) REC22 F 1.8 1.9 2.0 2.1 2.2 2.3 2.6 2.6 2.5 2.2	REC23 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.5 2.6 2.5 2.2	REC24 1.8 1.9 1.9 2.0 2.1 2.1 2.2 2.2		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 235. * 240. * 240. * 245. * 255. * 260. * 255. * 265. * 275. *	CONCENT (F REC21 F 1. 7 1. 7 1. 8 1. 8 1. 8 1. 8 1. 8 2. 0 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1. 8	FRATION PPM) EC22 F 1.8 1.9 2.0 2.3 2.6 2.5 2.2 1.4	REC23 1.7 1.8 1.9 2.0 2.1 2.2 2.3 2.5 2.6 2.5 2.5 2.2 1.7 1.4	REC24 1.8 1.9 2.0 2.1 2.2 2.2 2.4 2.4 2.4 2.4 2.4 2.1 1.6 1.3		
WI ND * ANGLE * (DEGR)* 210. * 225. * 225. * 235. * 245. * 245. * 260. * 250. * 250. * 245. * 260. * 260. * 265. * 260. * 275. * 280. *	CONCENT (F REC21 F 1.7 1.7 1.8 1.7 1.8 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	RATION PPM) REC22 F 1.8 1.9 1.8 1.9 2.0 2.1 2.2 2.3 2.6 2.6 2.6 2.6 2.6 2.5 1.7 1.4 .9 .5	REC23 1.7 1.8 1.8 1.9 2.0 2.1 2.2 2.5 2.6 2.5 2.6 2.5 2.6 2.5 1.7 1.4 .5	REC24 1.8 1.9 2.0 2.1 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 230. * 245. * 245. * 245. * 245. * 265. * 265. * 265. * 275. * 280. * 280. * 275. * 280. * 275. * 280. * 275. * 280. * 275. * 280. * 290.	CONCENT (FREC21 F 	RATION PPM) REC22 F 1.8 1.9 2.0 2.1 2.2 2.3 2.6 2.6 2.6 2.5 2.2 2.3 2.6 2.6 2.5 2.2 2.3 2.6 2.5 2.2 2.5 2.2 2.3 2.6 2.6 2.5 2.2 2.3 2.6 2.5 2.2 2.5 2.2 2.5 2.2 2.5 2.2 2.5 2.2 2.5 2.2 2.5 2.5	REC23 1.7 1.8 1.8 1.9 2.0 2.2 2.3 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	REC24 1.8 1.9 2.0 2.1 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 235. * 240. * 240. * 245. * 255. * 265. * 275. * 265. * 275. * 288. * 290. * 300. * 300. *	CONCENT (FREC21 F 	Image: Construction of the second	REC23 1.7 1.8 1.9 2.0 2.2 2.5 2.6 2.5 2.6 2.5 2.6 2.5 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	REC24 1.9 1.9 2.0 2.1 2.2 2.2 4 2.4 2.4 2.4 2.4 2.4		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 230. * 245. * 245. * 240. * 245. * 255. * 265. * 265. * 275. * 280. * 280. * 275. * 280. * 300. * 315. * 315. * 320. *	CONCENT (F REC21 F 1.7 1.8 1.7 1.8 1.8 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.4 1.0 6 .4 .1 .0 0 .0 .0 .0 .0	FRATI ON PPM) EC22 F 1.8 1.9 2.0 2.1 2.3 2.6 2.5 2.2 2.3 2.6 2.5 2.2 1.7 1.4 .5 .4 .2 .2 .2 1.7 1.4 .5 .2 .2 .1 .1 .5 .1 .4 .5 .1 .4 .5 .1 .5 .1 .5 .1 .5 .1 .5 .1 .5 .5 .5 .2 .2 .5 .2 .2 .1 .5 .5 .5 .2 .2 .5 .5 .5 .2 .2 .5 .5 .2 .2 .5 .5 .2 .2 .5 .5 .5 .2 .2 .5 .5 .2 .2 .5 .5 .2 .2 .5 .5 .2 .2 .5 .2 .2 .5 .2 .2 .2 .5 .2 .2 .5 .2 .2 .5 .2 .2 .5 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	REC23 1.7 1.8 1.8 1.9 2.1 2.3 2.5 2.5 2.2 2.5 2.5 2.5 2.5 2.5	REC24 1.9 1.9 2.0 2.1 2.2 2.4 2.4 2.4 2.4 2.1 1.6 1.3 .3 .2 .3 .2 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 235. * 240. * 245. * 240. * 245. * 245. * 265. * 265. * 275. * 285. * 265. * 275. * 288. * 290. * 300. * 310. * 315. * 325. * 3335. *	CONCENT (F REC21 F - 1.7 1.8 1.7 1.8 1.8 2.0 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	RATIO PPM) EC22 F 1.8 1.9 1.8 1.9 2.0 2.1 2.2 2.3 2.6 2.5 2.2 1.7 1.4 .2 2.5 2.2 2.5 2.2 1.7 4 .2 2.5 2.2 1.7 4 .2 2.1 4 .2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	REC23 1.7 1.8 1.9 2.2 2.5 2.2 2.5 2.2 1.7 1.4 .9 .3 .2 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	REC24 1.9 1.9 2.0 2.1 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 235. * 240. * 245. * 245. * 246. * 255. * 240. * 255. * 265. * 270. * 270. * 270. * 305. *	CONCENT (F REC21 F 1.7 1.8 1.8 1.8 2.0 1.8 1.8 2.0 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.8 1.7 1.8 1.8 2.0 1.9 1.8 1.7 1.6 1.7 1.8 1.8 1.9 1.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	RATIO PPM) REC22 F 1.8 1.9 1.8 1.9 2.0 2.1 2.2 2.3 2.6 2.6 2.6 2.6 2.2 2.3 2.6 2.6 2.6 2.2 1.7 1.4 .9 .5 4 .2 2 .2 1.7 1.4 .9 .5 .4 .2 .2 .1 .1 .9 .5 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .1 .9 .2 .0 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	REC23 1.7 1.8 1.9 2.0 2.2 2.3 2.5 2.2 2.3 2.5 2.2 2.5 2.2 2.3 2.5 3.2 2.5 3.3 2.5 5.3 3.2 2.5 3.3 2.5 5.3 3.2 2.5 3.3 2.5 5.3 3.5 3.5 3.5 3.5 3.5 3.5 3	REC24 1.9 1.9 2.1 2.2 2.4 2.4 2.4 2.4 2.4 2.4 2.4		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 230. * 240. * 240. * 240. * 240. * 240. * 240. * 255. * 265. * 275. * 265. * 275. * 285. * 200. * 300. * 300. * 310. * 310. * 315. * 325. * 325. * 335. * 335. * 335. * 345. *	CONCENT (F REC21 F - 1.7 1.8 1.7 1.8 1.8 1.8 1.8 2.0 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	RATION PPM) REC22 F 1.8 1.9 1.8 1.9 2.0 2.2 2.3 2.6 2.6 2.6 2.2 2.3 2.6 2.6 2.5 2.2 1.4 1.4 .9 .2 2.5 2.2 2.4 2.6 2.5 2.2 1.4 .9 .2 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.1 2.0 2.0 2.1 2.0 2.1 2.0 2.0 2.1 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	REC23 1.7 1.8 1.8 1.8 1.9 2.0 2.2 2.3 2.2 2.3 2.2 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 2.3 2.2 1.7 1.4 .9 5.3 2.2 1.7 1.4 .0 .0 2.1 1.4 .0 .0 .0 .2 .1 .0 .0 .0 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC24 1.9 1.9 2.1 2.2 2.2 2.4 2.4 2.4 2.4 2.4 2.4		
WI ND * ANGLE * (DEGR) * 210. * 220. * 225. * 230. * 245. * 245. * 245. * 245. * 245. * 245. * 265. * 246. * 255. * 266. * 275. * 280. * 275. * 280. * 300. * 300. * 310. *	CONCENT (F REC21 F 1.7 1.8 1.7 1.8 1.8 2.0 1.9 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	RATION PPM) EC22 F 1.8 1.9 1.8 1.9 2.0 2.1 2.2 2.3 2.6 2.2 2.3 2.6 2.2 2.3 2.6 2.2 2.2 2.3 2.6 2.2 2.2 1.7 4 .2 2.2 2.3 2.6 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 1.7 4 .2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.2 2.3 2.6 2.2 2.2 2.2 2.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7.1 7	REC23 1.7 1.8 1.8 1.8 1.8 1.9 2.0 2.2 2.3 2.2 2.2 2.2 2.3 2.2 2.2	REC24 1.9 1.9 2.0 2.1 2.2 2.4 2.4 2.4 2.1 1.6 1.3 .2 2.2 4 2.1 1.6 1.3 .2 .1 .1 .1 .1 .0 .2 .1 .1 .0 .1 .0 .1 .0 .1 .1 .0 .1 .0 .1 .1 .0 .1 .1 .0 .1 .1 .1 .0 .1 .1 .1 .1 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1		

Site 1 N 1	o Bui	ld 2014 PM	I - 1NBPI	M14.DAT	G 60.	.0321.0.00	00.000240.3	0480	000	1
SE MID S			650.		369.	5.0				
SE 164 S SE 82 S			792. 874.		375. 379.	5.0 5.0				
SE CNR			960.	13	383.	5.0				
SE 82 E			947.		304.	5.0				
NE 82 E NE CNR			1016. 1022.		306. 387.	5.0 5.0				
NE 82 N			1094.		391.	5.0				
NE 164 N			1175.		396.	5.0				
NE MID N			1298. 1318.		105. 196	5.0 5.0				
NW MID N NW 164 N			1318. 1218.		196. 193.	5.0				
NW 82 N			1136.		188.	5.0				
NW CNR			1054.		503.	5.0				
NW 82 W			1043.		586.	5.0				
NW 164 W NW MID W			1057. 1083.		567. 784.	5.0 5.0				
SW MID W			1024.		777.	5.0				
SW 164 W			994.		550.	5.0				
SW 82 W			975.		570.	5.0				
SW CNR			935. 952		195. 174.	5.0				
SW 82 S SW 164 S			853. 771.		174. 170.	5.0 5.0				
SW MID S			631.		163.	5.0				
	o Bui	ld 2014 PM	[24	1 0				
1 NB	Rt1	aprch AG	3.	1362.	559.	. 1390.	288311.4	0.	56	30.
1						. 1410.		0.	56	
NB 2		th+rt AG		1390.					50	30.
NB 1	Rt1 20	th+rt AG 55				. 1390. 1678 1 3	0. 36	3		
1	20	22	2.0	2124	102.2	10/0 1 3				
NB	Rt1	left AG	552.	1408.	1013.	. 1432.	75911.4	0.	32	30.
2								_		
		left AG	934.			. 1409. 1752 1 3	0. 12	1		
1	20	93	2.0	159	102.2	1/52 1 3				
	Rt1	departAG	1017.	1410.	1345.	. 1432.	229511.4	0.	56	30.
NB	Rt1	departAG	1345.	1432.	1632.	. 1463.	229511.4	0.	44	30.
1 NB	Rt1	departAG	1632.	1463.	1999.	. 1510.	229511.4	0.	44	30.
1	D 1		1005	1 5 4 6	1 6 0 0	1 5 0 0	156011 4	0		2.0
SB 1		aprch AG	1995.	1546.	1680.	. 1502.	156211.4	0.	44	30.
SB 1	Rt1	aprch AG	1680.	1502.	1429.	. 1473.	156211.4	0.	44	30.
SB 1	Rt1	aprch AG	1429.	1473.	1228.	. 1465.	156211.4	0.	44	30.
SB	Rt1	th+rt AG	1228.	1465.	1017.	. 1455.	155711.4	0.	56	30.
2 SB	R+1	th+rt AG	1066.	1457.	1221.	. 1465.	0. 36	3		
	20	79		1557		1660 1 3	0. 50	5		

1							
SB	Rt1 left AG	1165. 1444.	1020. 1436.	1011.4	0.	32	30.
2 SB 1	Rt1 left AG 120 115		1161. 1444. 102.2 1752 1 3	0. 12	1		
SB 1	Rt1 departAG	1017. 1455.	2. 1403.	192511.4	0.	56	30.
EB 1	Rt28 aprchAG	1191. 2428.	1007. 1603.	59611.4	0.	32	30.
EB 2	Rt28 aprchAG	1007. 1603.	961. 1435.	59611.4	0.	44	30.
EB 1	_		1000. 1578. 102.2 1684 1 3	0. 24	2		
EB 1	Rt28 deparAG	987. 1425.	978. 1298.	3011.4	0.	32	30.
WB 2	Rt28 aprchAG	986. 1300.	997. 1445.	16011.4	0.	44	30.
WB	Rt28 aprchAG 120 104	993. 1391. 2.0 160	986. 1306. 102.2 1706 1 3	0. 24	2		
1 WB 1	Rt28 deparAG	999. 1445.	1024. 1615.	95111.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5		1201. 2425.	95111.4	0.	32	30.

Site 1 No Build 2014 PM

PAGE 1

PAGE 2

PAGE 3

JOB: Site 1 No Bui	Id 2014 PM - 1NBPM14.DAT	RUN:
DATE: 05/09/2009	TIME: 20: 20: 20. 90	

SITE & METEOROLOGICAL VARIABLES

VS = .0 CM/S VD = .0 CM/S ZO = 321. CM	
U = 1.0 M/S CLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB =	. 0 PPM

LINK VARIABLES

	* X1	INK COORDIN Y1	X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W V/C QUEUE (FT) (FT) (VEH)
	*	Y1 1362.0 1390.0 1407.0 1408.0 1428.0 1428.0 1428.0 1432.0 1463.0 1502.0 1465.0 1455.0 1445.0 1455.0 1455.0 1425.0 1425.0 1300.0 1391.0 1445.0		-	(FT) 557. 457. 219. 462. 4761. 329. 289. 370. 318. 201. 211. 415. 145. 10. 1016. 845. 174. 846. 127. 145. 45. 172.	(DEG) 87. AG 87. AG 87. AG 86. AG 84. AG 83. AG 262. AG 263. AG 263. AG 263. AG 267. AG 267. AG 267. AG 267. AG 193. AG 195. AG 195. AG 184. AG 185. AG 185. AG 88. AG 88. AG 88. AG 80. AG 8	2883. 2124. 377. 759. 2295. 2295. 2295. 1562. 1562. 1562. 1557. 540. 100. 263. 1925. 596. 452. 300. 160. 475. 951.	(G/MI) 11.4 100.0 11.4 100.0 11.4 100.0 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 11.4 100.0 11.4 100.0 11.4 100.0 11.4 100.0 11.4 100.0 11.4 100.0 11.4 100.0 11.4 100.0 11.4	$\begin{array}{c} .0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 36. \ 0 \\ .83 \ 11. \ 1 \\ 0 \ 32. \ 0 \\ 0 \ 12. \ 0 \ 2. \ 27 \ 241. \ 9 \\ 0 \ 56. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 32. \ 0 \\ 0 \ 32. \ 0 \\ 0 \ 24. \ 0 \ 1. \ 25 \ 43. \ 0 \\ 0 \ 32. \ 0 \\ 0 \ 34. \ 0 \\ 0 \ 24. \ 0 \ .47 \ 2. \ 3 \end{array}$
23. WB Rt28 depar 24. WB Rt28 depar		1615.0	1201.0	2425.0 *	829.	12. AG	951.	11.4	. 0 32. 0 . 0 32. 0

JOB: Site 1 No Build 2014 PM - 1NBPM14.DAT DATE: 05/09/2009 TIME: 20:20:20.90

RUN: Site 1 No Build 2014 PM

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB Rt1 th+rt 5. NB Rt1 left 13. SB Rt1 th+rt 15. SB Rt1 left 19. EB Rt28 aprc 22. WB Rt28 aprc	* * h*	120 120 120 120 120 120 120	55 93 79 115 99 104	2.0 2.0 2.0 2.0 2.0 2.0 2.0	2124 759 1557 10 596 160	1678 1752 1660 1752 1684 1706	102. 20 102. 20 102. 20 102. 20 102. 20 102. 20 102. 20	1 1 1 1 1	3 3 3 3 3 3 3

RECEPTOR LOCATIONS

	*		COORE	NATES (FT)			*
RECEPTOR	*	Х		Y	Z		*
1. SE MID S	*	650		1369.0		5.0	*
2. SE 164 S	*	792	. 0	1375.0		5.0	*
3. SE 82 S	*	874	. 0	1379.0		5.0	*
SE CNR	*	960	. 0	1383.0		5.0	*
5. SE 82 E	*	947	. 0	1304.0		5.0	*
6. NE 82 E	*	1016	. 0	1306.0		5.0	*
NE CNR	*	1022	. 0	1387.0		5.0	*
8. NE 82 N	*	1094	. 0	1391.0		5.0	*
9. NE 164 N	*	1175	. 0	1396.0		5.0	*
10. NE MID N	*	1298	. 0	1405.0		5.0	*
11. NW MID N	*	1318	. 0	1496.0		5.0	*
12. NW 164 N	*	1218	. 0	1493.0		5.0	*
13. NW 82 N	*	1136	. 0	1488.0		5.0	*
14. NW CNR	*	1054	. 0	1503.0		5.0	*
15. NW 82 W	*	1043	. 0	1586.0		5.0	*
16. NW 164 W	*	1057	. 0	1667.0		5.0	*
17. NW MID W	*	1083	. 0	1784.0		5.0	*
18. SW MID W	*	1024	. 0	1777.0		5.0	*
19. SW 164 W	*	994	. 0	1650.0		5.0	*
20. SW 82 W	*	975	. 0	1570.0		5.0	*
21. SW CNR	*	935	. 0	1495.0		5.0	*
22. SW 82 S	*	853	. 0	1474.0		5.0	*
23. SW 164 S	*	771	. 0	1470.0		5.0	*
24. SW MID S	*	631	. 0	1463.0		5.0	*

1

JOB: Site 1 No Build 2014 PM - 1NBPM14.DAT

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM) (DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 * 1.7 2.9 3.0 2.4 1.8 1.9 2.4 2.6 2.5 2.3 .1 .3 .6 1.2 1.9 2.2 2.3 .5 .6 .8 Page 1

RUN: Site 1 No Build 2014 PM

1

205. * .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 1,7\\ 7,7\\ 1,8\\ 9\\ 2,4\\ 6\\ 2,2\\ 2,7\\ 0\\ 2,3\\ 3\\ 3\\ 3\\ 3\\ 3\\ 2,4\\ 8\\ 1,1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	2.9902457799992098715718532111111110000001 	12468995566555339151773322111111100000001	2 2 2 2 5 5 4 0 8 2 3 4 6 7 1 3 3 1 7 1 8 5 4 4 2 2 1 0 9 8 7 6 3 2 1 1 0 0 0 1	$\begin{array}{c} 1,79\\ 1,22\\ 1,85\\ 6,56\\ 1,56\\$	$\begin{array}{c} 1.67\\ 1.5\\ 1.1\\ 1.1\\ 1.22\\ 1.$	32297779245768995281853322211111111000001122	22222233567798885182843222211111111000000011	2 2 1 1 2 2 2 2 2 4 4 5 6 8 8 7 6 4 1 5 1 7 5 3 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1	$\begin{array}{c} 2,3\\ 2,1\\ 2,1\\ 2,2\\ 2,2\\ 2,3\\ 4,5\\ 5,7\\ 6,6\\ 3,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2$	14. OUT . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	.11000000134040412653311118876767777666 .11223333333332222222222222222222222222	43110111122361730369655309886666677776666	1.09.64 .42.10.00.00.00 .00.00.11.22.43.55.44.23.5 .22.25.44.23.20.9 .11.22.43.55.44.23.10.11.11.12.00 .11.12.24.10.00.00.00 .11.12.24.10.00.00.00.00.00.000.000.000.000.000.	1.629731000000013679001111111100988709024 	2.09 1.5 1.1 .00 .00 .00 .00 .00 .00 .00 .00 .00	20629431000000000001114445466556557680790	8269122321099877777767811133334445545443852 222222221111111111112222222222222222	1.4912.2542.2221911.8883.2222.445776767655310.044	1.161.93.5.776.2.2.21.98.8.2.14.8.8.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.
ANCLE * (PPM) (DEGR) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC19 </td <td>175.</td> <td>. 1</td> <td>. 1</td> <td>. 1</td> <td>. 1</td> <td>. 0</td> <td>. 0</td> <td>. 3</td> <td>. 1</td> <td>. 1</td> <td>. 1</td> <td>2.6</td> <td>2.6</td> <td>2.6</td> <td>1.1</td> <td>1.6</td> <td>1.6</td> <td>2.0</td> <td>1.2 .9</td> <td>1.4 1.2</td> <td>1. 1. 1.</td>	175.	. 1	. 1	. 1	. 1	. 0	. 0	. 3	. 1	. 1	. 1	2.6	2.6	2.6	1.1	1.6	1.6	2.0	1.2 .9	1.4 1.2	1. 1. 1.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	JO	B: Site	e 1 No	Bui I d	2014 PN	M – 1NE	3PM14.	DAT			RUN: S	Site 1	No Bui	ild 20 ⁻	14 PM				PAGE	4	
MAX * 3.3 4.2 3.9 3.9 2.1 2.0 4.0 3.1 2.8 3.1 4.2 3.9 3.9 2.5 2.7 2.9 2.7 2.5 2.8 3. DEGR. * 70 60 290 280 15 355 275 275 60 280 250 250 105 110 230 230 220 160 130 115	WIND * ANGLE *	CONCE	NTRATIO (PPM)	N					REC8	REC9 F						REC15	REC16	REC17			REC20

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WI ND ANGLE (DEGR)	* * * *	CONCENT (P REC21 R	PM)		REC24
0. 5. 10. 15.	* * *	. 2 . 6 . 8	. 0 . 1 . 1	. 0 . 0 . 0	. 0 . 0 . 0

20.	*	1.4	. 5	. 2	. 0	1NBPM14. OUT	
25. 30.	*	1.6 1.7	. 7	. 4	. 1		
35. 40.	*	1.6 1.7	. 9	.7	. 2 . 3 . 4		
45. 50.	*	1.5 1.5	. 9 . 9	. 7 . 6	. 4 . 5		
55. 60.	*	1.4 1.3	. 8 . 8	.6 .5	. 4 . 5 . 5 . 5		
65. 70.	*	1.3 1.2	.9 1.1	. 7 . 8	. 4 . 6		
75. 80.	* * *	1.3 1.7	1.4 1.6	1.2 1.5	. 8 1. 3		
85. 90. 95.	*	2.1 2.3 2.7	2.2 2.3 2.6	1.8 2.4 2.3	1.8 2.3 2.4		
100. 105.	*	2.5 2.4	2.5 2.4	2.6 2.7	2.8		
110. 115.	*	2.2 1.8	2.2 2.3	2.5 2.8	2.7 2.5		
120. 125.	*	1.9 1.7	2.2 2.2	2.6 2.6	2.3 2.3		
130. 135.	* * *	1.7 1.6	2.3 2.3	2.5 2.4	2.1 2.0		
140. 145. 150.	~ * *	1.5 1.4 1.4	2.4 2.3 2.4	2.4 2.3 2.3	2.0 1.8 1.8		
155. 160.	*	1.4 1.4 1.4	2.3 2.3	2.3 2.3 2.3	1.7 1.7		
165. 170.	*	1.4 1.6	2.3 2.3	2.3 2.3	1.7 1.7		
175. 180.	*	1.6 1.6	2.3 2.3	2.3 2.3	1.7 1.7		
185. 190.	* * *	1.5 1.7	2.3	2.3	1.7		
195. 200. 205.	*	1.7 1.8 1.8	2.3 2.3 2.3	2.3 2.2 2.2	1.7 1.6 1.7		
1		1.0	2.0	2.2	1.7		PAGE 6
		Si te	1 No	Build	2014 PM	- 1NBPM14.DAT RUN: Site 1 No E	Build 2014 PM
		E					
		E RANG		0360 N			
WI ND ANGLE	* (CONCEN	FRATIO	N			
WI ND ANGLE (DEGF 210.	* (*)* F	CONCEN (I REC21 I 1.8	TRATI O PPM) REC22 2. 3	N REC23 2. 1	REC24 1.7		
WI ND ANGLE (DEGF 210. 215. 220.	* ()* F -* *	CONCEN (F REC21 F 1. 8 2. 0 2. 1	TRATI 0 PPM) REC22 2. 3 2. 4 2. 4 2. 4	N REC23 2. 1 2. 2 2. 2 2. 1	REC24 1.7 1.9 1.9		
WI ND ANGLE (DEGF 210. 215. 220. 225. 230.	* ()* F -* * *	CONCEN (I REC21 I 1.8 2.0 2.1 2.2 2.1 2.2	TRATI 0 PPM) REC22 2. 3 2. 4 2. 4 2. 4 2. 4 2. 4 2. 4	N REC23 2. 1 2. 2 2. 1 2. 0 2. 2	REC24 1.7 1.9 1.9 1.8 1.8		
WI ND ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240.	* ()* F -* *	CONCEN (I REC21 I 1.8 2.0 2.1 2.2 2.1 2.2 2.1 2.2	TRATI 0 PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.6	N REC23 2.1 2.2 2.1 2.0 2.2 2.3 2.3 2.3	REC24 1.7 1.9 1.9 1.8 1.9 2.1 2.2		
WI ND ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240. 245. 250.	* () * F - * * * * * * * * * * * * * * *	CONCEN (I REC21 I 1.8 2.0 2.1 2.2 2.1 2.2 2.1 2.1	TRATI O PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.6	N REC23 2.1 2.2 2.1 2.0 2.2 2.3 2.3 2.3 2.4 2.3	REC24 1.7 1.9 1.9 1.8 1.9 2.1		
WI ND ANGLE (DEGF 210. 225. 230. 235. 240. 245. 250. 255. 260. 265.	* () * F - * * * * * * * * * * * *	CONCENT (I REC21 1.8 2.0 2.1 2.2 2.1 2.1 2.2 2.1 2.2 2.2 2.1 2.2 2.1 2.1	TRATI O PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.7 2.6 2.6 2.6 2.4 2.4 2.1	N REC23 2.1 2.2 2.1 2.0 2.2 2.3 2.3 2.3 2.4 2.3 2.3 2.3 2.3 2.2 2.0	REC24 1.7 1.9 1.9 1.8 1.9 2.1 2.2 2.3 2.2 2.1 2.0 1.8		
WI ND ANGLE (DEGF 210. 215. 220. 225. 230. 245. 250. 245. 250. 265. 260. 265. 275.	* * F * * * * * * * * * * * * * * *	CONCENT (I REC21 I 2.0 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.0 1.7 1.4 9.6	TRATIO PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.7 2.6 2.6 2.6 2.4 2.4 2.1 1.6 1.1	N REC23 2.1 2.2 2.1 2.0 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	REC24 1.7 1.9 1.9 2.1 2.2 2.3 2.2 2.3 2.2 2.1 2.0 1.8 1.5 1.1		
WI ND ANGLE (DEGF 210. 215. 220. 230. 235. 240. 245. 250. 255. 260. 265. 270. 275. 280. 275. 285.	* (F - * * * * * * * * * * * * * * * * * * *	CONCENT REC21 1 2.0 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.0 1.7 1.4 .9 .6 .1	TRATIO PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.1 1.6 1.1 .4	N REC23 2.1 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	REC24 1.7 1.9 1.9 2.1 2.3 2.2 2.1 2.0 1.5 1.1 .7 .4		
WI ND ANGLE (DEGF 210. 210. 225. 220. 235. 240. 245. 250. 245. 250. 260. 265. 270. 275. 285. 285. 285. 290. 295.	* * * * * * * * * * * * * * * * * * *	CONCENT (I REC21 1.8 2.0 2.1 2.2 2.1 2.2 2.2 2.1 2.2 2.2 2.2 2.1 2.0 1.7 1.4 .9 .6 .4 .10 .0	RATIO PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.7 2.6 2.1 1.6 1.6 1.1 1.6 1.7 2.2	N REC23 2.1 2.2 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.2 2.0 1.5 1.5 1.5 1.5 1.5 1.2 2.2 2.0 2.2 2.0 2.2 2.2 2.3 2.4 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	REC24 1.7 1.9 1.9 2.1 2.3 2.2 2.1 2.0 1.5 1.1 .7 .4 .2 2.2		
WI ND ANGLE (DEG 210. 220. 225. 230. 245. 255. 265. 275. 280. 265. 275. 280. 285. 290. 295. 290. 295. 300. 305. 310.	* * * * * * * * * * * * * * * * * * *	CONCENT (I REC21 I 1.8 2.0 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.0 1.7 1.4 .9 .6 .4 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	TRATIO PPM) REC22 - 2.3 2.4 2.4 2.4 2.4 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.4 1.1 1.6 1.1 1.6 1.1 1.1 1.1	REC23 2. 1 2. 2 2. 3 2. 3 2. 4 2. 3 2. 4 2. 3 2. 4 2. 3 2. 4 2. 3 2. 2 2. 0 1. 5 1. 1 . 7 . 4 2. 2	REC24 1.7 1.9 1.9 2.1 2.3 2.2 2.1 2.0 1.5 1.1 .7 .4		
WI ND ANGLE (DEGF 210. 225. 220. 225. 240. 245. 255. 256. 265. 276. 275. 280. 275. 280. 275. 290. 275. 300. 305. 310. 315. 320.	* * * * * * * * * * * * * * * * * * *	CONCENT EC21 I 1.8 2.0 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 2.1 2.2 1.7 1.4 .9 .6 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	RATI 0 PPM) REC22 -2.3 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.7 2.6 2.7 2.6 2.6 2.7 2.6 2.4 2.1 1.1 .1 .1 .1 .1	REC23 2.1 2.2.1 2.0 2.2.1 2.3 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.5 1.5 1.1 7.4 2.2 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	REC24 1.9 1.9 2.1 2.2 2.3 2.2 2.1 2.0 1.5 1.1 .7 .4 .2 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1		
WI ND ANGLE (DEGF 210. 215. 220. 225. 230. 245. 245. 255. 260. 245. 255. 260. 255. 260. 275. 285. 295. 300. 305. 310. 315. 320. 325. 320. 295. 320. 295. 285. 285. 285. 285. 285. 285. 285. 28	* * * * * * * * * * * * * * * * * * *	CONCENT REC21 1 1.8 2.0 2.1 2.2 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2	RATIOPPM) REC221 -2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.6 2.6 2.6 2.6 2.4 2.1 1.6 1.1 1.6 1.1 1.1 .1 .1 .1 .1 .0	REC23 2.1 2.2 2.1 2.2 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.3 2.4 2.1 1.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	REC24 1.9 1.9 1.9 2.1 2.2 2.1 2.0 1.5 1.1 2.2 2.1 2.0 1.5 1.5 1.5 1.1 .1 .1 .2 .2 .2 .2 .1 .9 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .1 .0 .0 .1 .0 .1 .0 .0 .1 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		
WI ND ANGLE (DEGF 210. 225. 220. 225. 230. 235. 245. 255. 260. 255. 265. 270. 275. 280. 285. 280. 295. 300. 305. 310. 315. 320. 335. 330. 335.	***************************************	CONCENT (1 REC21 1 2.0 2.1 2.2 2.2 2.2 2.1 2.2 2.2 2.1 2.2 2.2	Image: Constraint of the second sec	REC23 2.1 2.2 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.2 2.3 2.4 2.3 2.2 2.3 2.4 2.3 2.2 2.1 1.5 1.1 1.1 .1 .1 .1 .1 .0 0.0 0.0	REC24 1.9 1.9 1.9 2.1 2.3 2.2 2.1 2.0 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		
WI ND ANGLE (DEG 210. 225. 230. 235. 240. 245. 250. 255. 256. 275. 275. 280. 275. 280. 275. 290. 275. 290. 305. 310. 315. 325. 325. 335. 345. 355.	· · · · · · · · · · · · · · · · · · ·	CONCENT ((1 REC21 1 1.8 2.0 2.1 2.2 2.2 2.1 2.0 1.7 1.7 1.4 9.6 4.4 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	RATI 0 PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	REC23 2.1 2.2 2.1 2.2 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.4 2.3 2.2 2.0 1.5 1.1 1.1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .0 0 0 .0 0 0 .0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REC24 1.7 1.9 1.9 1.9 2.2 2.3 2.2 2.2 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		
WI ND ANGLE (DEGF 210. 215. 220. 225. 230. 245. 255. 260. 245. 255. 260. 270. 275. 280. 285. 280. 295. 300. 305. 310. 310. 310. 320. 335. 330. 335. 330. 345. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 360. 355. 355. 355. 355. 355. 355. 355. 35	() ()	CONCENT (1 REC21 1 1.8 2.0 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.1 2.2 2.2	Image Image <th< td=""><td>REC23 2.1 2.2 2.1 2.2 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.4 2.3 2.2 2.3 2.4 2.3 2.4 2.3 2.2 2.4 2.3 2.4 2.3 2.2 2.1 1.5 1.1 1.1 .1 .1 .1 .1 .1 .1 2.0 2.2 2.3 2.4 2.3 2.3 2.4 2.3 2.4 2.3 2.1 .1 2.0 2.2 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.1 1.5 1.1 1.1 1.1 1.1 1.1 1.1 2.0 2.2 2.3 2.3 2.3 2.4 2.3 2.3 2.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1</td><td>REC24 1.9 1.9 1.9 2.1 2.3 2.2 2.1 2.0 1.5 1.1 .7 .4 .2 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .1 .2 .2 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0</td><td></td><td></td></th<>	REC23 2.1 2.2 2.1 2.2 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.4 2.3 2.2 2.3 2.4 2.3 2.4 2.3 2.2 2.4 2.3 2.4 2.3 2.2 2.1 1.5 1.1 1.1 .1 .1 .1 .1 .1 .1 2.0 2.2 2.3 2.4 2.3 2.3 2.4 2.3 2.4 2.3 2.1 .1 2.0 2.2 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.4 2.3 2.3 2.1 1.5 1.1 1.1 1.1 1.1 1.1 1.1 2.0 2.2 2.3 2.3 2.3 2.4 2.3 2.3 2.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	REC24 1.9 1.9 1.9 2.1 2.3 2.2 2.1 2.0 1.5 1.1 .7 .4 .2 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .1 .2 .2 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0		
WI ND ANGLE (DEG 210. 2210. 225. 230. 235. 240. 245. 255. 260. 265. 270. 275. 280. 280. 280. 290. 300. 300. 301. 315. 320. 335. 340. 335. 340. 355. 360.	· · · · · · · · · · · · · · · · · · ·	CONCEN [®] (1 REC21 1 2.0 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2	Image: Constraint of the second sec	REC23 2.1 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	REC24 1.7 1.9 1.9 2.2 2.3 2.2 2.2 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5		
WI ND ANGLE (DEG 210. 225. 220. 225. 240. 245. 240. 245. 255. 265. 275. 280. 275. 280. 275. 290. 275. 280. 300. 305. 310. 325. 330. 345. 355. 350. 345. 355. 355. 360. 345. 355. 355. 355. 355. 355. 355. 355	* () * * * * * * * * *	CONCENT ((1 REC21 1 2.0 2.1 2.2 2.2 2.2 2.2 2.2 2.2 1 2.0 2.2 2.2 2.2 1 2.0 0.1 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	RATI 0 PPM) REC22 2.3 2.4 2.4 2.4 2.4 2.4 2.4 2.7 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	REC23 2.1 2.2 2.1 2.0 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	REC24 1.7 1.9 1.9 1.9 2.1 2.2 2.2 2.1 2.0 1.8 1.5 1.1 .7 .4 .2 .2 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	20 PPM AT 60 DEGREES FROM REC2 . 4.20 PPM AT 250 DEGREES FROM REC11. 4.00 PPM AT 251 DEGREES FROM REC7 .	

1NBPM14.OUT

Site 1 1	No Bui	ld 2030 PM	- 1NBPI	M30.DAT	60.	.0321.0.00	00.002	240.	30480	000	1
SE MID			650.		59.	5.0					
SE 164 SE 82 9			792. 874.		75. 79.	5.0 5.0					
SE CNR			960.	138		5.0					
SE 82 1 NE 82 1			947. 1016.	130	04. 06.	5.0 5.0					
NE OZ I NE CNR	2		1022.	138		5.0					
NE 82 1			1094.	139	91.	5.0					
NE 164 NE MID			1175. 1298.	139 140		5.0 5.0					
NW MID			1318.	149		5.0					
NW 164			1218.	149		5.0					
NW 82 1 NW CNR	N		1136. 1054.	148 150		5.0 5.0					
NW 82 V	N		1043.	158		5.0					
NW 164			1057.	160		5.0					
NW MID SW MID			1083. 1024.	178 17		5.0 5.0					
SW 164			994.		50.	5.0					
SW 82 V	N		975.	15		5.0					
SW CNR SW 82 S	2		935. 853.	149 147		5.0 5.0					
SW 164			771.	14'		5.0					
SW MID			631.	140		5.0					
Site 1 1	No Bui	ld 2030 PM			24	1 0					
NB	Rt1	aprch AG	3.	1362.	559.	. 1390.	3250	9.2	0.	56	30.
1	- 1			1 2 2 2	1010	1 4 1 0	0065		0	5.6	2.0
NB 2	Rtl	th+rt AG	559.	1390.	1016.	. 1410.	2365	9.2	0.	56	30.
NB		th+rt AG				. 1390.	0.	36	3		
1	125	45	2.0	2365	84.1	1678 1 3					
1 NB	Rt1	left AG	552.	1408.	1013	. 1432.	885	9.2	0.	32	30.
2											
NB	Rt1 125	left AG 84	934.	1428. 885		. 1409. 1752 1 3	0.	12	1		
1	123	01	2.0	005	01.1	1/32 1 3					
NB	Rt1	departAG	1017.	1410.	1345	. 1432.	2655	9.2	0.	56	30.
1 NB	R+1	departAG	1345	1432.	1632.	. 1463.	2655	92	0.	44	30.
1	ner	acparene	1010.	1152.	1052	. 1105.					50.
NB	Rt1	departAG	1632.	1463.	1999.	. 1510.	2655	9.2	0.	44	30.
1 SB	Rt1	aprch AG	1995.	1546.	1680.	. 1502.	1795	9.2	0.	44	30.
1			2000.								
SB 1	Rt1	aprch AG	1680.	1502.	1429.	. 1473.	1795	9.2	0.	44	30.
1 SB	Rt1	aprch AG	1429.	1473.	1228	. 1465.	1795	9.2	0.	44	30.
1											
SB 2	Rt1	th+rt AG	1228.	1465.	1017.	. 1455.	1790	9.2	0.	56	30.
SB	Rt1	th+rt AG	1066.	1457.	1221.	. 1465.	0.	36	3		
	125	83		1790		1653 1 3					

1						
SB 2	Rt1 left AG	1165. 1444.	1020. 1436.	10 9.2	0. 3	32 30.
SB 1	Rt1 left AG 125 122	1068. 1439. 2.0 10	1161. 1444. 84.1 1752 1 3	0. 12	1	
SB 1	Rt1 departAG	1017. 1455.	2. 1403.	2220 9.2	0. !	56 30.
EB 1	Rt28 aprchAG	1191. 2428.	1007. 1603.	845 9.2	0. 3	32 30.
EB 2	Rt28 aprchAG	1007. 1603.	961. 1435.	845 9.2	0.	44 30.
EB	Rt28 aprchAG 125 108	979. 1500. 2.0 845	1000. 1578. 84.1 1682 1 3	0. 24	2	
1 EB 1	Rt28 deparAG	987. 1425.	978. 1298.	30 9.2	0.	32 30.
WB 2	Rt28 aprchAG	986. 1300.	997. 1445.	160 9.2	0.	44 30.
WB	Rt28 aprchAG 125 116	993. 1391. 2.0 160	986. 1306. 84.1 1706 1 3	0. 24	2	
1 WB 1	Rt28 deparAG	999. 1445.	1024. 1615.	1145 9.2	0. 3	32 30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1024. 1615. 0 72	1201. 2425.	1145 9.2	0. 3	32 30.

			1	NBPM30. OUT	
CAL3QHC: L	INE SOURCE	DI SPERSI ON	MODEL -	VERSION 2.2,	JUNE 2000

PAGE 1

PAGE 2

PAGE 3

JOB: Site 1 No Build 2030 PM - 1NBPM30.DAT DATE: 05/09/2009 TIME: 21:16:21.84 RUN: Site 1 No Build 2030 PM

SITE & METEOROLOGICAL VARIABLES

VS = .0 CM/S U = 1.0 M/S	VD = .0 CM/S CLAS = 4 (D)	ZO = 321. CM ATIM = 60. MINUTES	MIXH = 1000. M	AMB = . 0 PPM

LINK VARIABLES

1

1

LINK DESCRIPTION	* X1	LINK COORDINA Y1	X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C QU (ieue (Veh)
1. NB Rt1 apro 2. NB Rt1 thr 3. NB Rt1 thr 4. NB Rt1 left 5. NB Rt1 left 6. NB Rt1 depa 7. NB Rt1 depa 8. NB Rt1 depa 9. SB Rt1 apro 10. SB Rt1 apro 11. SB Rt1 apro 12. SB Rt1 left 15. SB Rt1 left 16. SB Rt1 left 16. SB Rt28 apr 20. EB Rt28 apr 20. EB Rt28 apr 21. WB Rt28 apr 22. WB Rt28 apr 23. WB Rt28 der <	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Y1 1362. 0 1390. 0 1407. 0 1408. 0 1428. 0 1448. 0 1443. 0 1546. 0 1546. 0 1546. 0 1457. 0 1465. 0 1444. 0 1455. 0 2428. 0 1603. 0 1500. 0 1425. 0 1300. 0 1301. 0	X2	-	(FT) 557. 457. 457. 4208. 329. 289. 370. 318. 253. 201. 211. 1325. 145. 8. 1016. 845. 174. 2846. 127. 145. 216. 172.	(DEG) 87. AG 87. AG 267. AG 267. AG 86. AG 88. AG 84. AG 263. AG 263. AG 263. AG 263. AG 264. AG 267. AG 87. AG 267. AG 195. AG 195. AG 184. AG 185. AG 88. AG 88. AG 89. AG 80. AG 80. AG 80. AG 80. AG 80. AG 81. AG 81. AG 80. AG 80. AG 80. AG 81. AG 82. AG 82. AG 83. AG 84. AG 85. AG 85. AG 85. AG 85. AG 86. AG 86. AG 87. AG 86. AG 86. AG 87. AG 86. AG 87. AG 86. AG 87. AG 86. AG 86. AG 87. AG 85.	3250. 2365. 244. 885. 152. 2655. 2655. 1795. 1795. 1795. 1795. 1790. 449. 10. 220. 845. 845. 390. 300. 160. 419. 1145.	(G/MI) 9.2 9.2 100.0 9.2 100.0 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2		. 77 9 . 71 213 . 19 67 . 71 . 43 144	9. 9 3. 7 . 3 . 4
24. WB Rt28 dep	ar* 1024.0	1615.0	1201.0	2425.0 *	829.	12. AG	1145.	9.2	.0 32.0		

RUN: Site 1 No Build 2030 PM

JOB: Site 1 No Build 2030 PM - 1NBPM30.DAT DATE: 05/09/2009 TIME: 21:16:21.84

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB Rt1 th+r1 5. NB Rt1 left 13. SB Rt1 th+r1 15. SB Rt1 left 19. EB Rt28 apro 22. WB Rt28 apro	* * * *	125 125 125 125 125 125 125	45 84 83 122 108 116	2.0 2.0 2.0 2.0 2.0 2.0 2.0	2365 885 1790 10 845 160	1678 1752 1653 1752 1682 1706	84. 10 84. 10 84. 10 84. 10 84. 10 84. 10	1 1 1 1 1	3 3 3 3 3 3 3

RECEPTOR LOCATIONS

-	RECEPTOR	* * *	х	COORD	INATES (FT) Y	z	* *
1. 2. 3. 4. 5. 6. 7. 8. 9. 101. 12. 13. 14. 15. 14. 15. 14. 19. 201. 22.	SE MI D S SE 164 S SE 2 S SE 2 S SE 2 E NE 82 E NE 82 E NE 164 N NW MI D N NW 164 N NW 164 W NW 164 W NW 164 W NW 164 W SW 164 S SW 164 S	* * * * * * * * * * * * * * * * * *	792 874 960 947 1016 1022 1094 1175 1298 1318 1218 1136 1054 1054 1057 1083 1024 994 975 9355 853				 *

1

JOB: Site 1 No Build 2030 PM - 1NBPM30.DAT

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM) (DEGR)* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 * 1.5 2.3 2.4 2.4 1.5 1.9 2.4 2.5 2.4 2.1 .2 .4 .7 1.2 1.9 2.1 2.2 .5 .6 .8 Page 1

RUN: Site 1 No Build 2030 PM

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WI ND ANGLE (DEGR)	*	CONCENT (F REC21 F	PM)		REC24
0.	* * *	. 2	. 1	. 0	. 0
5.		. 6	. 1	. 1	. 0
10.		. 9	. 2	. 1	. 1
15.		1. 1	. 6	. 2	. 1

Page 2

		1NBPM30. OUT
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 2 . 4 . 4 . 5 . 5 . 5 . 4 . 4 . 3 . 4 . 3 . 4 . 6 . 8 1.2 1.7 2.2 2.4 2.5 2.2 2.4 2.5 2.5 2.2 2.1 2.0 1.9 1.8 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.4 1.4 1.4 1.4	
	2030 PM - 1NBPM30.DAT	RUN: Site 1 No Build 2030 PM PAGE 6
WIND ANGLE RANGE: 036 WIND_ * CONCENTRATION	0.	
WIND * CONCENTRATION ANGLE * (PPM)	REC24 1.6 1.6 1.5 1.7 2.0 1.9 2.1 2.0 2.0 1.8 1.6 1.3 .9 .6 .3 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	

Site 1 Opt 1/2 2014 1B1	AM14.DAT	60.0321.0.00	00.000240.3	04800	000	1
1 SE MID S		116. 5.0				
SE 164 S SE 82 S		123.5.0128.5.0				
SE CNR		134. 5.0				
SE 82 E		053. 5.0				
NE 82 E		056. 5.0				
NE CNR NE 82 N		137.5.0142.5.0				
NE 164 N		146. 5.0				
NE MID N		153. 5.0				
NW MID N		280. 5.0				
NW 164 N NW 82 N		272.5.0269.5.0				
NW CNR		288. 5.0				
NW 82 W		385. 5.0				
NW 164 W		466. 5.0				
NW MID W SW MID W		626. 5.0 597. 5.0				
SW 164 W		434. 5.0				
SW 82 W	1026. 1	354. 5.0				
SW CNR		273. 5.0				
SW 82 S SW 164 S		248.5.0243.5.0				
SW MID S		235. 5.0				
Site 1 Opt 1/2 2014 AM		27 1 0				
1 NB Rt1 aprch AG	EQ 1100	E01 112C	213311.4	0	56	30.
NB Rtl aprch AG	56. 1109.	561. 1150.	213311.4	0.	50	50.
NB Rt1 thru AG	582. 1136.	1083. 1166.	160611.4	0.	56	30.
NB Rt1 thru AG	984. 1160.	603. 1138.	0. 36	3		
120 57	2.0 1606	102.2 1679 1 3				
1 ND Delloft AC	E70 1167	1065 1105	E 0 7 1 1 4	0.	11	20
NB Rtl left AG	5/2. 110/.	1065. 1195.	52711.4	0.	44	30.
NB Rtl left AG	983. 1190.	604. 1169.	0. 24	2		
	2.0 527	102.2 1700 1 3				
1 NB Rt1 departAG	1085 1167	1470. 1188.	183011 4	0	56	30.
1	1000. 1107.	11/0. 1100.	103011.1	•••	50	50.
NB Rt1 departAG	1470. 1188.	1784. 1227.	183011.4	0.	44	30.
1 ND Dtl dependence	170/ 1007	2022 1222	183011.4	0	44	30.
NB Rt1 departAG	1784. 1227.	2072. 1272.	103011.4	0.	44	50.
SB Rtl aprch AG	2069. 1311.	1694. 1264.	356811.4	0.	44	30.
1						
SB Rt1 aprch AG 1	1694. 1264.	1395. 1248.	356811.4	0.	44	30.
SB Rt1 th+rt AG	1395. 1248.	1057. 1231.	354811.4	0.	56	30.
2						
SB Rtlth+rt AG	1144. 1236.		0. 36	3		
120 65 1	2.0 3548	102.2 1665 1 3				
SB Rt1 left AG	1378. 1236.	1241. 1217.	2011.4	0.	32	30.

1							
SB	Rt1 left AG	1240. 1217.	1058. 1208.	2011.4	0.	32	30.
2 SB	Rt1 left AG 120 115	1147. 1212. 2.0 20		0. 12	1		
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	413011.4	0.	56	30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	413011.4	0.	56	30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	95811.4	0.	32	30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	95811.4	0.	56	30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	95811.4	0.	56	30.
EB	Rt28 aprchAG 120 94		1068. 1409. 102.2 1523 1 3	0. 36	3		
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	4511.4	0.	32	30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	8511.4	0.	44	30.
WB	Rt28 aprchAG 120 109	1050. 1141. 2.0 85		0. 24	2		
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	73911.4	0.	44	30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	73911.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	73911.4	0.	32	30.

RUN: Site 1 Opt 1/2 2014 AM

PAGE 1

SITE & METEOROLOGICAL VARIABLES

JOB: Site 1 Opt 1/2 2014 1B1AM14.DAT DATE: 05/10/2009 TIME: 09:50:16.72

			-						
VS =	.0 CM/S	VD =	. 0 CM/S	ZO = 321.	CM				
	1.0 M/S	CLAS =		ATIM = 60.		MIXH =	1000. M	AMB =	.O PPM

1B1AM14. OUT CAL3QHC: LINE SOURCE DI SPERSI ON MODEL - VERSI ON 2.2, JUNE 2000

LINK VARIABLES

1

1

	LINK	DESCRIPTION *	X1	INK COORDIN Y1	IATES (FT) X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 9. 20. 21. 22. 23. 24.	NB NB NB NB NB NB NB SB SB SB SB SB SB SB SB SB SB SB SB SB	* Rt1 aprch * Rt1 thru * Rt1 left * Rt1 left * Rt1 left * Rt1 depart* Rt1 depart* Rt1 depart* Rt1 aprch * Rt1 aprch * Rt1 left * Rt1 left * Rt1 left * Rt1 left * Rt1 left * Rt1 left * Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch*	X1 58.0 984.0 983.0 983.0 1085.0 1470.0 1784.0 2069.0 1378.0 1694.0 1378.0 1694.0 1378.0 1240.0 1147.0 1056.0 1039.0 1039.0 1052.0	Y1 1109.0 1136.0 1160.0 1167.0 1190.0 1188.0 1227.0 1248.0 1227.0 1236.0 1236.0 1236.0 1236.0 1236.0 1232.0 1242.0 1242.0 1242.0 1242.0 1245.0 1247.0 12	X2 581.0 1083.0 817.5 1065.0 -620.9 1470.0 1784.0 2072.0 1694.0 1395.0 1057.0 6449.0 1241.0 1058.0 1244.8 921.0 58.0 1087.0 1025.0 1072.0 1025.0 1072.0 1025.0 1073.6 1043.0 1049.0 1050.2	$\begin{array}{cccc} Y2 & * & & \\ & & & \\ 1136. & 0 & * \\ 1166. & 0 & * \\ 1105. & 0 & * \\ 1195. & 0 & * \\ 1195. & 0 & * \\ 127. & 0 & * \\ 1227. & 0 & * \\ 1227. & 0 & * \\ 1240. & 0 & * \\ 1240. & 0 & * \\ 1210. & 0 & * \\ 1210. & 0 & * \\ 1210. & 0 & * \\ 1221. & 0 & * \\ 1220. & 0 & * \\ 1221. & 0 & * \\ 1220. & 0 & * \\ $	(FT) 524. 502. 167. 494. 1606. 386. 291. 378. 299. 338. 5311. 138. 182. 98. 135. 864. 653. 123. 228. 651. 179. 175. 25.	(DEG) 87. AG 87. AG 267. AG 87. AG 87. AG 87. AG 83. AG 83. AG 263. AG 267. AG 192. AG 192. AG 192. AG 179. AG 359. AG 359. AG	2133. 1606. 3911. 527. 489. 1830. 1830. 1830. 3568. 3568. 3548. 3548. 200. 203. 203. 203. 4430. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 4130. 458. 85. 498.	(G/MI) 11.4 10.0 10.0 11.4 100.0 11.4 11.	(FT) (FT) 0 56.0 0 56.0 0 36.0 0 44.0 0 44.0 0 44.0 0 44.0 0 44.0 0 44.0 0 44.0 0 44.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 0 0 56.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 65 2. 07 1. 67 1. 43	(VEH) 8.5 81.6
24. 25. 26. 27.	WB WB	Rt28 aprch* Rt28 depar* Rt28 depar* Rt28 depar*		1141. 0 1197. 0 1424. 0 1570. 0	1050.2 1121.0 1126.0 1257.0	1116.0 * 1424.0 * 1570.0 * 2180.0 *	25. 233. 146. 624.	180. AG 13. AG 2. AG 12. AG	498. 739. 739. 739.	11.4 11.4	. 0 24. 0 . 0 44. 0 . 0 32. 0 . 0 32. 0	. 43	1.3

JOB: Site 1 Opt 1/2 2014 1B1AM14.DAT DATE: 05/10/2009 TIME: 09:50:16.72

RUN: Site 1 Opt 1/2 2014 AM

PAGE 2

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB Rt1 thru * 5. NB Rt1 left * 12. SB Rt1th+rt * 15. SB Rt1 left * 21. EB Rt28 aprch* 24. WB Rt28 aprch*	120 120 120 120 120 120 120	57 107 65 115 94 109	2.0 2.0 2.0 2.0 2.0 2.0	1606 527 3548 20 958 85	1679 1700 1665 1752 1523 1694	102.20 102.20 102.20 102.20 102.20 102.20	1 1 1 1	3 3 3 3 3 3 3

RECEPTOR LOCATIONS

	*	COOP	DINATES (FT)		*
RECEPTOR	*	X	Y	Z	*
1. SE MID S	*	743.0	1116.0	5.0	*
2. SE 164 S	*	857.0	1123.0	5.0	*
3. SE 82 S	*	939.0	1128.0	5.0	*
4. SE CNR	*	1020.0	1134.0	5.0	*
5. SE 82 E	*	1022.0	1053.0	5.0	*
6. NE 82 E	*	1075.0	1056.0	5.0	*
7. NE CNR	*	1076.0	1137.0	5.0	*
8. NE 82 N	*	1156.0	1142.0	5.0	*
9. NE 164 N	*	1238.0	1146.0	5.0	*
10. NE MID N	*	1341.0	1153.0	5.0	*
11. NW MID N	*	1453.0	1280.0	5.0	*
12. NW 164 N	*	1316.0	1272.0	5.0	*
13. NW 82 N	*	1234.0	1269.0	5.0	*
14. NW CNR	*	1138.0	1288.0	5.0	*
15. NW 82 W	*	1137.0	1385.0	5.0	*
16. NW 164 W	*	1145.0	1466.0	5.0	*
17. NW MID W	*	1156.0	1626.0	5.0	*
18. SW MID W	*	1072.0	1597.0	5.0	*
19. SW 164 W	*	1043.0	1434.0	5.0	*
20. SW 82 W	*	1026.0	1354.0	5.0	*
21. SW CNR	*	995.0	1273.0	5.0	*
22. SW 82 S	*	900.0	1248.0	5.0	*
23. SW 164 S	*	819.0	1243.0	5.0	*
24. SW MID S	*	692.0	1235.0	5.0	*

JOB: Site 1 Opt 1/2 2014 1B1AM14.DAT

MODEL RESULTS

1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM)

Page 1

RUN: Site 1 Opt 1/2 2014 AM

225. * .1 .1 .1 .1 .0 .0 .7 .1 .1 .1 3.4 3.4 3.6 2.0 2.7 2.8 3.1 .7

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1B1AM14. OUT
1 JOB: Site 1 Opt 1/2	2014 1B1AM14. DAT	RUN: Site 1 Opt 1/2 2014 AM
WIND ANGLE RANGE: 036 WIND * CONCENTRATION	60.	
ANGLE * (PPM) (DEGR)* REC21 REC22 REC23	3 REC24	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 2.9 9 2.9 1 3.2 3 3.3 4 3.5 6 3.7 8 3.9 0 3.9 7 3.6 2 3.1 6 2.5 8 1.9 2 1.3 8 .8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 .4 2 .3 2 .2 2 .2 1 .2 1 .1 1 .1 0 .1 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0	
300, * 0 2 305, * 0 2 310, * 0 2 311, * 0 2 315, * 0 2 320, * 0 1 325, * 0 1 335, * 0 1 345, * 0 0 345, * 0 0 355, * 2 0 355, * 2 0 355, * 2 0 360, * 4 0 7 7 7 7 8 3,4 95 100	3 .4 2 .3 2 .2 2 .2 1 .1 1 .1 0 .1 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .0 0 .1 1 .1 1 .1 1 .1 0 .0 0 .0 0 .2	5000

Site 1 Opt 1/2 2030 AM 1B1AM30.DAT 60.0321.0.0000.000240.30480000	1
SE MID S 743. 1116. 5.0	
SE 164 S 857. 1123. 5.0 SE 82 S 939. 1128. 5.0	
SE CNR 1020. 1134. 5.0	
SE 82 E 1022. 1053. 5.0	
NE 82 E 1075. 1056. 5.0 NE CNR 1076. 1137. 5.0	
NE 82 N 1156. 1142. 5.0	
NE 164 N 1238. 1146. 5.0	
NE MID N 1341. 1153. 5.0	
NW MID N1453.1280.5.0NW 164 N1316.1272.5.0	
NW 82 N 1234. 1269. 5.0	
NW CNR 1138. 1288. 5.0	
NW 82 W 1137. 1385. 5.0	
NW 164 W 1145. 1466. 5.0 NW MID W 1156. 1626. 5.0	
NW MID W 1150. 1020. 5.0 SW MID W 1072. 1597. 5.0	
SW 164 W 1043. 1434. 5.0	
SW 82 W 1026. 1354. 5.0	
SW CNR 995. 1273. 5.0	
SW 82 S900.1248.5.0SW 164 S819.1243.5.0	
SW MID S 692. 1235. 5.0	
Site 1 Opt 1/2 2030 AM 27 1 0	
1 NB Rtl aprch AG 58. 1109. 581. 1136. 2255 9.2 0. 56	30.
1 RCI apren AG 56. 1109. 561. 1136. 2255 9.2 0. 56	30.
NB Rt1 thru AG 582. 1136. 1083. 1166. 1725 9.2 0. 56	30.
2 NB Rtl thru AG 984. 1160. 603. 1138. 0. 36 3	
112 55 2.0 1725 84.1 1679 1 3	
1	
NB Rtl left AG 572. 1167. 1065. 1195. 530 9.2 0. 44 2	30.
NB Rtl left AG 983. 1190. 604. 1169. 0. 24 2	
112 99 2.0 530 84.1 1700 1 3	
	2.0
NB Rtl departAG 1085. 1167. 1470. 1188. 1935 9.2 0. 56	30.
NB Rtl departAG 1470. 1188. 1784. 1227. 1935 9.2 0. 44	30.
1	
NB Rtl departAG 1784. 1227. 2072. 1272. 1935 9.2 0. 44	30.
SB Rt1 aprch AG 2069. 1311. 1694. 1264. 3310 9.2 0. 44	30.
1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 3310 9.2 0. 44	30.
1 SB Rt1 th+rt AG 1395. 1248. 1057. 1231. 3290 9.2 0. 56	
2 Ref cliffle AG 1395. 1240. 1057. 1251. 5290 9.2 0. 50	50.
SB Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3	
112 64 2.0 3290 84.1 1667 1 3 1	
SB Rtl left AG 1378. 1236. 1241. 1217. 20 9.2 0. 32	30.

1							
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	20 9.2	0.	32 30.	
SB	Rtl left AG 112 107	1147. 1212. 2.0 20		0. 12	1		
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	3915 9.2	0.	56 30.	
SB 1	Rt1 departAG	921. 1221.	58. 1172.	3915 9.2	0.	56 30.	
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	950 9.2	0.	32 30.	
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	950 9.2	0.	56 30.	
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	950 9.2	0.	56 30.	
EB	Rt28 aprchAG 112 89	1043. 1287. 2.0 950	1068. 1409. 84.1 1524 1 3	0. 36	3		
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	45 9.2	0.	32 30.	
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	85 9.2	0.	44 30.	
WB	Rt28 aprchAG 112 101	1050. 1141. 2.0 85	1051. 1019. 84.1 1694 1 3	0. 24	2		
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	705 9.2	0.	44 30.	
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	705 9.2	0.	32 30.	
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	705 9.2	0.	32 30.	

JOB: Site 1 Opt 1/2 2030 AM 1B1AM30.DAT DATE: 05/10/2009 TIME: 16:50:44.50

SITE & METEOROLOGICAL VARIABLES

VS =	.0 CM/S	VD = .0 CM	/S ZO =	= 321.	CM				
U =	1.0 M/S	CLAS = 4	D) ATIM =	= 60.	MI NUTES	MIXH =	1000. M	AMB =	. O PPM

1B1AM30. OUT CAL30HC: LINE SOURCE DISPERSION MODEL - VERSION 2.2, JUNE 2000

LINK VARIABLES

1

1

LINK DESCRIPTION		LINK COORDI Y1	NATES (FT) X2	* Y2 *			VPH	EF	H W V/C QUEUE (FT) (FT) (VEH)
	* ^1	T I		12 *	(FT)	(DEG)		(G/MI)	(FT) (FT) (VEH)
1. NB Rt1 aprch			581.0	1136.0 *	524.	87. AG	2255.	9.2	. 0 56. 0
	* 582.		1083.0	1166.0 *	502.	87. AG	1725.	9.2	.0 56.0
NB Rt1 thru	* 984.	0 1160.0	811.4	1150.0 *	173.	267. AG	332.	100.0	.036.0.728.8
4. NB Rt1 left			1065.0	1195.0 *	494.	87. AG	530.	9.2	. 0 44. 0
5. NB Rt1 left			-538.7	1105.7 *	1524.	267. AG	399.	100.0	. 0 24. 0 1. 95 77. 4
NB Rt1 depart			1470.0	1188.0 *	386.	87. AG	1935.	9.2	. 0 56. 0
7. NB Rt1 depart	* 1470.		1784.0	1227.0 *	316.	83. AG	1935.	9.2	.0 44.0
 8. NB Rt1 depart 	* 1784.		2072.0	1272.0 *	291.	81. AG	1935.	9.2	.0 44.0
9. SB Rt1 aprch	* 2069.		1694.0	1264.0 *	378.	263. AG	3310.	9.2	. 0 44. 0
10. SB Rt1 aprch			1395.0	1248.0 *	299.	267. AG	3310.	9.2	. 0 44. 0
11. SB Rt1 th+rt 12. SB Rt1th+rt			1057.0	1231.0 *	338.	267. AG	3290.	9.2	.0 56.0
	* 1144. * 1378.		6080.5 1241.0	1478.8 * 1217.0 *	4942. 138.	87. AG 262. AG	387. 20.	100. 0 9. 2	.0 36.0 1.68 251.1 .0 32.0
14. SB Rt1 left			1058.0	1208.0 *	182.	267. AG	20.	9.2	.0 32.0
15. SB Rt1 left			1233.2	1208.0	86.	87. AG	20.	9.2 100.0	.0 12.0 1.33 4.4
16. SB Rt1 depart			921.0	1221.0 *	135.	266. AG	3915.	9.2	.0 56.0
17. SB Rt1 depart			58.0	1172.0 *	864.	267. AG	3915.	9.2	. 0 56. 0
18. EB Rt28 aprch			1087.0	1547.0 *	653.	192. AG	950.	9.2	. 0 32. 0
19. EB Rt28 aprch			1072.0	1425.0 *	123.	187. AG	950.	9.2	.0 56.0
20. EB Rt28 aprch			1025.0	1202.0 *	228.	192. AG	950.	9.2	.0 56.0
21. EB Rt28 aprch		0 1287.0	1207.7	2090.8 *	821.	12. AG	538.	100.0	. 0 36. 0 1. 22 41. 7
22. EB Rt28 depar	* 1039.	0 1194.0	1043.0	1015.0 *	179.	179. AG	45.	9.2	. 0 32. 0
23. WB Rt28 aprch			1049.0	1190.0 *	175.	359. AG	85.	9.2	. 0 44. 0
24. WB Rt28 aprch			1050.2	1117.8 *	23.	180. AG	407.	100.0	. 0 24. 0 . 40 1. 2
25. WB Rt28 depar	* 1069.		1121.0	1424.0 *	233.	13. AG	705.	9.2	.0 44.0
26. WB Rt28 depar			1126.0	1570.0 *	146.	2. AG	705.	9.2	. 0 32. 0
27. WB Rt28 depar	* 1126.	0 1570.0	1257.0	2180.0 *	624.	12. AG	705.	9.2	. 0 32. 0

JOB: Site 1 Opt 1/2 2030 AM 1B1AM30. DAT DATE: 05/10/2009 TIME: 16:50:44.50

RUN: Site 1 Opt 1/2 2030 AM

PAGE 2

ADDITIONAL QUEUE LINK PARAMETERS

LINK	DESCRI PTI ON	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB 5. NB	Rt1 thru Rt1 left	* *	112 112	55 99	2.0 2.0	1725 530	1679 1700	84.10 84.10	1	3
12. SB 15. SB 21. EB 24. WB	Rt1th+rt Rt1 left Rt28 aprcl Rt28 aprcl		112 112 112 112	64 107 89 101	2.0 2.0 2.0 2.0	3290 20 950 85	1667 1752 1524 1694	84. 10 84. 10 84. 10 84. 10	1 1 1 1	3 3 3 3

RECEPTOR LOCATIONS

RECEPTOR	* *	COOR X	DINATES (FT) Y	z	*
1. SE MID S 2. SE 164 S 3. SE 82 S 4. SE CNR 5. SE 82 E 6. NE 82 E 7. NE CNR 8. NE 82 N 9. NE 164 N 10. NE MID N 11. NW MID N 12. NW 164 N 13. NW 82 N 14. NW CNR 15. NW 82 W 16. NW 164 W 17. NW MID W 18. SW MID W 19. SW 164 W 20. SW 82 W 21. SW CNR 22. SW 82 S 23. SW 164 S 24. SW MID S	· · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 743.0\\ 857.0\\ 939.0\\ 1020.0\\ 1022.0\\ 1075.0\\ 1076.0\\ 1156.0\\ 1238.0\\ 1341.0\\ 1453.0\\ 1341.0\\ 1453.0\\ 1316.0\\ 1234.0\\ 1137.0\\ 1145.0\\ 1137.0\\ 1145.0\\ 1156.0\\ 1072.0\\ 1043.0\\ 1026.0\\ 995.0\\ 990.0\\ 819.0\\ 692.0 \end{array}$	$\begin{array}{c} 1123.0\\ 1128.0\\ 1134.0\\ 1055.0\\ 1056.0\\ 1137.0\\ 1142.0\\ 1142.0\\ 1142.0\\ 1142.0\\ 1153.0\\ 1280.0\\ 1272.0\\ 1280.0\\ 1272.0\\ 1288.0\\ 1385.0\\ 1466.0\\ 1597.0\\ 1434.0\\ 1354.0\\ 1273.0\\ 1248.0\\ \end{array}$	$\begin{array}{c} 5. \ 0\\ 5. \ 0\$	*****

JOB: Site 1 Opt 1/2 2030 AM 1B1AM30.DAT

MODEL RESULTS

1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM)

RUN: Site 1 Opt 1/2 2030 AM

210. * .0 .0 .0 .0 .0 .2 .0 .0 .0 2.5 2.5 2.8 1.2 1.3 2.0 2.6 .9
--

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

Page 2

5.	*	. 7	. 1	. 0	. 0	1B1AM30. OUT
145. 150. 155. 160.	* * * * * * * * * * * * * * * * * * * *	$\begin{array}{c}1.570.977765223581466400.9665456454667890\\1.1,1,1,1,1,1,1,2,2,2,2,2,2,1,1,1,1,1,1,$	23678788787036360087544445446656777666556	. 1 1 3 4 6 5 6 6 6 6 7 0 0 5 0 6 9 1 9 9 9 0 8 8 9 8 7 7 6 5 5 5 6 5 5 3 3 2 2 2 2	.002234455567138714433319775431111222211110 	
105.		2.0	2.0	2.2	2.0	
J	JOB:	Si te	1 Opt	1/2 20	030 AM	1B1AM30. DAT RUN: Site 1 Opt 1/2 2030 AM
WIND A	ANGL	_E RAN	GE:	0360.		1B1AM30.DAT RUN: Site 1 Opt 1/2 2030 AM
/IND A /IND NGLE (DEGR)	ANGL * (*	LE RAN	GE: TRATIO PPM) REC22	0360. N REC23	REC24	1B1AM30.DAT RUN: Site 1 Opt 1/2 2030 AM
WIND A WIND ANGLE ((DEGR) 2215. 220. 225. 225	ANGL * (*	LE RAN	GE: TRATIO PPM) REC22	0.–360. N	REC24	1B1AM30. DAT RUN: Site 1 Opt 1/2 2030 AM

SE MID S 743. 1116. 5.0 SE 164 S 857. 1123. 5.0 SE 82 S 939. 1128. 5.0 SE 02 S 1020. 1134. 5.0 SE 82 E 1022. 1053. 5.0 NE 82 E 1075. 1056. 5.0 NE 82 N 1136. 1142. 5.0 NE 164 N 1238. 1146. 5.0 NW MID N 1453. 1280. 5.0 NW MID N 1453. 1280. 5.0 NW 62 W 1137. 1385. 5.0 NW 62 W 1137. 1385. 5.0 NW 164 W 1145. 1466. 5.0 NW 164 W 1145. 1466. 5.0 NW 164 W 1043. 1334. 5.0 SW MID W 1072. 1597. 5.0 SW 62 W 1026. 1354. 5.0 SW 164 S 819. 1243. 5.0 SW MID S 692. 1235. 5.0 SW 164 S 819. 1043. <th>Site 1 1</th> <th>Opt 1</th> <th>/2 2014</th> <th>PM</th> <th>1B1PM14</th> <th>.DAT</th> <th>60.</th> <th>0321.0.</th> <th>0000.0002</th> <th>40.3</th> <th>0480</th> <th>000</th> <th>1</th>	Site 1 1	Opt 1	/2 2014	PM	1B1PM14	.DAT	60.	0321.0.	0000.0002	40.3	0480	000	1
SE 82 S 939. 1128. 5.0 SE CNR 1020. 1134. 5.0 SE 82 E 1022. 1053. 5.0 NE 82 E 1075. 1056. 5.0 NE 82 E 1075. 1142. 5.0 NE 82 N 1156. 1142. 5.0 NE 82 N 1156. 1142. 5.0 NE 164 N 1238. 1146. 5.0 NW MID N 1453. 1280. 5.0 NW 164 N 1316. 1272. 5.0 NW 164 N 1316. 1272. 5.0 NW 164 W 1145. 1266. 5.0 NW 164 W 1145. 1266. 5.0 SW MID W 1072. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 0164 W 1043. 1434. 5.0 SW 164 W 1043. 1434. 5.0 SW 164 W 1043. 1273. 5.0 SW 164 W 1043. 1434. 5.0 SW 164 W 1043. 1434. 5.0 SW 164 S 819. 1243. 5.0 SW 110 P 1/2 2014 FM 27 1 0 1 NE Rt1 aprch AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 aprch AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rt1 left AG 983. 1190. 604. 1169. 120 96 2.0 1012 102.2 1700 1 3 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. SB Rt1 aprch AG 195. 1248. 1057. 1231. 246411.4 0. 56 30. SB Rt1 h+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. SB Rt1 h+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. SB Rt1 h+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. SB Rt1 h+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. SB Rt1 h+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. SB Rt1 h+rt AG 1395. 1246 102.2 1659 1 3	SE MID												
SE CNR 1020. 1134. 5.0 SE 82 E 1075. 1053. 5.0 NE 82 E 1075. 1056. 5.0 NE CNR 1076. 1137. 5.0 NE 82 N 1156. 1142. 5.0 NW 164 N 1238. 1146. 5.0 NW 164 N 1316. 1272. 5.0 NW 000 N 1338. 1280. 5.0 NW 000 N 13137. 1385. 5.0 NW 000 N 1138. 1288. 5.0 NW 000 N 1135. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 000 N 1026. 1354. 5.0 SW 000 N 1248. 5.0 5.0 SW MID S 692. 1235. 5.0 SW MID S 819. 1243. 3.6 SW MID S 592. 1235. 5.0 SW MID S 692. 1235. 5.0 SW 164 S 819. 1243. 0.36 3 100 102													
$\begin{array}{cccccccccccccccccccccccccccccccccccc$													
NE CNR 1076. 1137. 5.0 NE 82 N 1156. 1142. 5.0 NE 164 N 1238. 1146. 5.0 NE MID N 1341. 1153. 5.0 NW MID N 1351. 1280. 5.0 NW 164 N 1316. 1272. 5.0 NW 62 N 1234. 1269. 5.0 NW 62 W 1137. 1385. 5.0 NW 164 W 1145. 1466. 5.0 NW 164 W 1043. 1434. 5.0 SW MID W 1072. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 62 N 1026. 1354. 5.0 SW 62 N 1026. 1354. 5.0 SW 164 S 819. 1243. 5.0 SW 110 Opt 1/2 2014 PM 27 1 0 1 NE Rt1 aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rt1 left AG 983. 1166. 603. 1138. 0. 36 3 120 59 2.0 2006 102.2 1678 13 NE Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 120 10 20 102.2 1070 13 NE Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 100.2 1700 13 NE Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1264. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 3 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 3 SE Rt1 aprch AG 1694. 1264. 1388. 1248. 0. 36 3 1 SE Rt1 aprch AG 1694. 1264. 1388. 1248. 0. 36 3 1 SE Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. SE Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SE Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SE Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SE Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SE Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SE Rt1 th+rt AG													
NE 82 N 1166. 1142. 5.0 NE 164 N 1238. 1146. 5.0 NE MID N 1341. 1153. 5.0 NW MID N 1453. 1280. 5.0 NW MID N 1453. 1280. 5.0 NW 82 N 1234. 1269. 5.0 NW 82 N 1234. 1269. 5.0 NW 82 W 1137. 1385. 5.0 NW 164 W 1145. 1466. 5.0 SW MID W 1165. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW 22 S 900. 1248. 5.0 SW CRR 995. 1273. 5.0 SW CRR 995. 1273. 5.0 SW 164 S 819. 1248. 1003. 1166. 280611.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. NE Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 102.2 1700 1 3 1 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. NE Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 2 SB Rt1 th+rt AG 1395. 1246. 1057. 1231. 246411.4 0. 56 30. 2 SB Rt1 th+rt AG 1395. 1246. 1057. 1231. 246411.4 0. 56 30. 2 SB Rt1 th+rt AG 1395. 1246 1057. 1231. 246411.4 0. 56 30. 2 SB Rt1 th+rt AG 1395. 1246 1057. 1231. 246411.4 0. 56 30. 3 1													
NE 164 N 1238. 1146. 5.0 NE MID N 1341. 1153. 5.0 NW MID N 1453. 1220. 5.0 NW 164 N 1316. 1272. 5.0 NW CNR 1138. 1288. 5.0 NW 82 W 1137. 1385. 5.0 NW MD W 1145. 1466. 5.0 SW MD W 1145. 1466. 5.0 SW MD W 104. 1454. 5.0 SW MD W 104. 1454. 5.0 SW 164 W 1043. 1434. 5.0 SW 82 W 1026. 1354. 5.0 SW 164 S 819. 1243. 5.0 SW 110 S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 1 NE Rt1 aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 NB Rt1 thru AG 582. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rt1 left AG 983. 1190. 604. 1169. 120 96 2.0 1012 102.2 1700 1 3 1 NE Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rt1 departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NE Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SE Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 2 SE Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 2 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 1 1 1 1 1 1 1 1 1 1 1 1													
NR MID N 1341. 1153. 5.0 NW MID N 1453. 1280. 5.0 NW MID N 1234. 1269. 5.0 NW CNR 1138. 1288. 5.0 NW MZ N 1137. 1385. 5.0 NW 82 W 1137. 1385. 5.0 NW MID W 1156. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW MID W 1072. 1597. 5.0 SW MCRR 995. 1273. 5.0 SW 62 S 900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SW MID S 692. 1235. 5.0 SW MID S 692. 1235. 5.0 SW MID S 692. 1235. 5.0 SW MID S 692. 1126. 382311.4 0. 56 30. 1 10 59 2.0 2806 102.2 1678 1 3 1 1 1 303511.4 0. 56 30. 1 1													
NN 164 N 1316. 1272. 5.0 NW 82 N 1234. 1269. 5.0 NW 82 N 1137. 1385. 5.0 NN 82 W 1137. 1385. 5.0 NN MID W 1156. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW 82 W 1026. 1354. 5.0 SW 62 S 900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SW 164 S 692. 1273. 5.0 SW 1164 S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 1 NB Rt1 aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rt1 left AG 993. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 102.2 1678 1 3 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 2 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1388. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1388. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1385. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1385. 1248. 0. 36 3 1 SB Rt1 aprch AG 1694. 1264. 1385. 1248. 0. 36 3 1 SB Rt1 aprch AG 1945. 1248. 1057. 1231. 2464114. 0. 56 30. 2 SB Rt1 aprch AG 1945. 1248. 1057. 1231. 2464114. 0. 56 30. 3 SB Rt1 aprch AG 1945. 1248. 1057. 1231. 24													
NN 82 N 1234. 1269. 5.0 NW CNR 1138. 1288. 5.0 NN 154 W 1137. 1385. 5.0 NN 164 W 1145. 1466. 5.0 NN 110 W 1156. 1626. 5.0 SW 110 W 1072. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 22 S 900. 1248. 5.0 SW CNR 995. 1273. 5.0 SW 164 S 819. 1243. 5.0 SW 110 S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 1 NB Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rtl thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 NB Rtl 1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rtl 1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 1 NB Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rtl departAG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 0. 36 3 2 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 SB Rtl thrrt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 3 5 5 5 5 5 5 5 5 5 5 5 5 5													
NW NORE 1138. 1288. 5.0 NW 82 W 1137. 1385. 5.0 NW 164 W 1145. 1466. 5.0 SW MID W 1156. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 82 W 1026. 1354. 5.0 SW 82 S 900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SI 100 59 2.0 2066 102.2 1678 1 3 ¹ NB Rt1 thru AG 582. 1167. 1065. 1195. 101211.4 0. 56 30. ¹ NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. ² NB Rt1 left AG 983. 1190. 604. 1169. 120 96 2.0 1012 102.2 1700 1 3 ¹ NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. ¹ NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. ¹ NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. ¹ SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. ¹ SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. ¹ SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 56 30. ¹ SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 56 30. ¹ SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 56 30. ¹ SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 56 30. ¹ SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 ¹ SB Rt1 aprch AG 1694. 1264. 1388. 1248. 0. 36 3													
NW 82 W 1137. 1385. 5.0 NW 164 W 1145. 1466. 5.0 NW MID W 1156. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 064 W 1043. 1434. 5.0 SW CNR 995. 1273. 5.0 SW 164 S 819. 1243. 5.0 SW 164 S 810. 1166. 280611.4 0. 56 30. NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 1 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 2 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 0. 36 3 2 SB Rt1 aprch AG 1144. 1236. 1388. 1248. 0. 36 3 1 1 1 1 1 1 1 1 1 1 1 1 1													
NN 164 W 1145. 1466. 5.0 NW MID W 1156. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW 164 W 1043. 1434. 5.0 SW 2W 1026. 1354. 5.0 SW 82 W 1026. 1354. 5.0 SW 82 W 1026. 1354. 5.0 SW 164 S 819. 1243. 5.0 SW 164 S 81.109. 581. 1136. 382311.4 0. 56 30. 1 Rt1 Haprch AG 582. 1167. 1063. 1138. 0.36 3													
NN MID W 1156. 1626. 5.0 SW MID W 1072. 1597. 5.0 SW 164 W 1043. 1344. 5.0 SW 82 W 1026. 1354. 5.0 SW 82 S 9900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SW MID S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 1 NB Rt1 aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 NB Rt1 thru AG 984. 1160. 603. 1138. 0. 36 30. 120													
SW 164 W 1043. 1434. 5.0 SW 82 W 1026. 1354. 5.0 SW CNR 995. 1273. 5.0 SW 82 S 900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SW 105 Site 1 Opt 1/2 2014 PM 27 1 0 0 1 1 27 1 0 0 1 NB Rt1 aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 1 1 1 2 102.2 1678.1 3 3 3 1 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 120 96 23. 1190. 604. 1169. 0. 24 2 NB Rt1 left AG 983. 1167. 1470. 1188. 303511.4 0. 44 30. 1								5.0)				
SW 82 W 1026. 1354. 5.0 SW CNR 995. 1273. 5.0 SW 82 S 900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SW 164 S 692. 1235. 5.0 SW 10 S 692. 1235. 5.0 SIte 1 Opt 1/2 2014 PM 27 1 0 1 1 Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rt1 aprch AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 Rt1 thru AG 984. 1160. 603. 1138. 0. 36 3 120 59 2.0 2806 102.2 1678 1 3 3													
SW CNR 995. 1273. 5.0 SW 82 S 900. 1248. 5.0 SW MID S 692. 1235. 5.0 SW IE4 S 692. 1235. 5.0 SIE 1 Opt 1/2 2014 PM 27 1 0 1 NB Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rtl aprch AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 NB Rtl thru AG 984. 1160. 603. 1138. 0. 36 3 120 59 2.0 2806 102.2 1678. 101211.4 0. 44 30. 2 NB Rtl left AG 983. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 102.2 1700.1 3 3 3 1 NB Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
SW 82 S 900. 1248. 5.0 SW 164 S 819. 1243. 5.0 SW MID S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 0 1 NB Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 NB Rtl thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 NB Rtl thru AG 984. 1160. 603. 1138. 0. 36 3 10 59 2.0 2806 102.2 1678 1 3 3 30. 11 NB Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 102.2 1700 1 3 3 3 3 1 NB Rtl departAG 1085. 1167. 1470. 118													
SW 164 S 819. 1243. 5.0 SW MID S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 1 NB Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. NB Rtl aprch AG 58. 1109. 581. 1136. 280611.4 0. 56 30. NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. NB Rt1 thru AG 984. 1160. 603. 1138. 0. 36 3 120 59 2.0 2806 102.2 1678 1.3 3 3 3 3 120 96 2.0 1012 102.2 1700 1.3 3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>													
SW MID S 692. 1235. 5.0 Site 1 Opt 1/2 2014 PM 27 1 0 NB Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. NB Rtl aprch AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. NB Rtl thru AG 984. 1160. 603. 1138. 0. 36 3 120 59 2.0 2806 102.2 1678 1 3 3 3 3 3 120 59 2.0 2806 102.2 1678 1 3 3 </td <td></td>													
1 Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. 1 Rtl thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. 2 Rtl thru AG 984. 1160. 603. 1138. 120 0. 36 3 120 59 2.0 2806 102.2 1678 1 3 0. 36 3 NB Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. NB Rtl left AG 983. 1190. 604. 1169. 102.2 1700 1 3 0. 24 2 100 96 2.0 1012 102.2 1700 1 3 0. 24 2 11 Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. 11 Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 11 Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 12 Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 13 Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 14 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 56 30. 15 Rtl th+rt AG													
NB Rtl aprch AG 58. 1109. 581. 1136. 382311.4 0. 56 30. NB Rtl thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. NB Rtl thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. NB Rtl thru AG 984. 1160. 603. 1138. 0. 36 3 120 59 2.0 2806 102.2 1678 1 0. 44 30. NB Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rt1 departAG <td></td> <td>Opt 1</td> <td>/2 2014</td> <td>PM</td> <td></td> <td></td> <td>27</td> <td>1 0</td> <td>)</td> <td></td> <td></td> <td></td> <td></td>		Opt 1	/2 2014	PM			27	1 0)				
1 Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. NB Rt1 thru AG 984. 1160. 603. 1138. 0. 36 3 1 Rt1 120 59 2.0 2806 102.2 1678 1 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG </td <td></td> <td>D L .</td> <td>1 on or a k</td> <td></td> <td>ГО</td> <td>1100</td> <td>F 0 1</td> <td>1120</td> <td>20221</td> <td>1 /</td> <td>0</td> <td>ГС</td> <td>2.0</td>		D L .	1 on or a k		ГО	1100	F 0 1	1120	20221	1 /	0	ГС	2.0
NB Rt1 thru AG 582. 1136. 1083. 1166. 280611.4 0. 56 30. NB Rt1 thru AG 984. 1160. 603. 1138. 0. 36 3 NB Rt1 thru AG 984. 1160. 603. 1138. 0. 36 3 NB Rt1 left AG 984. 1160. 603. 1138. 0. 36 3 NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 44 30. 1 NB Rt1 departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rt1 aprch AG 2069. 1311.		RU.	i aprei	I AG	58.	1109.	581.	1130.	38231	1.4	0.	20	30.
NB Rtl thru AG 984. 1160. 603. 1138. 2.0 2806 102.2 1678 1 3 0. 36 3 1 Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 Rtl left AG 983. 1190. 604. 1169. 120 96 0. 24 2 2 1 Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 80 2.0 2464 102.2 1659 1 3 0. 36 3 1 30 2.0 2464 102.2 1659 1 3 0. 36		Rt	1 thru	AG	582.	1136.	1083.	1166.	28061	1.4	0.	56	30.
120 59 2.0 2806 102.2 1678 1 NB Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 NB Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 102.2 1700 1 3 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rt1 departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 SB Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264.													
1 Rt1 left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. 2 Rt1 left AG 983. 1190. 604. 1169. 0. 24 2 120 96 2.0 1012 102.2 1700 13 1 NB Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rt1 departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rt1 departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 56 30. 2 <td>NB</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>36</td> <td>3</td> <td></td> <td></td>	NB									36	3		
NB Rtl left AG 572. 1167. 1065. 1195. 101211.4 0. 44 30. NB Rtl left AG 983. 1190. 604. 1169. 0. 24 2 NB Rtl left AG 983. 1190. 604. 1169. 0. 24 2 1 Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 2 SB Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30.	1	120	5	9	2.0	2806	102.2	1678 I	3				
2 NB Rtl left AG 983. 1190. 604. 1169. 102.2 1700 1 3 0. 24 2 1 120 96 2.0 1012 102.2 1700 1 3 0. 24 3 1 NB Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rtlth+rt AG 1144. 1236. 1388. 1248. 10. 36 3 1 1144. 1236. 1388. 1248. 10. 36 3		Rt	1 left	AG	572.	1167.	1065.	1195.	10121	1.4	0.	44	30.
120 96 2.0 1012 102.2 1700 1 3 1 Rt1 departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. 1 Rt1 departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rt1 departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rt1 aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rt1 aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rt1th+rt AG 1144. 1236. 1388. 1248. 10. 36 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 1 3 1 1 1 1 1 2 1 1 3 1 1<		110.	1010		0,21		2000.				•••		
1 Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. SB Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. SB Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rt1th+rt AG 1144. 1236. 1388. 1248. 0. 36 3 1 0 80 2.0 2464 102.2 1659 13 3 4 30.	NB	Rt.								24	2		
NB Rtl departAG 1085. 1167. 1470. 1188. 303511.4 0. 56 30. NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 2 SB Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 S0 2.0 2464 102.2 1659 1.3	_	120	ç	6	2.0	1012	102.2	1700 1	3				
1 Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3 1 10 80 2.0 24644 102.2 1659 13 1		D+	1 donar	+ 7 0	1095	1167	1/70	1100	20251	1 /	0	56	30
NB Rtl departAG 1470. 1188. 1784. 1227. 303511.4 0. 44 30. NB Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3 2 80 2.0 2464 102.2 1659 1.3 3 4 30. 1 0 80 2.0 2464 102.2 1659 1.3 3 4 30. 1 <td></td> <td>RU.</td> <td>i uepai</td> <td>LAG</td> <td>I005.</td> <td>1107.</td> <td>1470.</td> <td>1100.</td> <td>20221</td> <td>1.4</td> <td>0.</td> <td>50</td> <td>50.</td>		RU.	i uepai	LAG	I005.	1107.	1470.	1100.	20221	1.4	0.	50	50.
1 Rtl departAG 1784. 1227. 2072. 1272. 303511.4 0. 44 30. 1 Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3 1 10 80 2.0 2464 102.2 1659 1.3 3		Rt	1 depar	tAG	1470.	1188.	1784.	1227.	30351	1.4	0.	44	30.
1 SB Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 SB Rtl th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3 1 10 80 2.0 2464 102.2 1659 1 3	1		_										
SB Rtl aprch AG 2069. 1311. 1694. 1264. 246911.4 0. 44 30. SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 Image: Constraint of the state of		Rt.	1 depar	tAG	1784.	1227.	2072.	1272.	30351	1.4	0.	44	30.
1 1 SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1		D + 1	1		2000	1 2 1 1	1 C O 4	1004	04601	7 /	0		2.0
SB Rtl aprch AG 1694. 1264. 1395. 1248. 246911.4 0. 44 30. 1 1 1 1 1 1 2 2 2 30. 2 30. 2 30. 2 30. 2 30. 2 30.		Rt.	i aprci	1 AG	2069.	1311.	1694.	1264.	24691	1.4	0.	44	30.
1 SB Rt1 th+rt AG 1395. 1248. 1057. 1231. 246411.4 0. 56 30. 2 SB Rt1th+rt AG 1144. 1236. 1388. 1248. 0. 36 3 120 80 2.0 2464 102.2 1659 1 3 1		Rt.	1 aprch	n AG	1694.	1264.	1395.	1248.	24691	1.4	0.	44	30.
2 SB Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3 120 80 2.0 2464 102.2 1659 1 3 1													
SB Rtlth+rt AG 1144. 1236. 1388. 1248. 0. 36 3 120 80 2.0 2464 102.2 1659 1 3 1		Rt.	1 th+rt	AG	1395.	1248.	1057.	1231.	24641	1.4	0.	56	30.
120 80 2.0 2464 102.2 1659 1 3 1		_				1005	1000	10.40	2	2.5	-		
1	SB									36	3		
	1	TZO	č	.0	2.0	2404	T07.7	T COD T	J				
SB Rtl left AG 1378. 1236. 1241. 1217. 1011.4 0. 32 30.	SB	Rt	l left	AG	1378.	1236.	1241.	1217.	101	1.4	0.	32	30.

1							
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	1011.4	0.	32	30.
SB	Rt1 left AG 120 115	1147. 1212. 2.0 10		0. 12	1		
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	287811.4	0.	56	30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	287811.4	0.	56	30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	77211.4	0.	32	30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	77211.4	0.	56	30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	77211.4	0.	56	30.
EB	Rt28 aprchAG 120 96		1068. 1409. 102.2 1523 1 3	0. 36	3		
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	3011.4	0.	32	30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	16011.4	0.	44	30.
WB	Rt28 aprchAG 120 104			0. 24	2		
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	128111.4	0.	44	30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	128111.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	128111.4	0.	32	30.

RUN: Site 1 Opt 1/2 2014 PM

					1B1PM14.0UT		
CAL3QHC:	LI NE	SOURCE	DI SPERSI ON	MODEL	- VERSION 2	. 2,	JUNE 2000

RUN: Site 1 Opt 1/2 2014 PM

PAGE 1

SITE & METEOROLOGICAL VARIABLES

JOB: Site 1 Opt 1/2 2014 PM 1B1PM14.DAT DATE: 05/10/2009 TIME: 10:06:53.73

VS = .0 CM/S	VD = .0 CM/S	70 = 321. CM				
U = 1.0 M/S	CLAS = 4 (D)	ATIM = 60. MINUTES	MIXH =	1000. M	AMB =	.O PPM

LINK VARIABLES

1

1

LINK DESCRIPTION	* *)	L 1	INK COORDIN/ Y1	ATES (FT) X2		*	LENGTH (FT)	BRG TYP (DEG)	PE VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
	*					*							
1. NB Rt1 aprch	า *	58.0	1109.0	581.0	1136.0	*	524.	87. A0	3823	11.4	.0 56.0		
	*	582.0	1136.0	1083.0	1166.0		502.	87. A0			.0 56.0		
3. NB Rt1 thru	*	984.0	1160. 0	-834.0	1055.0	*	1821.	267. AC	i 404	100.0	.0 36.0 1	. 17	92.5
4. NB Rt1 left	*	572.0	1167.0	1065.0	1195.0		494.	87. A0			.0 44.0		
5. NB Rt1 left		983.0	1190. 0	-1619. 9	1045.8		2607.	267. A0			.0 24.0 1	. 79 1	32.4
NB Rt1 depar		085.0	1167.0	1470. 0	1188.0		386.	87. A0			.0 56.0		
7. NB Rt1 depar	rt* 1	470.0	1188.0	1784.0	1227.0		316.	83. A0			.0 44.0		
8. NB Rt1 depar	rt* 1	784.0	1227.0	2072.0	1272.0		291.	81. A0			.0 44.0		
9. SB Rt1 aprch	າ* 2	069.0	1311.0	1694.0	1264.0		378.	263. A0			.0 44.0		
10. SB Rt1 aprch		694.0	1264.0	1395.0	1248.0		299.	267. A0			.0 44.0		
11. SB Rt1 th+rt		395.0	1248.0	1057.0	1231.0		338.	267. AC			.0 56.0		
12. SB Rt1th+rt		144.0	1236.0	4866.6	1419.1		3727.	87. AC			.0 36.0 1	. 65 1	89.3
13. SB Rt1 left		378.0	1236.0	1241.0	1217.0		138.	262. AC			.0 32.0		
14. SB Rt1 left		240.0	1217.0	1058.0	1208.0		182.	267. AC			.0 32.0		_
15. SB Rt1 left		147.0	1212.0	1157.4	1212.5	*	10.	87. A0				. 71	. 5
16. SB Rt1 depar		056.0	1231.0	921.0	1221.0		135.	266. AC			.0 56.0		
17. SB Rt1 depar		921.0	1221.0	58.0	1172.0		864.	267. AC			.0 56.0		
18. EB Rt28 apro		226.0	2185.0	1087.0	1547.0		653.	192. AC			.0 32.0		
19. EB Rt28 apro		088.0	1547.0	1072.0	1425.0		123.	187. AC			.0 56.0		
20. EB Rt28 apro		072.0	1425.0	1025.0	1202.0		228.	192. AC			.0 56.0		
21. EB Rt28 apro		043.0	1287.0	1093.8	1534.8		253.	12. AC			.0 36.0 1	. 02	12.8
22. EB Rt28 depa		039.0	1194.0	1043.0	1015.0		179.	179. AC			.0 32.0		
23. WB Rt28 apro		052.0	1015.0	1049.0	1190.0		175.	359. AO			.0 44.0		
24. WB Rt28 apro		050.0	1141.0	1050.4	1095.5		45.	180. A				. 47	2.3
25. WB Rt28 depa		069.0	1197.0	1121.0	1424.0		233.	13. AC			.0 44.0		
26. WB Rt28 depa 27. WB Rt28 depa		121.0	1424.0	1126.0	1570.0		146.	2. A0			.0 32.0		
27. WB Rt28 depa	II	126.0	1570. 0	1257.0	2180.0		624.	12. AC	1281	11.4	.0 32.0		

JOB: Site 1 Opt 1/2 2014 PM 1B1PM14.DAT DATE: 05/10/2009 TIME: 10:06:53.73

ADDITIONAL QUEUE LINK PARAMETERS

	LINK	DESCRI PTI ON	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3.	NB	Rt1 thru	*	120	59	2.0	2806	1678	102.20	1	3
5.	NB	Rt1 left	*	120	96	2.0	1012	1700	102.20	1	3
12.	SB	Rt1th+rt	*	120	80	2.0	2464	1659	102.20	1	3
15.	SB	Rt1 left	*	120	115	2.0	10	1752	102.20	1	3
21.	EB	Rt28 aprcl	h*	120	96	2.0	772	1523	102.20	1	3
24.	WB	Rt28 aprol	h*	120	104	2.0	160	1706	102.20	1	3

RECEPTOR LOCATIONS

RECEPTOR	* * *	COOR X	DINATES (FT) Y	Z	*
	*	743.0	1116.0	5.0	*
2. SE 164 S	*	857.0	1123.0	5.0	*
J. JE UZ J	*	939.0	1128.0	5.0	*
SE CNR	*	1020. 0	1134.0	5.0	*
5. SE 82 E	*	1022.0	1053.0	5.0	*
6. NE 82 E	*	1075.0	1056.0	5.0	*
NE CNR	*	1076.0	1137.0	5.0	*
8. NE 82 N	*	1156.0		5.0	*
9. NE 164 N	*	1238.0		5.0	*
10. NE MID N	*	1341.0		5.0	*
11. NW MID N	*	1453.0		5.0	*
12. NW 164 N	*	1316.0	1272.0	5.0	*
13. NW 82 N	*	1234.0		5.0	*
14. NW CNR	*	1138.0		5.0	*
15. NW 82 W	*	1137.0		5.0	*
16. NW 164 W	*	1145.0		5.0	*
17. NW MID W	*	1156.0		5.0	*
18. SW MID W	*	1072.0		5.0	*
19. SW 164 W	*	1043.0	1434.0	5.0	*
20. SW 82 W	*	1026.0		5.0	*
21. SW CNR	*	995.0		5.0	*
22. SW 82 S	*	900.0		5.0	*
23. SW 164 S	*	819.0		5.0	*
24. SW MID S	*	692.0	1235.0	5.0	*

JOB: Site 1 Opt 1/2 2014 PM 1B1PM14.DAT

MODEL RESULTS

1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM)

Page 1

RUN: Site 1 Opt 1/2 2014 PM

PAGE 3

15 3.5 3.5 3.7 2.8 1.7 1.8 2.4 2.	15 3.5 3.5 3.7 2.8 1.7 1.8 2.9 2.5 2.3 2.3 0.0 0 1.0 6.6 7.0<	(DEGR) *	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9		M14.00 REC11		REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	180. * 0 0 0 0 3.0 3.1 3.0 1.4 1.0 9 1.2 2.5 3.0 2.4 2.7 2 2.5 3.0 2.9 1.4 1.0 1.9 1.2 1.5 1.2 1.4 1.2 1.5 1.9 1.4 1.2 1.5 1.9 1.4 1.2 1.5 1.7 1 1.2 1.5 1.4 1.2 1.5 1.7 1.7 1.7 1.0 0.0 0.0 0.0 0.0 0.0 1.7 1.1 1.1 2.9 3.1 2.9 1.4 1.7 1.2 2.6 1.3 1.4 1 1.7 1.2 2.0 2.1 2.6 1.3 1.4 1 1.2 1.3 1.4 1.7 1.2 2.0 2.1 2.6 1.3 1.4 1.7 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.3 3.3 2.3 1.1 1.6 2.7 2	0. * 5. * 10. * 15. * 20. * 20. * 20. * 30. * 30. * 30. * 30. * 30. * 50. * 60. * 70. * 80. * 80. * 90. * 90. * 90. * 90. * 90. * 100. * 100. * 120. * 120. * 120. * 120. * 120. * 120. * 155. * 150. * 150. * 160. * 160. <td>3.55 3.53.53.53.53.53.73.55 3.5</td> <td>$\begin{array}{c} 3.56\\ 3.67\\ 8.11\\ 4.4\\ 4.76\\ 6.4\\ 4.4\\ 4.4\\ 3.66\\ 7.5\\ 1.17\\ 3.22\\ 1.11\\ 1.11\\ 1.1\\ 00\\ 0\\ 0\end{array}$</td> <td>3.700222210875447641451775322111111000 </td> <td>2.3099662346923709634075432210975431 </td> <td>$\begin{array}{c} 1,9\\ 2,14\\ 2,28\\ 1,89\\ 1,76\\ 6,67\\ 1,87\\ 1,75\\ 3,9\\ 6,32\\ 1,1\\ 0,00\\ 0,$</td> <td>$\begin{array}{c} 1.86\\ 1.4\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.33\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.5\\ 2.1\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$</td> <td>$\begin{array}{c} 2,962\\ 2,200\\ 2,22\\ 2,20\\ 2,22\\ 2,2$</td> <td>2 2 2 1 2 2 3 4 5 6 8 8 0 3 3 4 2 7 2 4 9 5 3 2 2 1 1 1 1 1 1 1 0 0 0 0</td> <td>2 3 1 1 2 2 3 2 2 4 5 6 8 8 9 3 3 3 2 0 6 1 4 8 6 3 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0</td> <td>$\begin{array}{c} 2,3\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\$</td> <td>$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td> <td>$\begin{smallmatrix} & 0 \\ & 1 \\ &$</td> <td>100011111113595319365219754110991 1233444533333332223</td> <td>$\begin{array}{c} . \ 6 \ 5 \ 3 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$</td> <td>98533 31000000 0000 12591 11354334 1.2211 1.354334 1.2211 1.21</td> <td>. 6 5.4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>$\begin{array}{c} 1. \ 0 \\ . \ 9 \\ . \ 7 \\ . \ 6 \\ . \ 4 \\ . \ 2 \\ . \ 2 \\ . \ 1 \\ . \ 1 \\ . \ 1 \\ . \ 0 \\ 0 \\ . \ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$</td> <td>335777777766666667777802334 </td> <td>806022566766665445683465355345564243</td> <td>$\begin{smallmatrix}&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&$</td>	3.55 3.53.53.53.53.53.73.55 3.5	$\begin{array}{c} 3.56\\ 3.67\\ 8.11\\ 4.4\\ 4.76\\ 6.4\\ 4.4\\ 4.4\\ 3.66\\ 7.5\\ 1.17\\ 3.22\\ 1.11\\ 1.11\\ 1.1\\ 00\\ 0\\ 0\end{array}$	3.700222210875447641451775322111111000 	2.3099662346923709634075432210975431 	$\begin{array}{c} 1,9\\ 2,14\\ 2,28\\ 1,89\\ 1,76\\ 6,67\\ 1,87\\ 1,75\\ 3,9\\ 6,32\\ 1,1\\ 0,00\\ 0,$	$\begin{array}{c} 1.86\\ 1.4\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.33\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.4\\ 1.5\\ 2.1\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 2,962\\ 2,200\\ 2,22\\ 2,20\\ 2,22\\ 2,2$	2 2 2 1 2 2 3 4 5 6 8 8 0 3 3 4 2 7 2 4 9 5 3 2 2 1 1 1 1 1 1 1 0 0 0 0	2 3 1 1 2 2 3 2 2 4 5 6 8 8 9 3 3 3 2 0 6 1 4 8 6 3 2 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0	$\begin{array}{c} 2,3\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\$	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{smallmatrix} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 1 \\ & $	100011111113595319365219754110991 1233444533333332223	$\begin{array}{c} . \ 6 \ 5 \ 3 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$	98533 31000000 0000 12591 11354334 1.2211 1.354334 1.2211 1.21	. 6 5.4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1. \ 0 \\ . \ 9 \\ . \ 7 \\ . \ 6 \\ . \ 4 \\ . \ 2 \\ . \ 2 \\ . \ 1 \\ . \ 1 \\ . \ 1 \\ . \ 0 \\ 0 \\ . \ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	335777777766666667777802334 	806022566766665445683465355345564243	$\begin{smallmatrix}&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&&&\\&&$
PAGE 4 JOB: Site 1 Opt 1/2 2014 PM 1B1PM14.DAT RUN: Site 1 Opt 1/2 2014 PM CONCENTRATION ANCLE CONCENTRATION (PPM) CONCENTRATION (DEGR) REC1 REC1 REC1 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC22 CONCENTRATION (DEGR) CONCENTRATION (1 1 1 1 1 1 0 1 1 1 3 1 1 1 1 3 3 3 3 3	JOB: Site 1 Opt 1/2 2014 PM IBIPMIA.DAT RUN: Site 1 Opt 1/2 2014 PM PAGE 4 WIND ANCLE * * CONCENTRATION (PEMP) * CONCENTRATION (PEMP) REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 REC11 REC14 REC15 REC17 REC18 REC19 REC10 REC11 REC13 REC14 REC15 REC17 REC19 REC10 RL 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1.6 2.0 2.7 2.6 1.1 1 1.5 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1.6 2.1 2.9 2.7 1.0 1.4 1 1 1 1.1 1.1 1.1 1.1 1.1 1.3 3 3 3 1.1 1.6 2.2 2.2 2.4	180. * 185. * 190. * 195. * 200. * 205. *	· . 0 · . 0 · . 0 · . 0 · . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 1	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 1 . 3 . 4 . 5 . 6	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 1	3.0 3.1 3.0 2.9 2.9	3. 1 3. 1 3. 1 3. 1 3. 1 3. 1	3.0 3.0 2.9 2.9 2.9	1.4 1.3 1.4 1.3 1.3	1.0 1.1 1.2 1.3 1.7	.9 1.2 1.5 1.6 2.0	1.2 1.3 1.9 2.4 2.4	2.5 2.4 1.9 1.7 1.5	3.0 2.7 2.0 1.7 1.7	2.4 2.3 2.0 1.7 1.6 1.5 1.7
CDEGN* REC1 REC2 REC3 REC4 REC5 REC6 REC10 REC11 REC12 REC14 REC15 REC16 REC17 REC17 REC18 REC19 REC10 REC11 REC12 REC14 REC15 REC16 REC17 REC18 REC19 REC11 REC12 REC14 REC12 REC14 REC12 REC14 REC17 REC18 REC19 REC14 REC17 REC18 REC19 REC14 REC12 REC14 REC12 REC14 REC17 REC18 REC19 REC14 REC17 REC18 REC14 REC17 REC18 REC14 REC13 REC1	CDEGR* REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC3 REC1 REC14 REC13 REC14 REC15 REC16 REC16 REC19 REC1 210.* 1 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	WIND *	CONCEN	ITRATI C		014 PN	1B1PN	/14. DA	Г			RUN:	Site 1	Opt ´	1/2 201	4 PM				PAGE	<u> </u>	
MAX * 5.2 5.2 5.3 5.1 2.4 2.4 5.2 4.1 3.6 3.5 4.8 4.9 4.7 3.6 3.4 3.4 2.7 2.5 3.6 3.9	DEGR. * 285 280 280 280 15 285 275 275 275 275 250 250 255 255 235 235 215 175 105 10 1	WIND * ANGLE *		ITRATI C (PPM)	N		REC5			REC8	REC9						REC15	REC16	REC17			

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

 WI ND
 * CONCENTRATI ON ANGLE *
 (PPM)

 (DEGR)*
 REC21
 REC22
 REC23
 REC24

 0.
 *
 .2
 .0
 .0
 .0

Page 2

	* * * * 2222 2222 332222 2222 332222 332222 2221 11111111	.98.66.55 5.8.3.70 1.8.8.62 1.009.8.78.799.78.80 8.001.23 ite 1		. 0 . 1 . 3 . 4 . 5 . 5 . 5 . 9 1.0 . 1.7 . 3 . 3 . 6 . 9 . 9 . 9 . 9 . 1.3 . 1.7 . 3 . 3 . 6 . 3 . 4 . 3 . 4 . 5 . 5 . 5 . 5 . 6 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9		1B1PM14.OUT 1B1PM14.DAT RUN: Site 1 Opt 1/2 2014 PM
WIND	ANGLE	CENTR)360 ∖		
	:)* REC		C22 F			
210. 215. 220. 230. 235. 240. 245. 250. 255. 260. 265. 270. 275. 280. 285. 290. 295.	* * 2 2 2 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3	. 7 . 8 . 8 . 1 . 2 . 2 . 3 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	$\begin{array}{c} 3. \ 1 \\ 3. \ 2 \\ 3. \ 3 \\ 3. \ 3 \\ 3. \ 3 \\ 3. \ 3 \\ 3. \ 4 \\ 4 \\ 4 \\ 3 \\ 3 \\ 4 \\ 4 \\ 3 \\ 2 \\ 1 \\ 1 \\ 6 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 6 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 6 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 6 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 6 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 3. \ 1 \\ 3. \ 1 \\ 3. \ 5 \\ 3. \ 5 \\ 3. \ 5 \\ 3. \ 5 \\ 3. \ 5 \\ 4. \ 1 \\ 3. \ 4 \\ 4. \ 1 \\ 3. \ 4 \\ 2. \ 4 \\ 1. \ 7 \\ 1. \ 1 \\ 6 \\ 3 \\ 2 \\ 2 \\ 1 \end{array}$	$\begin{array}{c} 3.2\\ 3.2\\ 3.5\\ 3.8\\ 3.8\\ 4.0\\ 4.3\\ 4.1\\ 3.7\\ 3.3\\ 2.4\\ 1.7\\ 1.1\\ .6\\ 3\\ 2\\ .2\\ 2\end{array}$	
300. 305. 310. 320. 325. 330. 335. 340. 345. 350. 355. 360.	* * * * * * * * * * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0	
300. 305. 310. 315. 320. 325. 330. 345. 350. 355. 360. MAX DEGR.	* * * * * * * * * * * * * * * * * *	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .2 .3 .5 .2	. 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0	.30 PPM AT 280 DEGREES FROM REC3 .

Site 1 Opt 1 1	/2 2030	PM	1B1PM30	.DAT	60.	0321.0.0	000.000	240.	30480	000	1
SE MID S			743.		16.	5.0					
SE 164 S SE 82 S			857. 939.		_23. _28.	5.0 5.0					
SE CNR			1020.		34.	5.0					
SE 82 E			1022.)53.	5.0					
NE 82 E NE CNR			1075.)56.	5.0 5.0					
NE 82 N			1076. 1156.		.37. .42.	5.0					
NE 164 N			1238.		46.	5.0					
NE MID N			1341.		53.	5.0					
NW MID N			1453.		280.	5.0					
NW 164 N NW 82 N			1316. 1234.		272. 269.	5.0 5.0					
NW CNR			1138.		288.	5.0					
NW 82 W			1137.		385.	5.0					
NW 164 W			1145.		166.	5.0					
NW MID W			1156.		526.	5.0					
SW MID W SW 164 W			1072. 1043.		597. 124	5.0 5.0					
SW 104 W SW 82 W			1043.		134. 354.	5.0					
SW CNR			995.		273.	5.0					
SW 82 S			900.		248.	5.0					
SW 164 S			819.		243.	5.0					
SW MID S	12 2020		692.		235.	5.0					
Site 1 Opt 1 1	/2 2030	РМ			27	1 0					
	1 aprch	AG	58.	1109.	581.	1136.	1805	9.2	0.	56	30.
1											
NB Rt 2	1 thru	AG	582.	1136.	1083.	1166.	1305	9.2	0.	56	30.
	1 thru	AG	984.	1160.	603.	1138.	0.	36	3		
113		3		1305		1132 1 3			-		
1											
	1 left	AG	572.	1167.	1065.	1195.	15	9.2	0.	44	30.
2 NB Rt	1 left	AG	983.	1190	604	1169.	0.	24	2		
		8	2.0					21	. 2		
1		-		-							
	1 depar	tAG	1085.	1167.	1470.	1188.	1505	9.2	0.	56	30.
1 ND D+	1 donom	+ 7 0	1 4 7 0	1100	1701	1007	1 5 0 5	0 0	0	44	20
NB Rt 1	і цераі	LAG	1470.	1188.	1784.	1227.	1505	9.2	0.	44	30.
	1 depar	tAG	1784.	1227.	2072.	1272.	1505	9.2	0.	44	30.
1											
	1 aprch	AG	2069.	1311.	1694.	1264.	1005	9.2	0.	44	30.
1 SB Rt	1 aprch	лс	1694.	1264.	1395.	1248.	1005	a 2	0.	44	30.
1	i apicii	AG	1071.	1201.	1373.	1240.	1000	.2	0.	тт	50.
	1 th+rt	AG	1395.	1248.	1057.	1231.	1420	9.2	0.	56	30.
2											
	lth+rt		1144.	1236.	1388.			36	3		
113 1	5	0	∠.0	1420	04.1	1179 1 3)				
	1 left	AG	1378.	1236.	1241.	1217.	65	9.2	0.	32	30.

1						
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	65 9.2	0. 3	32 30.
SB	Rt1 left AG 113 105	1147. 1212. 2.0 65		0. 12	1	
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	1320 9.2	0. 5	56 30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	1320 9.2	0. 5	30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	25 9.2	0. 3	32 30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	25 9.2	0. 5	30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	25 9.2	0.5	30.
EB	Rt28 aprchAG 113 106	1043. 1287. 2.0 25	1068. 1409. 84.1 575 1 3	0. 36	3	
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	555 9.2	0. 3	32 30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	565 9.2	0. 4	30.
WB	Rt28 aprchAG 113 92	1050. 1141. 2.0 565		0. 24	2	
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	20 9.2	0. 4	14 30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	20 9.2	0. 3	32 30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	20 9.2	0. 3	32 30.

RUN: Site 1 Opt 1/2 2030 PM

JOB: Site 1 Opt 1/2 2030 PM 1B1PM30.DAT DATE: 05/10/2009 TIME: 17:17:57.60

1

1

SITE & METEOROLOGICAL VARIABLES

.0 CM/S 1.0 M/S	.0 CM/S 4 (D)	ZO = 321. CM ATIM = 60. MINUTES	MIXH =	1000. M	AMB =	.0 PPM

1B1PM30. OUT CAL30HC: LINE SOURCE DISPERSION MODEL - VERSION 2.2, JUNE 2000

LINK VARIABLES

LINK	,	* * X1	LI NK COORDI Y1	X2	Y2 *	(FT)	I BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. NB 2. NB	Rt1 aprch Rt1 thru	* 58.		581.0 1083.0	1136.0 * 1166.0 *	524.	87. AG 87. AG	1805. 1305.	9.2 9.2	.0 56.0 .0 56.0		
2. NB 3. NB		* 984.		856.9	1152.7 *		267. AG	317.			. 78	6.5
4. NB		* 572.		1065.0	1195.0 *		87. AG	15.	9.2	.0 44.0	. 70	0.0
5. NB	Rt1 left			965.9	1189.1 *		267. AG	431.		.0 24.0 1	. 00	. 9
6. NB	Rt1 depart	* 1085.		1470.0	1188.0 *		87. AG	1505.	9.2	.0 56.0		
7. NB	Rt1 depart			1784.0	1227.0 *		83. AG	1505.	9.2	.0 44.0		
8. NB	Rt1 depart	* 1784.		2072.0	1272.0 *		81. AG	1505.	9.2	.0 44.0		
9. SB	Rt1 aprch	* 2069.		1694.0	1264.0 *		263. AG	1005.	9.2	.0 44.0		
10. SB	Rt1 aprch			1395.0	1248.0 *		267. AG	1005.	9.2	.0 44.0		
11. SB	Rt1 th+rt			1057.0	1231.0 *		267. AG	1420.	9.2	.0 56.0		
12. SB	Rt1th+rt			1273.2	1242.4 *		87. AG	299.			. 77	6.6
13. SB 14. SB	Rt1 left			1241.0	1217.0 *		262. AG	65.	9.2 9.2	.0 32.0		
14. SB 15. SB	Rt1 left Rt1 left			1058. 0 1254. 1	1208.0 * 1216.8 *		267. AG 87. AG	65. 210.		.0 32.0 .0 12.0 1	05	E 4
16. SB	Rt1 depart			921.0	1221.0 *		266. AG	1320.	9.2	.0 56.0	. 05	5.4
17. SB	Rt1 depart			58.0	1172.0 *		267. AG	1320.	9.2	.0 56.0		
18. EB	Rt28 aprch			1087.0	1547.0 *		192. AG	25.	9.2	.0 32.0		
19. EB	Rt28 aprch			1072.0	1425.0 *		187. AG	25.	9.2	.0 56.0		
20. EB	Rt28 aprch			1025.0	1202.0 *		192. AG	25.	9.2	.0 56.0		
21. EB	Rt28 aprch			1044.1	1292.6 *		12. AG	635.	100.0		. 53	. 3
22. EB	Rt28 depar			1043.0	1015.0 *		179. AG	555.	9.2	.0 32.0		
23. WB	Rt28 aprch			1049.0	1190.0 *	175.	359. AG	565.	9.2	.0 44.0		
24. WB	Rt28 aprch		0 1141.0	1055.0	527.2 *		180. AG	367.	100.0	.0 24.0 1	. 16	31.2
25. WB	Rt28 depart	* 1069.		1121.0	1424.0 *		13. AG	20.	9.2	.0 44.0		
26. WB	Rt28 depar	* 1121.		1126.0	1570.0 *		2. AG	20.	9.2	.0 32.0		
27. WB	Rt28 depar	* 1126.	0 1570.0	1257.0	2180.0 *	624.	12. AG	20.	9.2	.0 32.0		

JOB: Site 1 Opt 1/2 2030 PM 1B1PM30.DAT DATE: 05/10/2009 TIME: 17:17:57.60

RUN: Site 1 Opt 1/2 2030 PM

PAGE 2

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTI	ON * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
5. NB Rt1 12. SB Rt1 15. SB Rt1 21. EB Rt2	thru * left * th+rt * left * 8 aprch* 8 aprch*	113 113 113 113 113 113 113	53 108 50 105 106 92	2. 0 2. 0 2. 0 2. 0 2. 0 2. 0	1305 15 1420 65 25 565	1132 885 1179 1770 575 1620	84. 10 84. 10 84. 10 84. 10 84. 10 84. 10	1 1 1 1	3 3 3 3 3 3

RECEPTOR LOCATIONS

	*	COOR	DINATES (FT)		*
RECEPTOR	* *	х	Y	Z	*
1. SE MID S	*	743.0	1116.0	5.0	*
2. SE 164 S	*	857.0	1123.0	5.0	*
3. SE 82 S	*	939.0	1128.0	5.0	*
SE CNR	*	1020.0	1134.0	5.0	*
5. SE 82 E	*	1022.0	1053.0	5.0	*
6. NE 82 E	*	1075.0	1056.0	5.0	*
NE CNR	*	1076.0	1137.0	5.0	*
8. NE 82 N	*	1156.0	1142.0	5.0	*
9. NE 164 N	*	1238.0	1146.0	5.0	*
10. NE MID N	*	1341.0	1153.0	5.0	*
11. NW MID N	*	1453.0	1280.0	5.0	*
12. NW 164 N	*	1316.0	1272.0	5.0	*
13. NW 82 N	*	1234.0	1269.0	5.0	*
14. NW CNR	*	1138.0	1288.0	5.0	*
15. NW 82 W	*	1137.0	1385.0	5.0	*
16. NW 164 W	*	1145.0	1466.0	5.0	*
17. NW MID W	*	1156.0	1626.0	5.0	*
18. SW MID W	*	1072.0	1597.0	5.0	*
19. SW 164 W	*	1043.0	1434.0	5.0	*
20. SW 82 W	*	1026.0	1354.0	5.0	*
21. SW CNR	*	995.0	1273.0	5.0	*
22. SW 82 S	*	900.0	1248.0	5.0	*
23. SW 164 S	*	819.0	1243.0	5.0	*
24. SW MID S	*	692.0	1235.0	5.0	*

JOB: Site 1 Opt 1/2 2030 PM 1B1PM30.DAT

MODEL RESULTS

1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM)

RUN: Site 1 Opt 1/2 2030 PM

DEGR) *	REC1	REC2						REC8					NLC13	REC14		RECTO	REC17	REC18	RECI9	
0.5 1	$\begin{array}{c} . & 6 \\ . & 6 \\ . & 6 \\ . & 6 \\ . & 6 \\ . & 6 \\ . & 6 \\ . & 6 \\ . & 6 \\ . & 8 \\ . & 8 \\ . & 9 \\ 9 \\ 1 \\ . & 1 \\ 2 \\ 1 \\ . & 2 \\ 1 \\ . & 2 \\ 1 \\ . & 3 \\ . & 3 \\ . & 2 \\ 2 \\ . & 2 \\ . & 2 \\ . & 1 \\ . & 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1.123345 5.5667890995397654433333333221110000 1.1.1.1.1.1.2.1.9709953976544333333333221110000	1.66667777755676575521877776664445554443221100 	7888999901356677698644444333445556665430852	803246799998875544333222233344344443196422	766555666665543222000000000000000000000000000000000	$\begin{array}{c} .77\\ .66\\ .67\\ .77\\ .79\\ .99\\ .99\\ .99\\ .99\\ .99\\ .11\\ .11\\ .1$	$\begin{array}{c} 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 1 \\ 1 \\ 2 \\ 2$	1.3 1.1 1.09997888998765421 1.1 1.0000000000000000000000000000000	.76666677776677789996443111111100000000000000000000000000000	000000000000000000000000000000000000000	0000000001111123476787789766666666666667789	00000000001111246701133234445555677890911 	00000000000001357990133333322210101010900	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	
90. * 95. * 00. * 05. *	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0	. 1 . 0	. 1 . 1	1.5 1.6	1.6	. 5	. 3	. 1	. 6	. 9	2.1	1.0	. 6	. 4	. 0	. 2	. 3	
90. * 95. * 00. * 05. * JOE	.0 .0 .0 B: Site	.0 .0 e 1 Opt	.0 .0	. 0	. 1	1.6	1.6	. 5					/2 203		. 0	. 4	. 0	. 2 PAGE		
90. * 95. * 00. * 05. * JOE I ND * NGLE * DEGR) *	.0 .0 .0 B: Site CONCEI REC1	.0 .0 € 1 Opt NTRATIC (PPM) REC2	.0 .0 1/2 2 N REC3	.0 030 PM REC4	.1 1B1PM REC5	1.6 130. DAT REC6	1.6	REC8	. 3 REC9	RUN: S	Site 1 REC11	Opt 1 REC12	/2 203 REC13	0 PM REC14	REC15	REC16	REC17	PAGE REC18	4 REC19	
90. * 95. * 00. * 05. * JOE	.0 .0 .0 B: Site CONCEI	.0 .0 ≘10pt NTRATIC (PPM)	.0 .0 :1/2 2	.0 030 PM	.1	1.6 130. dat	1.6		. 3	RUN: S	Site 1	Opt 1	/2 203	O PM				PAGE	4	
90. * * JOE * * * JOE * * * * * JOE * * * * * * * * * * * * * * * * * * *	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 1/2 2 N REC3 0 0 0 0 0 0 0 0 0 0 0 0 0	.0 030 PM REC4 .0 .0 .0 .11 .12 .3 .0 .0 .11 .12 .3 .3 .9 1.12 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	. 1 1B1PM REC5 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	1.6 130.DAT REC6 1.5 1.5 1.5 1.5 1.5 1.4 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.6 1.6 1.6 1.7 1.8 1.8 1.9 2.00 2.01 1.9 1.7 1.5 1.4 1.8 1.8 1.8 1.8 1.8 1.9 2.00 2.1 1.5 1.4 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	1.6 REC7 	REC8 5 5 5 5 7 7 8 1 2 1 3 1 1 3 1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	. 3 REC9 . 3 . 3 . 3 . 3 . 4 . 4 . 4 . 5 . 8 1.0 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	RUN: 5 REC10 I 22 .22 .23 .33 .33 .33 .33 .44 .66 .79 1.22 1.12 1.21 1.12 1.21 1.12 1.21 1.12 1.21 .37 .37 .37 .33 .33 .33 .33 .33	Si te 1 REC11 	Opt 1 REC12 	/2 203 REC13 2.1 2.2 2.1 2.2 2.1 2.2 2.1 1.9 1.9 1.9 1.9 1.9 1.5 1.3 .7 .42 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	0 PM REC14 	REC15 . 4 . 3 . 4 . 4 . 3 . 2 . 1 . 0 . 00 . 00	REC16 	REC17 - 21 - 21 - 11 - 11 - 11 - 11 - 11 - 11	PAGE REC18 22 22 22 21 12 2 2 2 2 2 2 2 2 2	4 REC19 	REC2

the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

10. 15. 20. 25. 30. 35. 40. 55. 60. 65. 80. 85. 95. 105. 110. 135. 130. 135. 140. 145. 155. 140. 155. 160. 155. 140. 155. 160. 155. 1	* * * * * * * * * * * * * * * * * * * *	$\begin{array}{c} . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . $	$\begin{array}{c} . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . \\ . $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} . \\ 0 \\ . \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1B1PM3O. OUT
1	JOB	: Site	1 Opt	1/2 20	030 PM	1B1PM30.DAT RUN: Site 1 Opt 1/2 2030 PM
	ANG	LE RANG	GE: (0360.		
WIND	- * (CONCEN	TRATI O	N		
ANGLE	₹ ?)* 	(I REC21 I	PPM) REC22	REC23	REC24	
ANGLE (DEGF 210. 215.	= * ?) * * - *	(I REC21 I . 9 . 9	PPM) REC22 . 8 . 7	REC23 . 6 . 6	. 6 . 7	
ANGLE (DEGF 210. 215. 220. 225.	<pre> * * * * * * * * * * * * * * * * * * *</pre>	(REC21 . 9 . 9 . 9	PPM) REC22 	REC23 . 6 . 6 . 6 . 7	. 6 . 7 . 6 . 7	
ANGLE (DEGF 210. 215. 220. 225. 230.	2) * * * * *	(I REC21 I . 9 . 9 . 9 . 9 . 9 . 9 . 8	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 7	REC23 I . 6 . 6 . 6 . 7 . 7 . 7	. 6 . 7 . 6 . 7 . 8	
ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240.	<pre> * * * * * * * * * * * * * * * * * * *</pre>	(I REC21 I . 9 . 9 . 9 . 9 . 8 . 8 . 8 . 7	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 7 . 9	REC23 I . 6 . 6 . 6 . 7 . 7 . 8 . 9	. 6 . 7 . 6 . 7 . 8 . 8 . 8	
ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240. 245. 250.	* * -* -* * * * * * * *	(I REC21 I .9 .9 .9 .9 .8 .8 .8 .7 .9 .9 .8	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 9 . 9 . 8	REC23 . 6 . 6 . 7 . 7 . 8 . 9 . 8 . 9	. 6 . 7 . 6 . 7 . 8 . 8 . 9 . 8 . 9 . 8	
ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240. 245. 250. 255. 260.	* * - * * * * * * * * * * * * * * * *	(I REC21 I . 9 . 9 . 9 . 8 . 8 . 7 . 9 . 6 . 6 . 6	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 9 . 9 . 8 . 8 . 8	REC23 I . 6 . 6 . 7 . 7 . 8 . 9 . 8 . 9 . 9 . 7	.6 .7 .67 .88 .98 .98 .98 .88	
ANGLE (DEGR 215. 220. 225. 230. 235. 240. 245. 255. 255. 260. 265.	* * * * * * * * * * * * * * * * * * *	(REC21 9 9 9 9 8 8 8 8 7 9 6 6 6 6 4	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 9 . 9 . 8 . 8 . 8 . 8 . 7	REC23 I . 6 . 6 . 7 . 7 . 8 . 9 . 8 . 9 . 8 . 9 . 9 . 7 . 7	.6 .7 .67 .88 .98 .89 .89 .89 .89 .80 .80 .80 .80 .80 .80 .80 .80 .80 .80	
ANGLE (DEGF 210. 215. 220. 235. 240. 235. 240. 255. 260. 255. 260. 255. 260. 275.	* * - * - * * * * * * * * * * * * * * *	(I REC21 I .9 .9 .9 .9 .8 .8 .7 .9 .6 .6 .6 .6 .6 .4 .3 .1	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 9 . 8 . 8 . 8 . 8 . 8 . 8 . 7 . 6 . 4	REC23 F . 6 . 6 . 7 . 7 . 8 . 9 . 8 . 9 . 9 . 7 . 7 . 7 . 6 . 4	. 6 . 7 . 6 . 7 . 8 . 9 . 6 . 7 . 8 . 9 7 . 6 . 7 . 7 . 7 . 6 . 7 . 7 . 7 . 6 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	
ANGLE (DEGF 210. 215. 220. 225. 230. 245. 240. 245. 255. 260. 255. 260. 255. 260. 270. 275. 280. 275. 280. 285.	* * * * * * * * * * * * * * * *	(I REC21 I .9 .9 .9 .9 .8 .8 .8 .7 .9 .6 .6 .6 .6 .6 .6 .4 .3 .1 .1 .0	2PM) REC22 I . 8 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 7 . 6 . 4 . 4 . 3 . 2	REC23 F . 6 . 6 . 6 . 7 . 7 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 7 . 6 . 4 . 3 . 2	. 6 . 7 . 8 . 8 . 9 . 8 . 7 . 6 . 7 . 7 . 8 . 8 . 9 . 7 . 6 . 7 . 8 . 8 . 9 7 . 6 . 7 . 8 . 8 . 9 7 . 6 7 . 8 . 8 . 9 7 8 9 6 7 8 9 	
ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240. 245. 255. 260. 255. 260. 270. 275. 285. 285. 285. 285. 295.	<pre></pre>	(I REC21 I .9 .9 .9 .8 .8 .7 .9 .6 .6 .6 .6 .6 .6 .4 .3 .1 .1	PPM) REC22 	REC23 I . 6 . 6 . 7 . 7 . 7 . 8 . 9 . 9 . 8 . 9 . 9 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	. 6 . 7 . 8 . 8 . 9 . 8 . 8 . 9 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8	
ANGLE (DEGF 210. 210. 220. 220. 235. 240. 245. 250. 245. 260. 245. 260. 245. 260. 275. 280. 275. 280. 275. 280. 290. 295. 300.	**************************************	([REC21 	PPM) REC22 . 8 . 7 . 7 . 7 . 7 . 7 . 9 . 9 . 9 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8 . 8	REC23 . 6 . 6 . 6 . 7 . 7 . 7 . 7 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 7 . 7 . 6 . 4 . 4 . 3 . 2 . 1 . 1	. 6 . 7 . 8 . 9 . 4 . 7 . 6 . 7 . 10 . 7 . 8 . 9 . 8 . 9 . 8 . 9 . 8 . 9 . 10 . 10 . 10 . 10 . 10 . 10 . 10 . 10	
ANGLE (DEGF 210. 210. 225. 230. 235. 245. 250. 255. 260. 245. 250. 255. 260. 265. 277. 285. 290. 285. 290. 285. 300. 305. 310.	**********	([REC21] 	PPM) REC22 	REC23 I . 6 . 6 . 7 . 7 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	. 6 . 7 . 6 . 7 . 8 . 9 . 4 . 7 . 6 . 7 . 7 . 8 . 9 . 8 . 9 . 8 . 9 . 8 . 9 . 6 . 7 . 6 . 7 . 8 . 9 . 8 . 9 . 10 . 10 . 10 . 10 . 10 . 10 . 10 . 10	
ANGLE (DEGF 210. 210. 225. 230. 235. 240. 245. 255. 260. 255. 260. 255. 270. 255. 270. 255. 270. 255. 270. 285. 295. 300. 305. 310. 315. 320.	***************************************	([REC21 9 9 9 9 8 8 8 8 8 8 8 9 6 6 6 6 6 6 6 6	DPM) REC22 	REC23 I 6 6 7 7 8 9 9 7 7 7 6 4 9 9 7 7 6 4 3 2 2 1 1 1 1 1 1 0 0 0		
ANGLE (DEGF 210. 215. 220. 225. 230. 235. 240. 245. 255. 240. 255. 240. 255. 260. 255. 270. 275. 280. 285. 280. 295. 305. 305. 315.	**************************************	(I REC21 	DPM) REC22 	REC23 I 		
ANGLE (DEGF 210. 215. 220. 235. 230. 235. 240. 245. 255. 240. 255. 260. 275. 280. 265. 276. 275. 280. 265. 270. 300. 300. 300. 315. 320. 335. 330.	***************************************	(I REC21 9 	DPM) REC22 	REC23 I 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 7 7 6 4 3 2 7 7 6 4 3 2 1 1 1 1 1 1 0 0 0 0 0 0		
ANGLE (DEGF 210. 215. 220. 235. 240. 245. 255. 240. 245. 255. 240. 245. 255. 265. 276. 275. 280. 275. 280. 275. 290. 275. 290. 201. 300. 311. 315. 320. 335. 345.	*********	(I REC21 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 	DPM) REC22	REC23 I 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 7 7 7 6 4 3 2 7 7 7 6 4 3 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0		
ANGLE (DEGE 210. 215. 220. 225. 230. 235. 240. 245. 250. 255. 266. 275. 286. 275. 286. 275. 286. 275. 286. 275. 286. 300. 305. 310. 335. 345. 355.		(I REC21 I 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 0 	PPM) REC221 REC221 .8 .7 .7 .7 .7 .9 .8 .8 .8 .8 .7 .7 .7 .9 .8 .8 .8 .9 .9 .9 .9 .9 .9 .9 .9 .9 .1 .1 .1 .1 .0 .00 .00 .00 .00 .00	REC23 I 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 7 7 7 6 6 4 3 2 7 7 7 6 4 3 2 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
ANGLE (DEGF 210. 215. 220. 225. 230. 240. 245. 255. 260. 255. 266. 270. 255. 266. 270. 255. 280. 265. 270. 255. 280. 305. 305. 315. 320. 335. 330. 335. 340. 345. 345.	***********	(I REC21 1 - 9 - 9 - 9 - 9 - 8 - 8 - 8 - 8 - 8 - 8 - 7 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9 - 9	PPM) REC221 .8 .7 .8 .8 .8 .8 .8 .8 .8 .8 .8 .7 .8 .8 .7 .7 .7 .7 .7 .7 .7 .7	REC23 I 6 6 6 7 7 8 9 9 9 9 9 9 9 9 7 7 7 6 6 4 3 2 7 7 7 6 4 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0		
ANGLE (DEGF 210. 215. 220. 2230. 235. 240. 245. 255. 240. 245. 255. 240. 265. 275. 280. 265. 275. 280. 265. 275. 280. 300. 300. 300. 310. 315. 320. 325. 330. 325. 330. 325. 340. 315. 350. 355. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 360. 345. 355. 360. 345. 355. 360. 345. 345. 355. 360. 345. 345. 355. 360. 345. 345. 345. 355. 360. 345. 345. 345. 355. 360. 345. 345. 345. 345. 345. 345. 345. 345	· · · · · · · · · · · · · · · · · · ·	(I REC21 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DPM) REC22 	REC23 I 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 7 7 7 6 4 3 2 7 7 6 4 3 2 7 7 7 6 4 3 2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1		
ANGLE (DEGF 210. 215. 220. 225. 230. 240. 245. 255. 260. 265. 270. 275. 280. 265. 280. 265. 270. 275. 280. 305. 305. 300. 315. 320. 335. 340. 345. 355. 340. 345. 355. 355. 340. 355. 355. 355. 355. 355. 355. 355. 35	$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$	(I REC21 I - 9 9 9 9 9 9 9 9 9 9 9 9 6 6 6 6 6 6 6 6	PPM) REC22 	REC23 I . 6 . 6 . 7 . 7 . 8 . 9 . 9 . 9 . 7 . 6 . 4 . 3 . 2 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0		2. 20 PPM AT 275 DEGREES FROM RFC7 .
ANGLE (DEGF 210. 215. 220. 225. 230. 240. 245. 255. 260. 265. 270. 275. 280. 265. 280. 265. 270. 275. 280. 305. 305. 300. 315. 320. 335. 340. 345. 355. 340. 345. 355. 355. 340. 355. 355. 355. 355. 355. 355. 355. 35	$ = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$	(I REC21 1 - 9 - 9 - 9 - 9 - 9 - 8 - 8 - 8 - 7 - 9 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	PPM) REC22 	REC23 I . 6 . 6 . 7 . 7 . 8 . 9 . 9 . 9 . 7 . 6 . 4 . 3 . 2 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0		2. 20 PPM AT 275 DEGREES FROM REC7 . 2. 20 PPM AT 225 DEGREES FROM REC13. 2. 10 PPM AT 320 DEGREES FROM REC6 .

1B1PM30. OUT

Site 1 1	. Opt 3	2014 AM 1E	3AM14.D2	AT	60.	0321.0.00	00.000240.3	0480	000	1
SE MID			743.		116.	5.0				
SE 164 SE 82			857. 939.		123. 128.	5.0 5.0				
SE CNR			1020.		134.	5.0				
SE 82			1022.		053.	5.0				
NE 82 NE CNF			1075.		056.	5.0 5.0				
NE 82			1076. 1156.		137. 142.	5.0				
NE 164			1238.		146.	5.0				
NE MID			1341.		153.	5.0				
NW MIC			1453.		280.	5.0				
NW 164 NW 82			1316. 1234.		272. 269.	5.0 5.0				
NW CNR			1138.		288.	5.0				
NW 82	W		1137.	1	385.	5.0				
NW 164			1145.		466.	5.0				
NW MID SW MID			1156. 1072.		626. 597.	5.0 5.0				
SW 164			1043.		434.	5.0				
SW 82			1026.		354.	5.0				
SW CNR			995.		273.	5.0				
SW 82			900.		248.	5.0				
SW 164 SW MID			819. 692.		243. 235.	5.0 5.0				
	. Opt 3	2014 AM	092.	-	233.					
1										
NB	Rt1	aprch AG	58.	1109.	581.	1136.	248111.4	0.	56	30.
1 NB	Rt1	thru AG	582.	1136.	1083.	1166.	185911.4	0.	56	30.
2								-		
NB	Rt1 120	thru AG 57				1138. 1679 1 3	0. 36	3		
1	IZU	57	2.0	1039	102.2	10/9 1 3				
NB	Rt1	left AG	572.	1167.	1065.	1195.	62211.4	0.	44	30.
2								_		
NB	Rt1 120	left AG 107	983.			1169. 1700 1 3	0. 24	2		
1	IZU	107	2.0	022	102.2	1/00 1 3				
NB	Rt1	departAG	1085.	1167.	1470.	1188.	205311.4	0.	56	30.
1		domentad	1 4 7 0	1100	1704	1007	205211 4	0		20
NB 1	RUI	departAG	14/0.	1188.	1784.	1227.	205311.4	υ.	44	30.
NB	Rt1	departAG	1784.	1227.	2072.	1272.	205311.4	0.	44	30.
1										
SB 1	Rtl	aprch AG	2069.	1311.	1694.	1264.	364811.4	0.	44	30.
SB	Rt1	aprch AG	1694.	1264.	1395.	1248.	364811.4	0.	44	30.
1										
SB	Rt1	th+rt AG	1395.	1248.	1057.	1231.	362811.4	0.	56	30.
2 SB	R+1	th+rt AG	1144.	1236.	1388.	1248.	0. 36	3		
55	120	65		3628		1668 1 3	0. 00	5		
1										
SB	Rt1	left AG	1378.	1236.	1241.	1217.	2011.4	0.	32	30.

1							
SB	Rtl left AG	1240. 1217.	1058. 1208.	2011.4	0.	32	30.
2 SB	Rt1 left AG 120 115	1147. 1212. 2.0 20		0. 12	1		
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	428211.4	0.	56	30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	428211.4	0.	56	30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	97311.4	0.	32	30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	97311.4	0.	56	30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	97311.4	0.	56	30.
EB		1043. 1287. 2.0 973	1068. 1409. 102.2 1524 1 3	0. 36	3		
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	4511.4	0.	32	30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	8511.4	0.	44	30.
WB	Rt28 aprchAG 120 109	1050. 1141. 2.0 85		0. 24	2		
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	80711.4	0.	44	30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	80711.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	80711.4	0.	32	30.

RUN: Site 1 Opt 3 2014 AM

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

JOB: Site 1 Opt 3 2014 AM 1B3AM14.DAT

WIND ANGLE RANGE: 0. -360.

MODEL RESULTS

23. WB 24. WB 25. WB 26. WB 27. WB	Rt28 aprch* Rt28 depar*	1052.0 1050.0 1069.0 1121.0 1126.0	1015. 0 1141. 0 1197. 0 1424. 0 1570. 0	1049. 0 1050. 2 1121. 0 1126. 0 1257. 0
	1 Opt 3 2014 AM 10/2009 TIME:		Г	
ADDI TI ONA	AL QUEUE LINK PA	RAMETERS		
	SCRIPTION *	(SEC)	TIME	
3. NB 5. NB 12. SB 15. SB	Rt1 thru * Rt1 left * Rt1th+rt * Rt1 left * Rt28 aprch*	120 120 120 120	115 95	2.0 2.0 2.0
RECEPTOR	LOCATI ONS			

	RECEPTOR * X	OORDINATES (FT) Y Z
3. SE 82 S * 939.0 1128.0 5.0 4. SE CNR * 1020.0 1134.0 5.0 5. SE 82 E * 1022.0 1134.0 5.0 6. NE 82 E * 1075.0 1055.0 5.0 7. NE CNR * 1076.0 1137.0 5.0 8. NE 82 N * 1176.0 1142.0 5.0 9. NE 164 N * 1238.0 1146.0 5.0 10. NE MID N * 1341.0 1153.0 5.0 11. NW MID N * 1341.0 1269.0 5.0 12. NW 164 N * 1336.0 1269.0 5.0 13. NW 82 N * 1137.0 1385.0 5.0 14. NW CNR * 1316.0 1269.0 5.0 15. NW 82 W * 1137.0 1385.0 5.0 16. NW 164 W * 1145.0 1466.0 5.0 17. NW MID W * 1156.0 1426.0 5.0	be mild D 3 743.1 be mild D 3 743.1 be mild D 3 743.1 be mild D 3 857.0 be R 2 S 939.0 be CNR 1020.1 be R 2 E 1022.1 be R 2 E 1075.1 be R 2 E 1075.1 be R 2 R 1076.0 be R 2 R 1156.0 be R 10 N 1341.0 W MID N 1435.1 WW MD N 1435.1 WW 82 N 138.0 WW 82 W 1138.0 WW 164 W 11450.1 WW 164 W 1138.0 WW 164 W 1072.2 WW 164 W 1043.0 SW 164 W 1024.0 SW 164 W 1024.0 SW 000.0 \$\$\$\$<00.0	$\begin{array}{ccccccc} 1123. 0 & 5. 0 \\ 1128. 0 & 5. 0 \\ 1134. 0 & 5. 0 \\ 1053. 0 & 5. 0 \\ 1056. 0 & 5. 0 \\ 1137. 0 & 5. 0 \\ 1142. 0 & 5. 0 \\ 1142. 0 & 5. 0 \\ 1143. 0 & 5. 0 \\ 1143. 0 & 5. 0 \\ 1280. 0 & 5. 0 \\ 1272. 0 & 5. 0 \\ 1288. 0 & 5. 0 \\ 1288. 0 & 5. 0 \\ 1288. 0 & 5. 0 \\ 1288. 0 & 5. 0 \\ 1288. 0 & 5. 0 \\ 1288. 0 & 5. 0 \\ 1284. 0 & 5. 0 \\ 1434. 0 & 5. 0 \\ 1354. 0 & 5. 0 \\ 1354. 0 & 5. 0 \\ 1273. 0 & 5. 0 \\ 1273. 0 & 5. 0 \\ 1248. 0 & $

ADDI TI ONAL	QUEUE LINK PAR	AMETERS							
LINK DES	SCRIPTION * * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATI ON FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB	Rt1 thru *	120	57	2.0	1859	1679	102.20	1	3
5. NB	Rt1 left *	120	107	2.0	622	1700	102.20	1	3
12. SB	Rt1th+rt *	120	65	2.0	3628	1668	102.20	1	3
15. SB	Rt1 left *	120	115	2.0	20	1752	102.20	1	3
21. EB	Rt28 aprch*	120	95	2.0	973	1524	102.20	1	3
24. WB	Rt28 aprch*	120	109	2.0	85	1694	102.20	1	3

	*	(SEC)	(SEC)	(SEC)	(VPH)	(VPH)	(gm/hr)		
3. NB 5. NB 12. SB 15. SB 21. EB 24. WB	Rt1 thru * Rt1 left * Rt1th+rt * Rt1 left * Rt28 aprch* Rt28 aprch*	120 120 120 120 120 120 120 120	57 107 65 115 95 109	2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	1859 622 3628 20 973 85	1679 1700 1668 1752 1524 1694	102. 20 102. 20 102. 20 102. 20 102. 20 102. 20 102. 20	1 1 1 1 1 1	
RECEPTOR	LOCATI ONS								

70 = 321. CM

1B3AM14. OUT CAL3QHC: LINE SOURCE DI SPERSI ON MODEL - VERSI ON 2.2, JUNE 2000

ZO = 321. ATIM = 60.	/IXH = 1000.	M AMB	= .0 PPM

RUN: Site 1 Opt 3 2014 AM

VS = .0 CM/S U = 1.0 M/S LINK VARIABLES

LINK D	ESCRIPTION *	X1	Y1	NATES (FT) X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W (FT) (FT)	V/C	QUEUE (VEH)
1. NB 2. NB 3. NB 4. NB 5. NB 6. NB 7. NB 8. NB 9. SB 10. SB 11. SB 12. SB 13. SB 14. SB 14. SB 14. SB 15. SB 14. SB 14. SB 14. SB 14. SB 15. SB 14. SB 16. SB 17. SB 18. EB 20. EB 21. EB 22. EB 23. WB	*	X1	Y1	X2 581. 0 1083. 0 791. 4 1065. 0 -1141. 4 1470. 0 1784. 0 1784. 0 1784. 0 1395. 0 1694. 0 1395. 0 1694. 0 1395. 0 1694. 0 1395. 0 1624. 0 1241. 0 1244. 8 921. 0 1025. 0 1	Y2 *			2481. 1859. 391. 622. 2053. 2053. 2053. 2053. 3648. 3648. 3648. 3648. 3648. 3648. 3648. 3648. 20. 20. 20. 20. 263. 445. 20. 263. 4282. 973. 973. 651. 452. 85. 85.	(G/MI) 11. 4 10. 0 10. 0 11. 4 100. 0 11. 4 11. 4	(FT) (FT) 0 56.0 0 56.0 0 36.0 0 44.0 0 56.0 0 44.0 0 44.0 0 44.0 0 44.0 0 44.0 0 36.0 0 32.0 0 32.0 0 32.0 0 56.0 0 56.0 0 56.0 0 32.0 0 56.0 0 56.0 0 5	. 75 2. 45 1. 71	(VEH) 9. 8 108. 1
25. WB 26. WB 27. WB	Rt28 depar* Rt28 depar* Rt28 depar*	1069.0 1121.0 1126.0	1197.0 1424.0 1570.0	1121. 0 1126. 0 1257. 0	1424. 0 * 1570. 0 * 2180. 0 *	233. 146. 624.	13. AG 2. AG 12. AG	807. 807. 807.	11.4 11.4	. 0 44. 0 . 0 32. 0 . 0 32. 0	. 43	1.5

RUN: Site 1 Opt 3 2014 AM

JOB: Site 1 Opt 3 2014 AM 1B3AM14.DAT DATE: 05/10/2009 TIME: 18:22:23.36

SITE & METEOROLOGICAL VARIABLES

PAGE 1

PAGE 3

PAGE 2

1

1

1

10 2.24 3.66 1.7 2.7 1.9 2.9 2.0 0.2 1.0 1.2 0.6 1.4 1.8 1.4 1.8 2.4 1.7 1.1 1.7	(DEGR)	* R *	REC1 F	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9		W14.00 REC11		REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
B00 * 3.5 3.4 2.8 3.4 1.1 9 2.6 2.6 2.5 2.2 2.4 1.1 1.2 1.1 2.2 2.4 3.0 3.2 96 * 3.2 2.2 2.2 2.4 3.0 3.2 4.3 3.2 3.3	5. 10. 15. 20. 20. 30. 35. 40. 55. 60. 55. 65. 70.	* * * * * * * * * * * * * * * * *	$\begin{array}{c} 2.4\\ 2.4\\ 2.3\\ 2.5\\ 2.8\\ 2.9\\ 3.0\\ 3.5\\ 3.5\\ 3.8\\ 3.9\\ 4.0\\ 4.0\\ 3.9\end{array}$	$\begin{array}{c} 3.5\\ 3.6\\ 3.8\\ 4.0\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.5\\ 4.2\\ 3.9\\ 3.9\end{array}$	3.8 4.1 4.2 4.3 4.4 4.0 3.5 3.6 3.3 1 3.2 3.2 3.3	$\begin{array}{c} 2.9\\ 3.0\\ 2.9\\ 2.8\\ 2.4\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.5\\ 2.5\\ 2.7\\ 3.0\\ 3.3 \end{array}$	$\begin{array}{c} 2. \ 1 \\ 2. \ 2 \\ 2. \ 0 \\ 1. \ 8 \\ 1. \ 6 \\ 1. \ 3 \\ 1. \ 4 \\ 1. \ 3 \\ 1. \ 4 \\ 1. \ 3 \\ 1. \ 4 \\ 1. \ 4 \\ 1. \ 4 \\ 1. \ 4 \\ 1. \ 4 \end{array}$	1.9 1.9 1.4 1.5 1.1 1.2 1.1 1.2 1.4 1.4 1.4 1.4 1.2 1.2	2.8 2.7 2.3 1.9 1.9 2.0 2.3 2.4 2.5 2.9 2.9	$\begin{array}{c} 2.8\\ 2.4\\ 2.4\\ 2.3\\ 2.4\\ 2.5\\ 2.6\\ 2.5\\ 2.6\\ 3.0\\ 2.8\\ 2.8\\ 2.8\end{array}$	2.3 2.2 2.2 2.1 1.9 2.0 2.0 2.2 2.3 2.3 2.4 2.8 2.7 6 2.9	2.0 2.0 1.9 2.0 1.9 2.1 2.1 2.2 2.3 2.4 2.5 2.6 7 2.9	.0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .2 .5 .8 8 1.4	.1 .0 .1 .1 .1 .1 .2 .2 .2 .2 .4 .4 .10 1.8	.2 .1 .1 .1 .1 .1 .1 .2 .2 .3 .6 1.0	1.2 1.0 .6 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.5 1.1 .9 .6 .1 .0 .0 .0 .0 .0 .0 .0	1.5 1.2 .8 .4 .3 .0 .0 .0 .0 .0 .0 .0	2.1 1.9 1.3 .9 .5 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	$\begin{array}{c} 1.2\\ 1.7\\ 2.2\\ 2.6\\ 2.9\\ 3.0\\ 2.7\\ 2.7\\ 2.6\\ 2.5\\ 2.4\\ 2.3\\ 2.3\end{array}$	$\begin{array}{c} 1.6\\ 2.3\\ 2.7\\ 3.2\\ 3.5\\ 3.4\\ 3.3\\ 2.9\\ 2.8\\ 2.7\\ 2.6\\ 4\\ 2.3\\ 2.4\end{array}$	$\begin{array}{c} 1.6\\ 2.2\\ 2.6\\ 3.2\\ 3.4\\ 3.4\\ 3.0\\ 2.9\\ 2.7\\ 2.6\\ 2.5\\ 2.3\\ 2.4\\ \end{array}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	85. 90. 95. 100. 1105. 1105. 110. 115. 120. 125. 140. 145. 150. 155. 160.	* * * * * * * * * * * * * * * * *	3.1 2.2 1.5 .7 .4 .3 .1 .1 .1 .1 .1 .0 .0 .0	2.9 2.2 1.4 .5 .1 .1 .1 .1 .1 .1 .0 .0 .0	2.4 2.0 1.37 .5 .2 .2 .1 .1 .1 .1 .0 .0 .0	3.1 2.5 2.15 1.52 1.0 .8 .76 .5 .4 .3 .1 .0	.8 .4 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.8 .3 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2.1 1.6 1.1 .3 .1 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	2. 2 1. 5 1. 2 . 7 . 4 . 2 . 1 . 1 . 1 . 1 . 1 . 0 . 0	2.1 1.6 1.1 .3 .2 .1 .1 .1 .1 .1 .1 .0 .0	2.2 1.6 1.0 .6 .4 .2 .1 .1 .1 .1 .1 .1 .1 .0 .0	2.9 3.6 4.1 4.3 4.3 4.1 3.9 3.7 3.5 4 3.2 3.1 2.9 2.9 2.8	3.5 4.1 4.5 4.6 4.6 4.2 4.1 3.9 3.6 3.3 3.2 3.1 3.0 2.9 2.9	3.3 4.1 4.5 4.6 4.5 4.2 4.0 3.8 3.7 4 3.3 3.2 3.1 3.0 3.0	$\begin{array}{c} 1.\ 6\\ 2.\ 3\\ 2.\ 7\\ 2.\ 7\\ 2.\ 9\\ 2.\ 8\\ 2.\ 7\\ 2.\ 6\\ 2.\ 6\\ 2.\ 6\\ 2.\ 3\\ 2.\ 3\\ 2.\ 2\end{array}$.2 .6 .7 1.2 1.1 1.4 1.3 1.2 1.2 1.3 1.3 1.3 1.3 1.2 1.2 1.2	. 2 . 4 . 5 . 7 . 9 . 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 8 8 . 8 8 . 8 8 . 8 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	.12.34.44.55.66.75.565.565.565.5	$\begin{array}{c} 2.3\\ 2.4\\ 2.5\\ 2.5\\ 2.7\\ 2.8\\ 2.8\\ 2.8\\ 3.0\\ 3.1\\ 3.3\\ 3.3\end{array}$	$\begin{array}{c} 2.7\\ 3.2\\ 3.2\\ 3.3\\ 3.3\\ 3.3\\ 3.3\\ 3.4\\ 3.6\\ 3.7\\ 3.7\\ 3.7\\ 3.7\\ 3.4 \end{array}$	2.9 3.6 3.8 3.9 3.7 3.6 3.7 3.6 3.7 3.4 3.5 3.1 2.8
WIND * CONCENTRATION (PPM) REC1 REC2 REC3 REC4 REC7 REC6 REC7 REC8 REC9 REC10 REC11 REC13 REC14 REC16 REC17 REC18 REC19 REC20 210. * 0 0 0 1 1 1 1 3.2 3.3 3.4 1.6 2.3 2.5 3.1 8 1.5 1.8 210. * 1 1 0 0 .5 1 1 1 3.2 3.3 3.4 1.6 2.3 2.5 3.1 .8 1.5 1.8 220. * 1 1 1 0 0 .7 1 1 3.5 3.6 3.6 2.1 2.8 2.8 3.1 8 1.2 1.7 1.1 1.7 1.1 1.7 1.7 1.1 1.7 1.7 1.1 1.7 1.7 1.1 1.7 1.7 1.	170. 7 175. 7 180. 7 185. 7 190. 7 195. 7 200. 7 205. 7	* * * * * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 1 . 2	. 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0 . 1	3. 0 2. 9 3. 0 2. 8 2. 9 2. 9 3. 0	3. 0 3. 1 3. 1 3. 0 3. 0 3. 0 3. 0 3. 0	3. 2 3. 3 3. 4 3. 2 3. 2 3. 2 3. 2 3. 3	2.0 1.8 1.7 1.5 1.5 1.4 1.5 1.4	1.2 1.1 1.1 .8 1.1 1.1 1.3	1.0 .8 .9 1.0 1.3 1.3 1.8	. 8 . 9 1. 0 1. 4 2. 0 2. 3 2. 8	3.3 3.3 2.8 2.6 2.4 1.7 1.4 1.2	3. 1 3. 0 2. 8 2. 6 2. 0 1. 8 1. 8 1. 7	2.7 2.5 2.4 2.1 1.9 1.7 1.8
$\begin{array}{c}$	WIND '	* C	CONCENT	TRATIO PPM)	N				DEC7	DECO	PECO						DEC15	DEC16	DEC17	DEC19	DEC10	PEC 20
DEGR. * 65 45 285 285 10 0 280 275 275 280 250 250 255 250 235 225 225 155 145 115	210. * 2110. * 2110. * 2215. * 2230. * 2330. * 2350. * 240. * 255. * 260. * 255. * 260. * 255. * 260. * 260. * 275. * 280. * 280	* * * * * * * * * * * * * * * * * * * *	$\begin{array}{c} & \cdot \\ & \cdot \\$	$\begin{array}{c} 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 5 \\ 1 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$\begin{array}{c} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 4 \\ & 3 \\ & 2 \\ & 1 \\ & 0 \\ & 3 \\$	$\begin{array}{c} & . \\$	$\begin{array}{c} & & & & & \\$. 45 . 67 . 89 1.04 1.46 2.77 3.0 1.46 2.77 3.40 4.45 2.37 2.29 2.30 2.09 1.98 2.21 3.20 2.30 2.30 2.30 2.30 2.30 2.30 2.30	$\begin{array}{c} . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 2 \\ . & 4 \\ 8 \\ 1 \\ . & 4 \\ 2 \\ . & 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$\begin{array}{c} . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 3 \\ . & 6 \\ 1 \\ . & 5 \\ 2 \\ . & 6 \\ 2 \\ . & 6 \\ 2 \\ . & 6 \\ 2 \\ . & 6 \\ 2 \\ . & 6 \\ 2 \\ . & 6 \\ 2 \\ . & 6 \\ 2 \\ . & 7 \\ 2 \\ . & 8 \\ 0 \\ 9 \\ 3 \\ . & 0 \\ 0 \\ 2 \\ . & 8 \\ 0 \\ 0 \\ 2 \\ . & 8 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 1 \\ \cdot & \cdot & 2 \\ \cdot & \cdot & 5 \\ \cdot & \cdot & 2 \\ \cdot & 5 \\ \cdot & 2 \\ \cdot & 5 \\ \cdot & 2 \\ \cdot & 2 \\ \cdot & 5 \\ \cdot & 2 \\ \cdot & 2 \\ \cdot & 5 \\ \cdot & 5 \\ \cdot & 2 \\ \cdot & 5 \\ \cdot & 2 \\ \cdot & 5 \\ \cdot & 5 \\ \cdot & 2 \\ \cdot & 5 \\ \cdot &$	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\$	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 5 \\ 6 \\ 0 \\ 4 \\ 4 \\ 6 \\ 1 \\ 9 \\ 0 \\ 4 \\ 4 \\ 6 \\ 1 \\ 1 \\ 0 \\ 7 \\ 6 \\ 6 \\ 7 \\ 7 \\ 6 \\ 6 \\ 7 \\ 7 \\ 6 \\ 6$	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 4 \\ 3 \\ 6 \\ 6 \\ 3 \\ 3 \\ 6 \\ 6 \\ 3 \\ 3 \\ 6 \\ 6$	$\begin{array}{c} 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	$\begin{array}{c} & 1.7\\ 2.58\\ 2.88\\ 2.88\\ 2.88\\ 2.88\\ 3.00\\ 9.7\\ 2.2\\ 2.3\\ 2.8\\ 2.8\\ 2.8\\ 2.8\\ 2.8\\ 2.8\\ 2.8\\ 2.8$	$\begin{array}{c} 2.15\\ 2.57\\ 2.70\\ 2.88\\ 2.77\\ 2.74\\ 2.30\\ 1.76\\ 1.77\\ 1.66\\ 1.77\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 1.88\\ 2.00\\ 2.00\\ 2.00\\ \end{array}$	$\begin{array}{c} 3 & 1 \\ 3 & 2 \\ 3 & 3 \\ 3 & 1 \\ 3 & 2 \\ 3 & 3 \\ 3 & 1 \\ 1 \\ 3 & 2 \\ 7 \\ 2 & 5 \\ 2 & 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0 \\ 2 \\ 0 \\ 0$		$\begin{array}{c} 1.44\\ 1.5\\ 2.2\\ 1.22\\ 1.22\\ 1.21\\ 1.1\\ 1.1\\ 1.1\\ $	1.8 1.8 1.7 1.6 1.7 1.7 1.7 1.7 1.8 1.5 4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

 WI ND
 * CONCENTRATI ON ANGLE *
 (PPM)

 (DEGR)*
 REC21
 REC22
 REC23
 REC24

 0.
 *
 .5
 .1
 .0
 .0

5. 10. 15. 20. 25. 30. 55. 60. 55. 60. 75. 80. 85. 100. 105. 110. 125. 130. 145. 130. 145. 130. 145. 140. 155. 140. 145. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 155. 140. 140. 145. 140. 140. 140. 140. 140. 140. 140. 140	*************	$1.59256410875659281431853321209999001222356\\1.111222221111122333322222221111222256$	$\begin{smallmatrix} & . & . & . \\ & . & . & . \\ & . & . & .$. 0 1 3 4 6 7 8 9 8 8 8 9 2 6 0 8 3 9 3 0 8 7 8 6 7 8 5 3 3 2 2 1 1 3 3 3 2 0 9 1 1 2 2 3 3 4 4 3 3 7 8 6 7 8 5 3 3 2 2 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3	00123336766789498694323109974198876788888767			
200. 205. 1	*	2.5 2.6	3. 2 3. 3	2.9 2.9	2.7 2.8			
	JOB:	Si te	1 Opt	3 2014	AM 1	B3AM14. DA	λT	
WI ND	ANGL	_E RANG	GE:	0360.				
WI ND ANGL (DEG 210.	C *	REC21 F	PM)		EC24			
215. 220. 225. 235. 240. 245. 250. 255. 270. 255. 270. 255. 270. 255. 270. 255. 270. 255. 270. 255. 280. 300. 305. 310. 335. 340. 345. 345. 345. 345. 345. 345. 345. 345		$\begin{array}{c} 2 \\ 2 \\ 3 \\ 2 \\ 9 \\ 3 \\ 1 \\ 3 \\ 3 \\ 3 \\ 1 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1$	$\begin{array}{c} 3, 4\\ 3, 4\\ 3, 5\\ 3, 8\\ 3, 9\\ 3, 9\\ 3, 9\\ 3, 9\\ 4, 2\\ 4, 1\\ 4, 2\\ 4, 3\\ 9\\ 3, 5\\ 2, 6\\ 2, 0\\ 1, 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ $	$\begin{array}{c} 2.9\\ 3.0\\ 3.1\\ 3.4\\ 3.5\\ 3.8\\ 4.3\\ 5\\ 3.8\\ 4.3\\ 4.0\\ 3.3\\ 4.1\\ 4.0\\ 3.2\\ 6\\ 2.0\\ 1.3\\ .3\\ 2.6\\ 2.0\\ 1.3\\ .3\\ 2.6\\ .2\\ .2\\ .2\\ .2\\ .1\\ .1\\ 0\\ .0\\ .0\\ .0\\ .0\\ \end{array}$	$\begin{array}{c} 2.9\\ 3.0\\ 3.3\\ 3.5\\ 5.3\\ 3.9\\ 4.0\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 2.0\\ 3.3\\ 3.5\\ 5.5\\ 4.0\\ 3.2\\ 2.0\\ 3.3\\ 3.5\\ 5.5\\ 4.0\\ 3.2\\ 2.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$			
MAX DEGR	. *	3.4 95	4.2 250	4.3 250	4.4 95			

THE HIGHEST CONCENTRATION IS 5. 10 PPM AT 250 DEGREES FROM REC12. THE 2ND HIGHEST CONCENTRATION IS 4. 90 PPM AT 255 DEGREES FROM REC13. THE 3RD HIGHEST CONCENTRATION IS 4. 60 PPM AT 45 DEGREES FROM REC2.

1B3AM14. OUT

RUN: Site 1 Opt 3 2014 AM

Site 1 Op 1	t 3 2	2030 A	M 18	3AM30.D2	AT	60.	0321.0.0	000.000	240.	30480	000	1
SE MID S				743.		16.	5.0					
SE 164 S SE 82 S				857. 939.		23. 28.	5.0 5.0					
SE 62 S SE CNR				939. 1020.		34.	5.0					
SE 82 E				1020.		53.	5.0					
NE 82 E				1075.		56.	5.0					
NE CNR				1076.		37.	5.0					
NE 82 N				1156.		42.	5.0					
NE 164 N				1238.	11	46.	5.0					
NE MID N				1341.	11	53.	5.0					
NW MID N				1453.	12	80.	5.0					
NW 164 N				1316.		72.	5.0					
NW 82 N				1234.		69.	5.0					
NW CNR				1138.		88.	5.0					
NW 82 W				1137.	13	85.	5.0					
NW 164 W				1145.	14	66.	5.0					
NW MID W				1156.		26.	5.0					
SW MID W				1072.	15	97.	5.0					
SW 164 W				1043.	14	34.	5.0					
SW 82 W				1026.		54.	5.0					
SW CNR				995.		73.	5.0					
SW 82 S				900.	12	48.	5.0					
SW 164 S				819.		43.	5.0					
SW MID S				692.	12	35.	5.0					
Site 1 Op	t 3 3	2030 A	M			27	1 0					
1		_								_		
	Rt1	aprch	ı AG	58.	1109.	581.	1136.	2435	9.2	0.	56	30.
1		_										
NB	Rtl	thru	AG	582.	1136.	1083.	1166.	1820	9.2	0.	56	30.
2	D 1	. 1.		0.0.4	1100	600	1120	0	20	2		
NB		thru					1138.		36	3		
12	2	4	2	2.0	1820	84.⊥	1679 1 3					
1		1.5.	70	F7 0	1100	1005	1105	C1 F	0 0	0	4.4	20
NB	Rti	left	AG	572.	1167.	1065.	1195.	615	9.2	0.	44	30.
2		loft	70	002	1100	604	1160	0	24	2		
		left		983.			1169.		24	2		
12 1	2	9	5	2.0	615	84.⊥	1700 1 3					
	D+1	donar	+ 7 0	1085.	1167	1/70	1199	2025	a 2	0.	56	30.
1	RUI	uepar	LAG	1005.	1107.	14/0.	1188.	2025	9.2	0.	50	50.
NB	D+1	donar	+ 7 0	1470.	1188.	170/	1227.	2025	a 2	0	44	30.
1	RUI	uepar	LAG	1470.	1100.	1/04.	1227.	2025	9.2	0.	11	50.
NB	₽ +1	depar	+ 7 C	1784.	1227.	2072.	1272.	2025	a 2	0.	44	30.
1	RUI	uepar	LAG	1/04.	1227.	2072.	12/2.	2025	7.2	0.	ТТ	50.
SB	₽ +1	aprch		2069.	1311.	1694.	1264.	3425	a 2	0.	44	30.
зв 1	ILCT	apren	. AG	2009.		-UJ	1207.	5425	1.4	0.	ΙĪ	50.
SB	R+1	aprch		1694.	1264.	1395.	1248.	3425	9.2	0.	44	30.
1	ILLI	apron			1201.	± , , , , , , , , , , , , , , , , , , ,	1210.	5125		0.		50.
SB	R+1	th+rt	AG	1395.	1248.	1057.	1231.	3405	92	0.	56	30.
2		0						5105		5.		
SB	Rt.1	th+rt	AG	1144.	1236.	1388.	1248.	0.	36	3		
12			3		3405		1666 1 3		50	5		
1				•			0					
SB	Rt1	left	AG	1378.	1236.	1241.	1217.	20	9.2	0.	32	30.

1						
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	20 9.2	0.	32 30.
SB	Rt1 left AG 122 116	1147. 1212. 2.0 20		0. 12	1	
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	4010 9.2	0.	56 30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	4010 9.2	0.	56 30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	940 9.2	0.	32 30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	940 9.2	0.	56 30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	940 9.2	0.	56 30.
EB	Rt28 aprchAG 122 111	1043. 1287. 2.0 940	1068. 1409. 84.1 1524 1 3	0. 36	3	
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	45 9.2	0.	32 30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	85 9.2	0.	44 30.
WB	Rt28 aprchAG 122 113	1050. 1141. 2.0 85	1051. 1019. 84.1 1694 1 3	0. 24	2	
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	805 9.2	0.	44 30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	805 9.2	0.	32 30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	805 9.2	0.	32 30.

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

JOB: Site 1 Opt 3 2030 AM 1B3AM30.DAT

WIND ANGLE RANGE: 0. - 360.

MODEL RESULTS

WIND * CONCENTRATION ANGLE * (PPM)

RUN:	Si te	1	0pt	3	2030	AM

PAGE 3

2 ND D+4	thru *	400				
3. NB Rt1 5. NB Rt1 12. SB Rt1 15. SB Rt1 21. EB Rt2 24. WB Rt2	left * th+rt * left * 28 aprch* 28 aprch*	122 122 122 122 122 122 122	42 95 63 116 111 113	2.0 2.0 2.0 2.0 2.0 2.0 2.0	1820 615 3405 20 940 85	
RECEPTOR LOCATIO	NS					
RECEPTOR	*	x C	OORDI NATES Y	(FT) Z	*	
RECEPTOR 1. SE MID S 2. SE 164 S 3. SE 82 S 4. SE CNR 5. SE 82 E 6. NE 82 E 7. NE CNR 8. NE 82 N 9. NE 164 N 10. NE MID N 11. NW MID N 12. NW 164 N 13. NW 82 N 14. NW CNR 15. NW 82 W 16. NW 164 W 17. NW MID W 18. SW MI 0 W 19. SW 164 W 21. SW CNR 22. SW 82 S 23. SW 164 S 23. SW MI64 S 24. SW MID S	* * * * * * * * * * * * * * * * * * *	743.0 857.0 939.0 1020.0 1075.0 1075.0 1156.0 1238.0 1341.0 1453.0 1138.0 1138.0 1138.0 1138.0 1145.0 1145.0 0143.0 1043.0 1043.0 1043.0 995.0 900.0 819.0 920.0	1116. (1123. (1128. (1134. (1053. (1137. (1142. (1137. (1280. (1272. (1280. (1272. (1280. (1272. (1280. (1272. (1280. (1272. (1273. (1243. (1273. (1243. (1243. (1243. (1273. (1243. (1243. (1273. (1243. (124	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	

ADDITIONAL QUEUE LINK	PARAM	ETERS	
LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)

	*	X1	Y1	X2	Y2 *	(FT)	(DEG)		(G/MI)	(FT) (FT)		(VEH)
1. NB	Rt1 aprch *	58.0	1109.0	581.0	1136.0 *	524.	87. AG	2435.	9.2	.0 56.0		
2. NB	Rt1 thru *	582.0	1136.0	1083.0	1166.0 *	502.	87. AG	1820.	9.2	.0 56.0		
NB	Rt1 thru *	984.0	1160.0	845.1	1152.0 *	139.	267. AG	233.	100.0	.0 36.0	. 58	7.1
4. NB	Rt1 left *	572.0	1167.0	1065.0	1195.0 *	494.	87. AG	615.	9.2	.0 44.0		
5. NB	Rt1 left *	983.0	1190.0	762.4	1177.8 *	221.	267. AG	351.			. 96	11.2
6. NB	Rt1 depart*	1085.0	1167.0	1470.0	1188.0 *	386.	87. AG	2025.	9.2	.0 56.0		
7. NB	Rt1 depart*	1470.0	1188.0	1784.0	1227.0 *	316.	83. AG	2025.	9.2	.0 44.0		
8. NB	Rt1 depart*	1784.0	1227.0	2072.0	1272.0 *	291.	81. AG	2025.	9.2	.0 44.0		
9. SB	Rt1 aprch *	2069.0	1311.0	1694.0	1264.0 *	378.	263. AG	3425.	9.2	.0 44.0		
10. SB	Rt1 aprch *	1694.0	1264.0	1395.0	1248.0 *	299.	267. AG	3425.	9.2	.0 44.0		
11. SB	Rt1 th+rt *	1395.0	1248.0	1057.0	1231.0 *	338.	267. AG	3405.	9.2	.0 56.0	- 4	
12. SB	Rt1th+rt *	1144.0	1236.0	5510.6	1450.8 *	4372.	87. AG	349.	100.0	.0 36.0 1	. 51	222. 1
13. SB	Rt1 left * Rt1 left *	1378.0	1236.0	1241.0	1217.0 *	138.	262. AG	20.	9.2	.0 32.0		
14. SB 15. SB	Rt1 left * Rt1 left *	1240.0	1217.0 1212.0	1058.0	1208.0 *	182.	267. AG 87. AG	20.	9.2 100.0	.0 32.0	. 71	0
15. SB 16. SB	Rt1 depart*	1147.0 1056.0	1212.0	1164.7 921.0	1212.8 * 1221.0 *	18. 135.	266. AG	214. 4010.	9.2	.0 12.0 .0 56.0	. / I	. 9
17. SB	Rt1 depart*	921.0	1221.0	58.0	1172.0 *	864.	267. AG	4010.	9.2	.0 56.0		
18. EB	Rt28 aprch*	1226.0	2185.0	1087.0	1547.0 *	653.	192. AG	940.	9.2	.0 32.0		
19. EB	Rt28 aprch*	1088.0	1547.0	1072.0	1425.0 *	123.	187. AG	940.	9.2	.0 56.0		
20. EB	Rt28 aprch*	1072.0	1425.0	1025.0	1202.0 *	228.	192. AG	940.	9.2	.0 56.0		
21. EB	Rt28 aprch*	1043.0	1287.0	1560.6	3812.8 *	2578.	12. AG	616.	100.0	.0 36.0 3	60	131 0
22. EB	Rt28 depar*	1039.0	1194.0	1043.0	1015.0 *	179.	179. AG	45.	9.2	.0 32.0		10110
23. WB	Rt28 aprch*	1052.0	1015.0	1049.0	1190.0 *	175.	359. AG	85.	9.2	.0 44.0		
24. WB	Rt28 aprch*	1050.0	1141.0	1050.2	1112.7 *	28.	180. AG	418.			. 61	1.4
25. WB	Rt28 depar*	1069.0	1197.0	1121.0	1424.0 *	233.	13. AG	805.	9.2	.0 44.0		
26. WB	Rt28 depar*	1121.0	1424.0	1126.0	1570.0 *	146.	2. AG	805.	9.2	.0 32.0		
27. WB	Rt28 depar*	1126.0	1570. 0	1257.0	2180.0 *	624.	12. AG	805.	9.2	.0 32.0		
										PAGE	2	
JOB: Site 1	Opt 3 2030 AM	1B3AM30. DA	т		RUN: Site	1 Opt 3	2030 AM			11102	-	
DAIE: 05/10/	/2009 TIME: 18	8: 44: 47. 99										

APPROACH

VOL (VPH)

ZO = 321. CM ATIM = 60. MINUTES

CLEARANCE

LOST TIME (SEC)

* * X1 LINK DESCRIPTION LINK COORDINATES (FT) Y1 X2

IOB: Site 1 (Ont 3	2030 AM 1B3AM30. DAT
DATE: 05/10/.	2009	TIME: 18:44:47.99

VD = .0 CM/S CLAS = 4 (D)

SITE & METEOROLOGICAL VARIABLES

VS = .0 CM/S U = 1.0 M/S

LINK VARIABLES

1

1

1

1B3AM30. OUT CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.2, JUNE 2000

LENGTH BRG TYPE (FT) (DEG)

MIXH = 1000. M AMB = .0 PPM

VPH

RUN: Site 1 Opt 3 2030 AM

SATURATI ON FLOW RATE (VPH)

IDLE EM FAC (gm/hr)

84. 10 84. 10 84. 10 84. 10 84. 10 84. 10 84. 10

SI GNAL TYPE

1 1

1111

ARRI VAL RATE

* *

Y2

PAGE 1

EF H W V/C QUEUE (G/MI) (FT) (FT) (VEH)

(DEGR)	* R *	REC1 I		REC3 I	REC4	REC5	REC6	REC7	REC8	REC9		130. 0U1 REC11		REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
0. 5. 10. 15. 220. 25. 30. 55. 60. 55. 60. 55. 60. 55. 60. 75. 85. 995. 110. 120. 225. 33. 60. 55. 60. 55. 60. 55. 110. 115. 890. 995. 120. 121. 120. 120. 120. 120. 120. 120	*******************	$\begin{array}{c} 1.3\\ 1.4\\ 1.6\\ 1.7\\ 2.1\\ 2.1\\ 2.3\\ 2.5\\ 2.25\\ 2$	2.266923242223187952440621111110000000000000000000000000000	$\begin{array}{c} 2 & 7 \\ 3 & 0 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 3 & 3 \\ 2 & 7 \\ 2 & 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 2 & 3 \\ 2 & 7 \\$	$\begin{array}{c} 1.7\\ 1.8\\ 1.9\\ 1.4\\ 1.1\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 1.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 1.8\\ 1.7\\ 1.9\\ 2.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.9\\ 0.0\\ 0.0$	$\begin{array}{c} 2.5\\ 2.7\\ 2.7\\ 2.5\\ 2.1\\ 1.6\\ 1.55\\ 1.4\\ 1.55\\ 1.4\\ 1.55\\ 1.4\\ 1.5\\ 2.9\\ 2.3\\ 2.0\\ 1.3\\ 2.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 2.4\\ 2.3\\ 2.2\\ 2.0\\ 1.7\\ 1.6\\ 1.7\\ 1.6\\ 1.7\\ 1.9\\ 2.3\\ 2.19\\ 1.6\\ 1.38\\ 2.2\\ 1.9\\ 2.3\\ 2.19\\ 1.6\\ 3.8\\ 4\\ 2.2\\ 2.2\\ 1.1\\ 1.1\\ 1.1\\ 0.0\\ 0.0\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	$\begin{array}{c} 2,2\\ 2,19\\ 1,87\\ 1,66\\ 1,87\\ 1,66\\ 1,87\\ 1,99\\ 2,11\\ 2,19\\ 2,11\\ 2,19\\ 1,20\\ 1,19\\ 2,11\\ 2,19\\ 1,20\\ 1,19\\ 2,11\\ 1,10\\ 0,00\\ $	2.09 1.8 1.66 1.66 1.66 1.66 1.67 1.87 2.02 2.22 2.30 2.22 2.30 2.22 2.30 1.7 4.3 1.10 0.00 0.00 0.00 0.00 0.00 0.00 0.	321 .0000012361748333208765544222223333220 .1172233333208765544222223333222 .2222222222222222222222222	.542.12.1111113593972565320987443222334333 .112.333333222.244322223343333		$\begin{array}{c} 1.5\\ 1.4\\ 0.6\\ .2\\ .00\\ .00\\ .01\\ .59\\ .37\\ 0.13\\ .22\\ .18\\ 99\\ 98\\ 1.56\\ 1.5$	$\begin{array}{c} 1.8\\ 1.6\\ 1.4\\ 1.2\\ .2\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0$	1.9 1.7 1.4 1.00 .3 .10 .00 .00 .00 .00 .00 .00 .00	2.6251 2.51 1.62 1.732 .1000000 .000000 .000000 .0000000 .112223 .33345 .445 .5557 .557 .91169 .55791 .169	.9 1.0 2.5 7 3.0 8 7 5 2.2 2.5 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2	$\begin{array}{c} 1 & 2 \\ 1 & 2 \\ 2 \\ 4 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	1. 1. 1. 2. 3.3. 3. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2.2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. <tr td=""> <tr td=""> 2.</tr></tr>
90. 95. 200. 205.	* * *	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 1 . 1 . 2 . 3	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	2.2 2.2 2.2 2.2 2.2	2.3 2.3 2.3 2.3	2.2 2.2 2.2 2.3	1.0 1.2 1.1 1.1	.9 .9 1.1 1.1	1.2 1.2 1.1 1.7	1.6 1.9 2.2 2.4	1.9 1.6 1.2 .8	1.9 1.6 1.2 1.1	1. 1. 1. 1.
J	0B:	Si te	1 Opt	3 203	0 AM 1	I B3AM30). DAT				RUN:	Site 1	Opt 3	3 2030	AM				PAGE	4	
VI ND ANGLE	* C	CONCEN	TRATIO PPM)	N				PEC7	DECO	PECO						PEC15	PEC16	DEC17			PEC
I ND NGLE DEGR)	* C	CONCEN	TRATI O PPM) REC2	N REC3 I	REC4 		REC6 . 0	REC7 . 4	REC8 . 0	REC9 . 0	REC10	REC11	REC12	REC13	REC14	1.4	2. 1	2. 8	REC18 . 7	REC19	REC
W ND NNGLE (DEGR) 210. 210. 2225. 2230. 2255. 2550. 2555. 2660. 2775. 2880. 2990. 2990. 2990. 2990. 2990. 2900. 2930. 2115. 220. 2300. 2355. 2300. 2355. 235	* C	CONCEN(REC1	TRATI 01 PPM) REC2 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	REC3 1 .0 .0 .1 .1 .1 .1 .1 .1 .2 .4 2.6 .8 1.4 2.4 2.6 2.4 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.5 5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	REC4 0 1 1 1 1 1 1 1 1 1 1 1 1 1	REC5 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	$\begin{array}{c} & . \\$	$\begin{array}{c} & 0 \\ & 0 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 3 \\ & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 0 \\ & 2 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 1 \\ & 0 \\ & 1 \\ & 6 \\ & 1 \\ & 6 \\ & 1 \\ & 6 \\ & 1 \\ & 7 \\ & 1 \\ & 2 \\ & 2 \\ & 5 \\ & 2 \\ & 4 \\ & 2 \\ & 5 \\ & 2 \\ & 4 \\ & 2 \\ & 5 \\ & 2 \\ & 4 \\ & 1 \\$	$\begin{array}{c} & 0 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 11 \\ & 220 \\ 200 \\ 2$	REC10 1 1 1 1 1 1 1 2 3 5 9 1.7 2.00 2.0	REC11 2.55 2.56 2.77 2.99 2.99 2.99 2.99 2.99 2.99 2.22 1.70 1.00 .99 .43 .33 .33 .33 .33 .33 .44 .44 .44 .43 .33	REC12 2.4 2.5 2.6 2.7 3.0 3.4 3.5 3.4 2.6 2.0 3.4 2.6 2.0 3.4 2.6 2.0 3.4 2.6 2.0 3.4 2.6 2.0 3.4 2.6 2.6 3.5 5.3.4 2.6 6 2.5 5.5 5.5 5.5 5.5	REC13 2.4 2.5 2.5 2.7 3.0 3.2 3.2 3.4 2.3 1.3 1.2 8 2.3 1.3 1.2 9 8 8 8 7 7 7 7 6 7 7 7 7 8 8 7 7	REC14 1.2 1.3 1.6 1.6 1.8 1.9 2.3 2.4 2.3 2.4 2.3 2.0 1.5 1.2 1.1 1.1 1.1 1.1 1.1 1.2 1.2	$\begin{array}{c} 1.4\\ 1.5\\ 2.0\\ 2.3\\ 4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 1.8\\ 4\\ 1.5\\ 5\\ 1.4\\ 4\\ 1.3\\ 5\\ 5\\ 1.5\\ 6\\ 8\\ 9\\ 9\\ 0\\ 1.8\\ \end{array}$	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2$	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 7 \\ 2 \\ 2 \\ 5 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	REC18 7 5 4 4 3 3 3 3 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0	REC19 	1 1 1 1 1 1 1 1 1
ND NGLE DEGR) 10. 10. 225. 230. 335. 40. 455. 500. 555. 80. 855. 995. 000. 555. 10. 115. 220. 230. 230. 230. 240. 40. 40. 40. 40. 40. 40. 40. 40. 40.	* * * * * * * * * * * * * * * * * * *	CONCEN(REC1	TRATIO PPM) REC2	REC3 1 . 0 . 0 . 1 . 1 . 1 . 1 . 1 . 2 . 6 . 8 1. 8 2. 4 2. 7 2. 8 2. 6 2. 6 2. 6 2. 5 2. 5 2. 5 2. 5 2. 7 2. 5 2. 7 2. 5 2. 7 2. 7 2. 7 2. 5 2. 7 2. 7 7	REC4 .0 .1 .1 .1 .1 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	REC5 0 0 0 0 0 0 0 0 0 0 0 0 0	REC6 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} . & . & . \\ . & . & . \\ . & . & . \\ . & . &$. 0 . 1 . 1 . 1 . 2 . 3 . 2 . 3 . 0 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	. 0 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	REC10 1 1 1 1 1 1 1 1 2 3 9 1.5 9 1.7 2.00 2	REC11 2.5 2.5 2.6 2.7 2.9 2.9 2.9 2.9 3.1 3.5 4 3.5 2.2 2.8 2.2 1.7 1.0 .9 .3 3.4 3.3 2.2 2.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	REC12 2.4 2.5 2.6 2.7 2.8 3.0 3.5 3.4 3.5 3.4 2.6 0 3.5 3.4 2.6 0 3.5 3.4 2.6 0 3.5 5.5 5.5 5.5 6.6 6.6 5.5 5.5 5.5 5.5 5	REC13 2.4 2.5 2.5 2.7 3.0 3.2 3.5 2.3 4 2.3 1.3 1.2 .8 8 .8 .8 .7 7 7 .6 6 .7 9 9 9	REC14 1.2 1.3 1.6 1.6 1.8 1.9 2.3 2.4 2.0 1.5 1.2 1.1 1.1 1.1 1.1 1.2 1.2 1.2	$\begin{array}{c} 1.45\\ 2.234\\ 2.224\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 2.22\\ 1.86\\ 5.55\\ 4.4\\ 1.434\\ 1.44\\ 1.55\\ 5.68\\ 8.99\\ 0\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$	$\begin{array}{c} 2.1\\ 2.1\\ 2.1\\ 2.1\\ 2.2\\ 1.2\\ 2.2\\ 1.2\\ 2.2\\ 1.2\\ 2.2\\ 1.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5\\ 5.5$	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	REC18 7 5 4 3 3 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	REC19 9 9 8 6 6 5 5 7 7 6 6 5 7 7 6 6 3 3 3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 1 1 1 1 1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

Page 2

5. 10. 20. 25. 30. 35. 40. 45. 50. 55. 60.	* * * * * * * * * * * * * *	1.1 2.3 2.5 2.9 1.9 1.85 1.4	. 3 . 5 . 7 . 9 1. 0 1. 0 . 9 . 9 . 9 . 9 . 9 1. 1	. 1 . 3 . 6 . 7 . 8 . 7 . 7 . 7 . 6 . 8	. 1 . 2 . 4 . 5 . 5 . 5 . 5 . 6 . 6 . 7		
65. 70. 75. 80. 85. 90. 95. 100. 105. 120. 125. 130. 125. 130. 140. 145. 155. 165.	* * * * * * * * * * * * *	1.22.22.199854336804552197666556655456556778 1.22.22.199854336804552197666556655456556778	$\begin{array}{c} 1 \\ 3 \\ 6 \\ 3 \\ 8 \\ 9 \\ 1 \\ 8 \\ 7 \\ 4 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$. 4 6 7 8 7 7 7 7 6 7 8 0 2 4 0 7 9 2 8 9 7 9 8 8 7 6 5 5 5 4 3 2 2 2 2 2 1 0 0 0 0 1 1.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. 1 2 4 5 5 5 5 6 6 6 7 7 1 3 9 7 1 2 1 0 2 7 4 4 2 9 8 7 7 5 5 6 6 6 6 6 5 5 5 6 6 6 5 5 5 6 6 6 5 5 5 6 6 6 6 6 6 6 5 5 5 6		
165. 170. 175. 180. 185. 190. 195. 200. 205. 1	* * * * * * *	1.5 1.6 1.5 1.6 1.7 1.7	2.4 2.4 2.4 2.3 2.3 2.3 2.3 2.4	2.2 2.2 2.2 2.1 2.0 2.0 2.0 2.1	1.6 1.6 1.6 1.5 1.5 1.5 1.5		
	JOB:		1 Opt	3 2030) AM 1B3	AM30. DA	Г
WI ND	ANGL			0360.			
WI ND ANGLE (DEGF	* (<u>=</u> * R)* F	CONCEN (I REC21 I	FRATIO PPM) REC22 I		REC24		
210. 215. 220. 225. 230. 235. 240. 245. 250. 250. 260. 265. 270. 275. 280. 275. 280. 275. 280. 275. 290. 295. 300. 305. 305.	* * * * * * * * * * * * * * * * * * * *	2. 0 2. 0 2. 2 2. 2 2. 2 2. 2 2. 2 2. 2	2. 4 2. 4 2. 4 2. 4 2. 5 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6 2. 6	2.0 2.1 2.0 2.1 2.2 2.1 2.2 2.4 2.3 2.4 2.3 2.4 2.3 1.9 1.6 1.2 8 .5 4 3.2 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2	1.6 1.7 1.8 1.9 2.1 2.2 2.3 2.2 2.3 2.2 2.0 2.0 1.2 2.3 2.2 2.0 1.6 1.2 8.6 .4 .2 2.2 2.2		

1B3AM30. OUT

RUN: Site 1 Opt 3 2030 AM

30	5.	*	. 0	. 2	. 2	. 2				
31	0.	*	. 0	. 1	. 1	. 2				
31	5.	*	. 0	. 1	. 1	. 1				
32	0.	*	. 0	. 1	. 1	. 1				
32	5.	*	. 0	. 1	. 1	. 1				
33	0.	*	. 0	. 1	. 1	. 1				
33	5.	*	. 0	. 1	. 1	. 1				
34	0.	*	. 0	. 0	. 0	. 0				
34	5.	*	. 0	. 0	. 0	. 0				
35	0.	*	. 1	. 0	. 0	. 0				
35	5.	*	. 3	. 1	. 0	. 0				
36	0.	*	. 6	. 1	. 1	. 0				
		- * -								
MA	Х	*	2.5	3.1	3.2	3.2				
DE	GR.	*	25	95	95	95				
			IEST CON				60 PPM	AT	100	DEGREES FROM REC12.
			HI GHEST					PPM	AT	20 DEGREES FROM REC3 .
TH	E 3	RD	HI GHEST	CONCE	ENTRATI	ONIS	3.50	PPM	AT	250 DEGREES FROM REC11.

Site 1 Opt 3 2014 PM 1E	3PM14.DAT	60.0321.0.00	00.000240.3	04800	000	1
1 SE MID S	743.	1116. 5.0				
SE 164 S SE 82 S	857. 939.	1123.5.01128.5.0				
SE 02 S SE CNR	1020.	1120. 5.0 1134. 5.0				
SE 82 E	1022.	1053. 5.0				
NE 82 E	1075.	1056. 5.0				
NE CNR NE 82 N	1076. 1156.	1137.5.01142.5.0				
NE 164 N	1238.	1142. 5.0 1146. 5.0				
NE MID N	1341.	1153. 5.0				
NW MID N	1453.	1280. 5.0				
NW 164 N	1316.	1272. 5.0				
NW 82 N NW CNR	1234. 1138.	1269.5.01288.5.0				
NW 82 W	1137.	1385. 5.0				
NW 164 W	1145.	1466. 5.0				
NW MID W	1156.	1626. 5.0				
SW MID W SW 164 W		1597.5.01434.5.0				
SW 104 W SW 82 W	1026.	1354. 5.0				
SW CNR		1273. 5.0				
SW 82 S		1248. 5.0				
SW 164 S		1243. 5.0				
SW MID S Site 1 Opt 3 2014 PM	692.	1235. 5.0 27 1 0				
1						
NB Rtl aprch AG	58. 1109	. 581. 1136.	403211.4	0.	56	30.
1	582. 1136	5. 1083. 1166.	200411 4	0.	56	30.
NB Rt1 thru AG	582. 1136). 1003. 1100.	300411.4	0.	20	30.
NB Rt1 thru AG	984. 1160		0. 36	3		
120 60	2.0 3004	102.2 1678 1 3				
1 NB Rt1 left AG	572 1165	. 1065. 1195.	102311.4	0.	44	30.
NB Rtl left AG	572. 1167	. 1005. 1195.	102311.4	0.	44	50.
NB Rtl left AG	983. 1190	604. 1169.	0. 24	2		
	2.0 1023	102.2 1700 1 3				
1 NB Rt1 departAG	1095 1165	. 1470. 1188.	325611 /	0	56	30.
1	1005. 1107	. 1470. 1100.	525011.4	0.	50	50.
NB Rtl departAG	1470. 1188	. 1784. 1227.	325611.4	0.	44	30.
1	1004 1005	0000 1000	205611 4	0		2.0
NB Rtl departAG	1784. 1227	2. 2072. 1272.	325611.4	0.	44	30.
SB Rtl aprch AG	2069. 1311	. 1694. 1264.	267411.4	0.	44	30.
1						
SB Rt1 aprch AG	1694. 1264	. 1395. 1248.	267411.4	0.	44	30.
1 SB Rt1 th+rt AG	1395. 1248	. 1057. 1231.	266911.4	0.	56	30.
2	1393. 1210	. 1057. 1251.	200911.1	0.	50	50.
SB Rt1th+rt AG	1144. 1236		0. 36	3		
120 76	2.0 2669	102.2 1660 1 3				
1 SB Rt1 left AG	1378. 1236	5. 1241. 1217.	1011.4	0.	32	30.
SE RELETER AG	-J/U. 12JC	·· · · · · · · · · · · · · · · · · · ·	TOTT.4	0.	52	50.

1							
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	1011.4	0.	32	30.
SB	Rt1 left AG 120 115	1147. 1212. 2.0 10		0. 12	1		
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	310411.4	0.	56	30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	310411.4	0.	56	30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	82911.4	0.	32	30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	82911.4	0.	56	30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	82911.4	0.	56	30.
EB	Rt28 aprchAG 120 94		1068. 1409. 102.2 1523 1 3	0. 36	3		
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	3011.4	0.	32	30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	16011.4	0.	44	30.
WB	Rt28 aprchAG 120 104			0. 24	2		
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	130511.4	0.	44	30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	130511.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	130511.4	0.	32	30.

JOB: Site 1 Opt 3 2014 PM 1B3PM14.DAT

MODEL RESULTS

RECEPTOR

SE MID S SE 164 S SE 26 S SE CNR SE 82 E NE 82 E NE 26 CNR NE 164 N NE 164 N NW 164 N NW 164 N NW 164 W SW 164 W SW 164 W SW 164 W SW 164 S SW 164 S SW 164 S

 $\begin{array}{c} 1.\\ 2.\\ 3.\\ 4.\\ 5.\\ 6.\\ 7.\\ 8.\\ 9.\\ 10.\\ 11.\\ 12.\\ 13.\\ 14.\\ 15.\\ 16.\\ 17.\\ 18.\\ 20.\\ 21.\\ 23.\\ 23.\\ 24. \end{array}$

1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

11. SB 12. SB 13. SB 14. SB 15. SB 16. SB 17. SB 18. EB 19. EB 20. EB 21. EB 22. EB	Rt1 th+rt * Rt1 th+rt * Rt1 left * Rt1 left * Rt1 left * Rt1 depart* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 aprch* Rt28 depar*	1395.0 1395.0 1144.0 1378.0 1240.0 1147.0 1056.0 921.0 1226.0 1088.0 1072.0 1043.0 1039.0	1248.0 1236.0 1236.0 1217.0 1217.0 1212.0 1231.0 1221.0 2185.0 1547.0 1425.0 1247.0 1425.0 1247.0	1057. 0 4999. 6 1241. 0 1058. 0 1157. 4 921. 0 58. 0 1087. 0 1025. 0 1025. 0 1086. 4 1043. 0	1231.0 * 1231.0 * 1231.0 * 1217.0 * 1217.0 * 1212.5 * 1212.5 * 1221.0 * 1221.0 * 1221.0 * 1222.0 * 1202.0 * 1202.0 * 1202.0 *	3860. 138. 182. 10. 135. 864. 653. 123. 228. 216.	267. AG 87. AG 262. AG 267. AG 87. AG 266. AG 266. AG 267. AG 192. AG 192. AG 192. AG 122. AG 179. AG
22. UB 23. WB 24. WB 25. WB 26. WB 27. WB	Rt28 aprch* Rt28 aprch* Rt28 depar* Rt28 depar* Rt28 depar*	1052.0 1050.0 1069.0 1121.0 1126.0	1015. 0 1141. 0 1197. 0 1424. 0 1570. 0	1049.0 1050.4 1121.0 1126.0 1257.0	1190.0 * 1095.5 * 1424.0 * 1570.0 * 2180.0 *	175. 45. 233. 146.	359. AG 180. AG 13. AG 2. AG 12. AG
DATE: 05/10/	Opt 3 2014 PM 1 2009 TIME: 18 QUEUE LINK PARA	: 35: 23. 47	r		RUN: Sit	e 1 Opt 3 2	014 PM
LINK DESC	CRIPTION * * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATI ON FLOW RATE (VPH)	IDLE EM FAC (gm/hr)
3. NB 5. NB 12. SB 15. SB 21. EB 24. WB	Rt1 thru * Rt1 left * Rt1th+rt * Rt1 left * Rt28 aprch* Rt28 aprch*	120 120 120 120 120 120 120	60 101 76 115 94 104	2. 0 2. 0 2. 0 2. 0 2. 0 2. 0 2. 0	3004 1023 2669 10 829 160	1678 1700 1660 1752 1523 1706	102. 20 102. 20 102. 20 102. 20 102. 20 102. 20 102. 20
RECEPTOR LC	DCATI ONS						

		*				*					
1.	NB	Rt1 aprch *	58.0	1109.0	581.0	1136.0 *	524.		AG		11.4
2.		Rt1 thru *	582.0	1136.0	1083.0	1166.0 *	502.	87.		3004.	11.4
3.		Rt1 thru *	984.0	1160.0	-1659.7	1007.3 *	2648.	267.		411.	100.0
4.	NB	Rt1 left *	572.0	1167.0	1065.0	1195.0 *	494.	87.	AG	1023.	11.4
5.	NB	Rt1 left *	983.0	1190.0	-2407.9	1002.1 *	3396.	267.	AG	461.	100.0
6.	NB	Rt1 depart*	1085.0	1167.0	1470.0	1188.0 *	386.	87.		3256.	11.4
7.	NB	Rt1 depart*	1470.0	1188.0	1784.0	1227.0 *	316.	83.	AG	3256.	11.4
8.	NB	Rt1 depart*	1784.0	1227.0	2072.0	1272.0 *	291.	81.	AG	3256.	11.4
9.	SB	Rt1 aprch *	2069.0	1311.0	1694.0	1264.0 *	378.	263.	AG	2674.	11.4
10.	SB	Rt1 aprch *	1694.0	1264.0	1395.0	1248.0 *	299.	267.	AG	2674.	11.4
11.		Rt1 th+rt *	1395.0	1248.0	1057.0	1231.0 *	338.	267.	AG	2669.	11.4
12.		Rt1th+rt *	1144.0	1236.0	4999.6	1425.6 *	3860.	87.	AG	521.	100.0
13.		Rt1 left *	1378.0	1236.0	1241.0	1217.0 *	138.	262.	AG	10.	11.4
14.		Rt1 left *	1240.0	1217.0	1058.0	1208.0 *	182.	267.	AG	10.	11.4
15.	SB	Rt1 left *	1147.0	1212.0	1157.4	1212.5 *	10.	87.	AG	263.	100.0
16.	SB	Rt1 depart*	1056.0	1231.0	921.0	1221.0 *	135.	266.	AG	3104.	11.4
17.	SB	Rt1 depart*	921.0	1221.0	58.0	1172.0 *	864.	267.	AG	3104.	11.4
18.	EB	Rt28 aprch*	1226.0	2185.0	1087.0	1547.0 *	653.	192.	AG	829.	11.4
19.		Rt28 aprch*	1088.0	1547.0	1072.0	1425.0 *	123.	187.	AG	829.	11.4
20.	EB	Rt28 aprch*	1072.0	1425.0	1025.0	1202.0 *	228.	192.	AG	829.	11.4
21.		Rt28 aprch*	1043.0	1287.0	1086.4	1499.0 *	216.	12.		644.	100.0
22.		Rt28 depar*	1039.0	1194.0	1043.0	1015.0 *	179.	179.	AG	30.	11.4
23.		Rt28 aprch*	1052.0	1015.0	1049.0	1190.0 *	175.	359.	AG	160.	11.4
24.	WB	Rt28 aprch*	1050.0	1141.0	1050.4	1095.5 *	45.	180.	AG	475.	100.0
25.	WB	Rt28 depar*	1069.0	1197.0	1121.0	1424.0 *	233.	13.	AG	1305.	11.4
26.	WB	Rt28 depar*	1121.0	1424.0	1126.0	1570.0 *	146.	2.	AG	1305.	11.4
27.	WB	Rt28 depar*	1126.0	1570.0	1257.0	2180.0 *	624.	12.	AG	1305.	11.4
JOB	: Site 1 0	pt 3 2014 PM 1	B3PM14. DA1	Γ		RUN: Site 1	Opt 3 2	2014 P	M		

COORDINATES (FT) Y Z

 $\begin{array}{c} 1116. \\ 0\\ 1123. \\ 0\\ 1134. \\ 0\\ 1053. \\ 0\\ 1056. \\ 0\\ 1056. \\ 0\\ 1137. \\ 0\\ 1142. \\ 0\\ 1142. \\ 0\\ 1280. \\ 0\\ 1288. \\ 0\\ 1288. \\ 0\\ 1288. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1269. \\ 0\\ 1273. \\ 0\\ 1248$

Х

* * * * * *

* * * * * *

*

 $\begin{array}{c} 743.\ 0\\ 857.\ 0\\ 939.\ 0\\ 1022.\ 0\\ 1075.\ 0\\ 1075.\ 0\\ 1156.\ 0\\ 11453.\ 0\\ 1138.\ 0\\ 1138.\ 0\\ 1138.\ 0\\ 1138.\ 0\\ 1138.\ 0\\ 1138.\ 0\\ 11453.\ 0\\ 11453.\ 0\\ 11453.\ 0\\ 0\\ 1138.\ 0\\ 0\\ 1026.\ 0\\ 995.\ 0\\ 990.\ 0\\ 819.\ 0\\ 692.\ 0\\ 692.\ 0\\ \end{array}$

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Rt1 thru ^ Rt1 left * Rt1 left * Rt1 depart* Rt1 depart* Rt1 depart* Rt1 aprch * Rt1 aprch * 984.0 572.0 983.0 1085.0 1470.0 1784.0 2069.0 1694.0 NB NB NB NB SB SB

JOB: Site 1 Opt 3 2014 PM 1B3PM14.DAT DATE: 05/10/2009 TIME: 18:35:23.47

LINK VARIABLES

1

1

SITE & METEOROLOGIC	AL VARIABLES	
VS = 0 CM/S	VD = 0 CM/S	70 = 321. CM
U = 1.0 M/S	CLAS = 4 (D)	ATIM = 60. MINUTES

	LINK	DESCRI PTI ON	*	LINK C	OORDI NATES	S (FT)	*	LENGTH	BRG	ГҮРЕ	VPH
			* X1	Y1	X2	2 Y2	*	(FT)	(DEG)		
1.	NB	Rt1 aprch	*	58.0 11	09.0 5	581.0 113	6.0 *	524.	87.	AG	4032.
2.	NB	Rt1 thru	* 5	82.0 11	36.0 10	083.0 116	6.0 *	502.	87.	AG	3004.
3.	NB	Rt1 thru	* 9	84.0 11	60.0 -16	659.7 100	7.3 *	2648.	267.	AG	411.
4.	NB	Rt1 left	* 5	72.0 11	67.0 10	065.0 119	5.0 *	494.	87.	AG	1023.
5.	NB	Rt1 left	* 9	83.0 11	90.0 -24	407.9 100	2.1 *	3396.	267.	AG	461.
5.	NB	Rt1 depart	* 10	85.0 11	67.0 14	470.0 118	8.0 *	386.	87.	AG	3256.
7.	NB	Rt1 depart	* 14	70.0 11	88.0 17	784.0 122	7.0 *	316.	83.	AG	3256.
З.	NB	Rt1 depart		84.0 12	27.0 20	072.0 127	2.0 *	291.	81.	AG	3256.
Э.	SB	Rt1 aprch	* 20	69.0 13	11.0 16	694.0 126	4.0 *	378.	263.	AG	2674.
Э.	SB	Rt1 aprch	* 16	94.0 12	64.0 13	395.0 124	8.0 *	299.	267.	AG	2674.
1.	SB	Rt1 th+rt	* 13	95.0 12	48.0 10	057.0 123	1.0 *	338.	267.	AG	2669.
n n	SD	Dt1tbirt	* 11	11 0 12	24 0 40	00 4 140	E	2040	07	AC	E 2 1

	CLAS =	4	(D)	ATIM =	60. MINUTES	М	IXH = 1	1000. M	AMB
ON	*				(FT)	*			/DF

1B3PM14. OUT CAL30HC: LINE SOURCE DISPERSION MODEL - VERSION 2.2, JUNE 2000

VD = .0 CM/S ZO = 321. CM					MIXH =	1000. M	AMB =
CLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB =							
	CLAS =	4 (D)	ATIM = 60.	MI NUTES	MIXH =	1000. M	AMB =

RUN: Site 1 Opt 3 2014 PM

H W (FT) (FT)

ARRI VAL RATE

SI GNAL TYPE

1

1 1 1 V/C QUEUE (VEH)

.0 PPM

EF (G/MI)

PAGE 3

Page 1

RUN: Site 1 Opt 3 2014 PM

) (FT) (VEH 56.0 56.0 36.0 1.28 134.5 44.0 24.0 2.41 172.5 56.0 44.0 44.0 44.0 36.0 1.61 196.1 32.0 32.0 12.0 .71 .5 56.0 32.0 57.0 5 PAGE 2

(DEGR)*	REC1	REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9		/14.00 REC11		REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
$\begin{array}{c} 0.\\ 5.\\ 10.\\ 15.\\ 25.\\ 30.\\ 40.\\ 50.\\ 50.\\ 50.\\ 50.\\ 50.\\ 75.\\ 85.\\ 95.\\ 100.\\ 110.\\ 125.\\ 135.\\ 145.\\ 155.\\ 160.\\ 175.\\ 180.\\ 190.\\ 200.\\ 200.\\ 1\end{array}$	***************	$\begin{array}{c} 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 7 \\ 7 \\ 3 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 9 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	$\begin{array}{c} 3,7,6&8&0&1&1&1&8\\ 3,3,3,4&4&4&4&8&9&5&9&8&4&2&4&5&5&8&2&7&3&2&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1&1$	3.012333199977669762681175322111110000000000000000000000000000000	$\begin{array}{c} 2.60\\ 3.09\\ 3.18\\ 2.66\\ 2.25\\ 7.7\\ 3.12\\ 2.66\\ 3.39\\ 3.99\\ 3.37\\ 3.33\\ 2.17\\ 1.55\\ 2.25\\ 7.7\\ 1.22\\ 1.15\\ 1.22\\ 1.10\\ 9.75\\ 5.43\\ 1.10\\ 0.00\\ 1.1\\ 1.10\\ 0.00\\ 1.1\\ 1.10\\ 0.00\\ 1.1\\ 1.1$	$\begin{array}{c} 2, 0 \\ 1, 9 \\ 2, 2, 3 \\ 2, 3 \\ 2, 9 \\ 1, 8 \\ 8, 6 \\ 7, 7 \\ 1, 7 \\ 1, 7 \\ 1, 7 \\ 1, 6 \\ 3, 2 \\ 1, 1 \\ 1, 6 \\ 3, 2 \\ 1, 1 \\ 1, 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 2.1\\ 1.9\\ 1.7\\ 1.5\\ 1.2\\ 1.3\\ 1.1\\ 1.2\\ 1.3\\ 1.4\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	3 2 8 5 4 2 2 1 1 2 3 5 7 9 0 2 5 3 8 2 2 3 9 5 2 1 1 2 2 2 2 5 7 9 0 2 5 3 8 2 2 3 9 5 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.9742223445222245679013355283695322211111100000000000000000000000000000	$\begin{array}{c} 2.55\\ 2.23\\ 2.33\\ 2.24\\ 2.57\\ 2.23\\ 2.24\\ 2.57\\ 2.27\\ 2.29\\ 3.34\\ 4.08\\ 2.51\\ 2.25\\ 2.27\\ 2.29\\ 3.34\\ 4.08\\ 2.25\\ 1.58\\ 6.32\\ 2.25\\ 1.11\\ 1.11\\ 1.11\\ 0.00\\$	$\begin{array}{c} 2,4\\ 2,3\\ 3,2\\ 2,3\\ 2,4\\ 4,6\\ 6,7\\ 8,0\\ 2,3\\ 3,3\\ 4,1\\ 7,2\\ 6,6\\ 7,8\\ 0,2\\ 2,3\\ 3,3\\ 3,3\\ 4,1\\ 7,2\\ 6,6\\ 7,8\\ 0,2\\ 2,2\\ 1\\ 1,1\\ 1,1\\ 1,1\\ 1,1\\ 1,1\\ 1,1$	$\begin{array}{c} . \\ 0 \\ . \\ 0 \\ 0 \\ . \\ 0 \\ 0 \\ 0 \\ 0 \\$	$\begin{array}{c} . 1 \\ . 0 \\ 0 \\ 0 \\ 0 \\ . 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 1 \\ 0 \\ 9 \\ 6 \\ 4 \\ 3 \\ 3 \\ 3 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 2\\ 2\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	$, 755310000001261736919875543221098776553\ 000000000000000000000000000000000000$.987 .63310 .000000 .000000 .1258124 .1145323421111111012 .1145323421111111111111111111111111111111	.86642 .1000000000000000000000000000000000000	. 4 . 5 . 6 . 7 . 7 . 5 . 5 . 7 . 7 . 7 . 7	77777777777777777777777777777777777777	4 6 0 0 2 3 4 4 4 4 4 4 3 6 8 2 3 5 5 2 4 4 4 5 7 7 7 5 5 3 5 4 1 1 6 1 8 8 5 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c} . \\ 7 \\ 0 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$
	J0B *				4 PM 1	IB3PM14	I. DAT					Site 1	Opt 3	3 2014	PM				PAGE	E 4	
WI ND ANGLE (DEGR	*	CONCEN	ITRATI O PPM)	N		REC5	I. DAT REC6	REC7	REC8	REC9	RUN:					REC15	REC16	REC17	PAGE REC18		REC20
WI ND ANGLE	*	CONCEN	ITRATI O PPM)	N REC3 .1 .1 .1 .2 .6 1.0 8 .6 1.0 8 .6 1.0 8 .6 1.0 8 .6 1.0 8 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	REC4 . 1 . 1 . 1 . 1 . 2 . 7 . 7 . 1 . 1 . 2 . 7 . 7 . 1 . 1 . 2 . 7 . 7 . 1 . 1 . 9 . 0 . 4 . 8 . 5 . 4 . 3 . 8 . 4 . 3 . 8 . 4 . 3 . 8 . 4 . 2 . 2 . 4 . 2 . 2 . 4 . 4 . 4 . 4 . 5 . 5 . 5 . 4 . 5 . 4 . 5 . 5 . 5 . 4 . 5 . 5 . 5 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	IB3PM14		$\begin{array}{c} 1 & 0 \\ 1 & 1 \\ 2 \\ 1 & 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 9 \\ 9 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 5 \\ & 7 \\ & 3 \\ & 2 \\ & 0 \\ & 3 \\ & 5 \\ & 3 \\ & 4 \\ & 2 \\ & 5 \\ & 6 \\ & 6 \\ & 9 \\ & 9 \\ & 2 \\ & 1 \\$	REC9 1 1 1 1 1 2 2 6 1 0 1 6 2 5 3 3 6 3 7 2 9 2 7 7 2 5 5 5 5 5 5 5 5 5 5 5 5 5	RUN: REC10 . 1 . 1 . 2 . 2 . 3 . 5 . 8 1. 6 . 3 . 2 . 3 . 5 . 8 1. 6 . 3 . 3 . 2 . 3 . 5 . 8 1. 6 . 3 . 7 3. 2 . 3 . 4 . 3 . 7 3. 2 . 3 . 7 3. 2 . 3 . 4 . 3 . 7 . 3 . 7 . 3 . 2 . 3 . 5 . 8 . 4 . 3 . 7 . 3 . 2 . 3 . 4 . 3 . 5 . 8 . 7 . 3 . 7 . 3 . 7 . 3 . 4 . 4 . 5 . 5 . 7 . 4 . 5 . 7 . 5 . 7 . 4 . 5 . 7 . 5 . 7 . 4 . 5 . 7 . 4 . 5 . 7 . 7 . 7 . 7 . 4 . 7 . 4 . 5 . 7 . 4 . 5 . 2 . 5 . 2 . 4 . 2 . 5 . 2 . 4 . 5 . 5 . 4 . 4 . 5 . 5 . 5 . 4 . 5 . 5 . 5 . 4 . 4 . 5 . 5 . 4 . 4 . 5 . 5 . 4 . 4 . 5 . 5 . 4 . 4 . 5 . 5 . 5 . 4 . 4 . 5 . 5 . 5 . 4 . 4 . 5 . 5 . 5 . 4 . 5 . 5 . 4 . 5 . 5 . 4 . 5 . 5 . 5 . 4 . 5 . 5 . 5 . 4 . 5 . 5 . 5 . 5 . 5 . 4 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5	REC11 3. 2 3. 4 3. 5 3. 4 3. 5 3. 6 3. 8 4. 9 4. 7 4. 2 3. 5 2. 6 1. 4 1. 0 . 4 2. 1 . 1 . 1 . 1 . 0 . 0 . 0	REC12 3.2 3.34 3.6 3.8 4.1 4.9 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	REC13 3. 2 3. 4 3. 5 3. 6 4. 0 4. 3 5. 6 4. 0 4. 3 5. 6 4. 6 4. 8 4. 7 4. 2 3. 5 2. 7 1. 4 1. 0 . 9 8 . 8 7 . 7 . 6 . 4 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	REC14 1.7 1.7 2.1 2.25 2.8 3.5 3.5 3.5 3.5 3.5 1.3 1.2 2.6 1.5 1.3 1.2 1.3 1.4 1.4 1.4 1.5 1.5 1.2 2.5 2.7 7 7	$\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $	REC16 2.7 2.9 2.9 3.4 3.3 3.4 3.2 3.2 3.1 2.5 2.4 2.5 2.4 2.0 2.9 1.7 1.6 1.5 1.4 1.3 1.1 1.0 9 9 9 9 9 9 9 9 9 9 8 8	2:54 2:4 2:3 1.9 1.7 1.66 1.4 1.4 1.3 1.6 1.4 1.4 1.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	REC18 1.1 1.0 .9 .8 .8 1.0 .9 .8 .7 .6 .3 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC19 1.6 1.5 1.4 1.3 1.5 1.5 1.3 1.2 1.1 9 6 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 1.5\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.8\\ 1.9\\ 2.0\\ 0\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9\\ 1.9$
WI ND ANGLE (DEGR 210. 225. 230. 235. 245. 255. 265. 270. 255. 265. 270. 285. 295. 300. 310. 325. 310. 335. 330. 335. 345. 355.	*	CONCEN REC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TRATIO (PPM) REC2 	N REC3	REC4 .11 .11 .12 .33 .71 .19 .34 .08 .40 .40 .40 .40 .40 .40 .40 .40	IB3PM14 REC5 	REC6 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	$\begin{array}{c}1&0&1\\1&1&2&3\\1&1&4&5\\1&1&2&3&4\\1&1&1&5&6&9\\2&2&3&4&5&5&5&5\\2&5&5&5&5&5&5&5\\3&3&2&2&2&2&2&2\\2&2&2&2&2&2&2&2\\2&2&2&2&$	$\begin{array}{c} . & 1 \\ . & 1 \\ . & 1 \\ . & 2 \\ . & 5 \\ . & 7 \\ . & 3 \\ . & 5 \\ . & 3 \\ . & 3 \\ . & 4 \\ . & 3 \\ . & 4 \\ . & 3 \\ . & 4 \\ . & 3 \\ . & 4 \\ . & 3 \\ . & 4 \\ . & 3 \\ . & 4 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 5 \\$	REC9 . 1 . 1 . 1 . 1 . 2 . 2 . 0 1. 6 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3	RUN: REC10 . 11 . 11 . 2 . 3 . 5 . 8 1.6 2.3 . 6 3.2 3.2 3.2 3.2 3.2 3.3 . 7 3.2 3.2 3.3 . 7 3.2 3.2 3.3 . 2 3.3 . 2 3.3 . 2 . 3 . 3 . 4 . 3 . 5 . 8 . 8 . 7 . 3 . 2 . 3 . 4 . 4 . 5 . 5 . 8 . 7 . 3 . 2 . 3 . 4 . 4 . 5 . 5 . 8 . 7 . 3 . 4 . 4 . 5 . 5 . 7 . 4 . 4 . 4 . 5 . 4 . 4 . 4 . 5 . 4 . 4 . 5 . 4 . 4 . 4 . 5 . 4 . 4 . 4 . 5 . 4 . 4 . 4 . 4 . 5 . 4 . 4 . 5 . 4 . 4 . 5 . 4 . 4 . 5 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	REC11 3.22 3.43 3.56 3.84 4.3 4.3 4.3 4.3 4.2 3.56 1.4 1.0 .0 .1 .1 .1 .1 .1 .0 0 .0 0	REC12 3.2 3.3 3.4 3.4 3.4 3.4 4.2 4.9 5.000 5.00 5.0000 5.000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.0000 5.00000 5.0000 5.00000 5.00000 5.0000000 5.0000000000	REC13 3. 2 3. 4 3. 5 3. 6 4. 0 4. 3 5. 6 4. 0 4. 3 5. 6 4. 6 4. 8 4. 7 4. 2 3. 5 2. 7 1. 4 1. 0 9 8 8 7 7 6 6 4 4 4 4 5 6 6 6 6 7 7 6 6 6 6 6 6 6 6 6 6 6 6 6	REC14 1.77 1.77 2.25 2.81 3.57 3.8 3.42 2.25 2.81 3.57 3.8 3.42 1.95 1.32 1.33 1.44 1.44 1.55 1.33 1.22	$\begin{array}{c} 2.2\\ 2.2\\ 2.6\\ 9\\ 3.3\\ 5.5\\ 5.2\\ 2.2\\ 2.0\\ 7\\ 6\\ 6\\ 7\\ 7\\ 1.7\\ 8\\ 6\\ 5\\ 5\\ 1\\ 5\\ 3\\ 3\\ 2.5\\ 5\\ 2.2\\ 2\\ 2.2\\ 1.6\\ 6\\ 1.7\\ 7\\ 1.8\\ 6\\ 5\\ 5\\ 1\\ 1.5\\ 3\\ 1.5\\ 5\\ 1\\ 1.5\\ 3\\ 1.5\\ 5\\ 1\\ 1.5\\ 3\\ 1\\ 1.5\\ 5\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\$	2.79 2.99 2.94 3.34 3.321 2.58 2.240 2.197 1.65 1.310 9.99 9.99 9.99 9.99 9.99 9.99 9.99 9.	2.54 2.31 1.97 1.66 1.41 1.44 1.3 1.66 1.44 1.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	REC18 1.1 1.0 9 9 8 8 1.0 9 8 7 6 3 7 6 3 7 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	REC19 1.6 1.5 1.4 1.3 1.5 1.3 1.2 1.15 1.3 1.2 1.15 1.3 1.2 1.1 0 0 0 0 0 0 0 0 0 0 0 0 0	1.5 1.7 1.7 1.8 1.9 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.6 1.4 1.0 .0 .0 .0 .0 .0

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

 WI ND
 * CONCENTRATI ON ANGLE *
 (PPM)

 (DEGR)*
 REC21
 REC22
 REC23
 REC24

 0.
 *
 .2
 .0
 .0
 .0

5. 10. 25. 30. 35. 50. 55. 60. 65. 70. 75. 80. 85. 90. 95. 100. 105. 110. 120. 130. 130. 130. 130.	* * * * * * * * * * * * * * * * * * * *		00334568999913862575310890101200122212012 111233333332223333333333	00013444546813833587747566321111221221101 	000111122434582631710010876543112222221 1123344444333333333333333333					
145. 150. 155. 160.	* * *	2.1 1.9 1.9 1.9 1.9 1.9 2.0	3. 1 3. 2 3. 0 3. 0	3.1 3.1 3.1 3.1	3.3 3.1 3.1 3.2					
165. 170. 175. 180.	* * *	1.9 2.0 2.0 2.2	3. 1 3. 2 3. 2 3. 2	3.2 3.1 3.2 3.2	3.2 3.2 3.2 3.2					
185. 190. 195. 200.	* * * *	2.0 2.2 2.1 2.2 2.2 2.2 2.5	3. 1 3. 2 3. 0 3. 1	3.1 3.1 3.0 3.1	3.1 3.1 3.1					
205. 1	*	2.6		3.1	3. 2					
	JOE				4 PM 1E	33PM1	4. D/	ΑT		
	ANG *	CONCEN		D360.						
WI ND ANGLI (DEGI 210.	F *	CONCEN (I REC21	PPM) REC22 F		REC24					
210. 215.	*	2.8 2.8	3. 2 3. 4	3.2 3.3 3.5 3.7 3.7	3.4 3.5					
220. 225.	*	2.8 3.1	3.5 3.7	3.5 3.7	3.5 3.7					
230. 235.	*	3.1 3.3	3.9	3.7 4.0	4.0 4.1					
240. 245.	*	3.4 3.4	4.2	4.2 4.3	4.2 4.3					
250. 255.	*	3.6	4.5	4.5 4.5	4.6 4.4					
260.	*	3.4 3.1	4.1	4.1	4.0					
265. 270.	*	2.4 1.8	2.8	3.6 2.6	3.5 2.6					
275. 280.	*	1.0	1.8	1.8 1.2	1.8 1.2 .6					
285.	*	. 2	. 6	. 6	. 6					
	*	. 1	. 3	. 4	. 4					
290. 295.	* *	2.4 1.8 1.0 .5 .2 .1 .0	. 3 . 2 2	. 4 . 2 2	. 4 . 3 2					
290. 295. 300. 305.	* * *	. 0 . 0	. 3 . 2 . 2 . 1	. 6 . 4 . 2 . 2 . 2	. 4 . 3 . 2 . 2					
290. 295. 300. 305. 310. 315.	* * * *	. 0 . 0 . 0 . 0	$\begin{array}{c} 3.2 \\ 4.3 \\ 3.7 \\ 9.1 \\ 2.8 \\ 4.3 \\ 5.5 \\ 1.6 \\ 8.8 \\ 2.8 \\ 2.1 \\ 2.8 \\ 2.1 \\ 1.6 \\ 3.2 \\ 2.1 \\ 1.6 \\ 3.2 \\ 2.1 \\ 1.6 \\$. 2 . 1 . 1	. 4 . 3 . 2 . 1 . 1					
290. 295. 300. 305. 310. 315. 320. 325.	* * *	. 0 . 0 . 0 . 0 . 0	.1	. 2 . 1 . 1 . 1 . 1	. 4 . 3 . 2 . 1 . 1 . 1 . 1 . 1					
290. 295. 300. 305. 310. 315. 320. 325. 330. 335.	* * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0	- 1	. 2 . 1 . 1 . 1	. 4 . 3 . 2 . 2 . 1 . 1 . 1					
290. 295. 300. 305. 310. 315. 320. 325. 330. 335. 340.	* * * * * * * * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0	. 2 . 1 . 1 . 1 . 1 . 1 . 1 . 0	. 4 . 3 . 2 . 1 . 1 . 1 . 1 . 1					
290. 295. 300. 305. 310. 320. 325. 330. 335. 340. 345. 350.	* * * * * * * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0 . 0	. 2 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0	.4 .3 .2 .1 .1 .1 .1 .0 .0					
290. 295. 300. 315. 320. 325. 330. 335. 340. 345. 355. 360.	* * * * * * * * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0	. 2 . 1 . 1 . 1 . 1 . 1 . 0 . 0	.4 .3 .2 .1 .1 .1 .1 .1 .1 .0					
290. 295. 300. 310. 315. 320. 325. 330. 340. 345. 355. 355. 360. 	* * * * * * * * * * * * * * * * * * * *	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 4 . 3 . 2 . 2 . 1 . 1 . 1 . 1 . 1 . 1 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0			A.T.	200	

THE HIGHEST CONCENTRATION IS 5.50 PPM AT 280 DEGREES FROM REC2. THE 2ND HIGHEST CONCENTRATION IS 5.50 PPM AT 280 DEGREES FROM REC3. THE 3RD HIGHEST CONCENTRATION IS 5.50 PPM AT 275 DEGREES FROM REC7.

RUN: Site 1 Opt 3 2014 PM

Site 1 1	Opt 3 2	2030 P	M 18	3PM30.D2	AT	60.	0321.0.0	000.000	240.	30480	000	1
SE MID				743.		16.	5.0					
SE 164				857.		23.	5.0					
SE 82 S SE CNR				939. 1020.		28. 34.	5.0 5.0					
SE 82 E				1020.		53.	5.0					
NE 82 E				1075.		56.	5.0					
NE CNR				1076.		37.	5.0					
NE 82 N				1156.	11	42.	5.0					
NE 164 1				1238.		46.	5.0					
NE MID I				1341.		53.	5.0					
NW MID				1453.		80.	5.0					
NW 164				1316.		72.	5.0					
NW 82 N NW CNR				1234. 1138.		69. 88.	5.0 5.0					
NW 82 W				1138.		85.	5.0					
NW 164				1145.		66.	5.0					
NW MID				1156.		26.	5.0					
SW MID				1072.		97.	5.0					
SW 164				1043.		34.	5.0					
SW 82 W				1026.		54.	5.0					
SW CNR				995.	12	73.	5.0					
SW 82 S				900.	12	48.	5.0					
SW 164	S			819.		43.	5.0					
SW MID				692.	12	35.	5.0					
Site 1	Opt 3 1	2030 P	М			27	1 0					
1		a sa sa a b	70	ГО	1100	F 0 1	1120	2000	0 0	0	ГС	20
NB 1	Rti	aprcn	AG	58.	1109.	581.	1136.	3860	9.2	0.	56	30.
1 NB	₽ +1	thru	лc	582.	1136.	1083.	1166.	2840	a 2	0.	56	30.
2	NUL	ciir u	AG	502.	1130.	1005.	1100.	2010	5.2	0.	50	50.
NB	Rt1	thru	AG	984.	1160.	603.	1138.	0.	36	3		
	120	4			2840		1678 1 3			_		
1												
NB	Rt1	left	AG	572.	1167.	1065.	1195.	1015	9.2	0.	44	30.
2												
	Rt1						1169.		24	2		
	120	9	2	2.0	1015	84.1	1700 1 3	3				
1	D+1		+ 1 0	1005	1107	1 4 7 0	1100	2000	0 0	0	ГC	20
	Rti	depar	tAG	1085.	1167.	14/0.	1188.	3080	9.2	0.	56	30.
1 NB	₽ +1	denar	+ 7 4	1470.	1188.	1784	1227.	3080	a 2	0	44	30.
1	KUI	uepar	LAG	14/0.	1100.	1/04.	1227.	2000	9.2	0.	11	50.
NB	Rt1	depar	tAG	1784.	1227.	2072.	1272.	3080	9.2	0.	44	30.
1	1.02	acFar	0110	2/011		20/21				•••		50.
SB	Rt1	aprch	AG	2069.	1311.	1694.	1264.	2575	9.2	Ο.	44	30.
1		-										
SB	Rt1	aprch	AG	1694.	1264.	1395.	1248.	2575	9.2	Ο.	44	30.
1												
SB	Rt1	th+rt	AG	1395.	1248.	1057.	1231.	2570	9.2	0.	56	30.
2		. 1		1 7 4 4	1026	1 2 2 2	1040	~	~~	~		
SB		th+rt 7		1144.	1236.	1388.			36	3		
1	120	7	U	2.0	2570	04.1	1659 1 3	ر				
SB	₽+1	left	AC	1378.	1236.	1241.	1217.	10	9.2	0.	32	30.
	ILUI	TCTC	лG	±370.	±200.	±47±.	±4±/.	ΤŪ	۷.۷	υ.	2	50.

1						
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	10 9.2	0.	32 30.
SB	Rt1 left AG 120 115	1147. 1212. 2.0 10		0. 12	1	
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	2985 9.2	0.	56 30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	2985 9.2	0.	56 30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	795 9.2	0.	32 30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	795 9.2	0.	56 30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	795 9.2	0.	56 30.
EB	Rt28 aprchAG 120 105	1043. 1287. 2.0 795	1068. 1409. 84.1 1523 1 3	0. 36	3	
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	30 9.2	0.	32 30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	160 9.2	0.	44 30.
WB	Rt28 aprchAG 120 109	1050. 1141. 2.0 160	1051. 1019. 84.1 1706 1 3	0. 24	2	
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	1295 9.2	0.	44 30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	1295 9.2	0.	32 30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	1295 9.2	0.	32 30.

1

1

JOB: Site 1 Opt 3 2030 PM 1B3PM30.DAT DATE: 05/10/2009 TIME: 18:54:59.64

1B3PM30. OUT CAL3QHC: LINE SOURCE DISPERSION MODEL - VERSION 2.2, JUNE 2000 RUN: Site 1 Opt 3 2030 PM

PAGE 1

SITE & METEOROLOGICAL VARIABLES

VS = .0 CM/S	VD = 0.0 CM/S	ZO = 321. CM		
U = 1.0 M/S	CLAS = 4 (D)	ATIM = 60. MINUTES	MIXH = 1000. M	AMB = . 0 PPM

LINK VARIABLES

LINK DESCRIPTION	* * X1	LINK COORDI Y1	X2	Y2 *	LENGTH (FT)	BRG TYPE (DEG)	VPH	EF (G/MI)	H W V/C QUE (FT) (FT) (V	UE EH)
1. NB Rt1 apro 2. NB Rt1 thr 3. NB Rt1 thr 4. NB Rt1 lef 5. NB Rt1 lef 6. NB Rt1 dep 7. NB Rt1 dep 9. SB Rt1 apro 10. SB Rt1 apro 11. SB Rt1 th+1 12. SB Rt1th+*	h * 58. * 582. * 984. * 983. rrt* 1085. rrt* 1470. rrt* 1784. h * 2069. ch * 1694. t * 1395.	0 1136.0 0 1160.0 0 1167.0 0 1190.0 0 1180.0 0 1188.0 0 1227.0 0 1311.0 0 1264.0 1248.0	581.0 1083.0 648.0 1065.0 -1046.4 1470.0 1784.0 2072.0 1694.0 1395.0 1057.0 3808.8	1136.0 * 1166.0 * 1140.6 * 1195.0 * 1077.6 * 1272.0 * 1272.0 * 1264.0 * 1248.0 * 1231.0 * 1367.1 *	524. 502. 337. 494. 2032. 386. 316. 291. 378. 299. 338. 2668.	87. AG 87. AG 267. AG 267. AG 267. AG 83. AG 81. AG 263. AG 267. AG 267. AG 87. AG	3860. 2840. 259. 1015. 346. 3080. 3080. 2575. 2575. 2575. 2570. 395.	9.2 9.2 100.0 9.2 100.0 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 9.2 100.0	$\begin{array}{c} . 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ . 0 \ 36. \ 0 \ . 97 \ 17. \\ 0 \ 44. \ 0 \\ . 0 \ 24. \ 0 \ 1. \ 49 \ 103. \\ 0 \ 56. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 44. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 0 \ 56. \ 0 \\ 1 \ 35 \ 135. \end{array}$	2
13. SB Rt1 left 14. SB Rt1 left 15. SB Rt1 left 16. SB Rt1 depate	* 1378. * 1240. * 1147. urt* 1056.	0 1236.0 0 1217.0 0 1212.0 0 1231.0	1241.0 1058.0 1157.4 921.0	1217.0 * 1208.0 * 1212.5 * 1221.0 *	138. 182. 10. 135.	262. AG 267. AG 87. AG 266. AG	10. 10. 216. 2985.	9.2 9.2 100.0 9.2	. 0 32. 0 . 0 32. 0 . 0 12. 0 . 71 . . 0 56. 0	
17. SB Rt1 depx 18. EB Rt28 api 19. EB Rt28 api 20. EB Rt28 api 21. EB Rt28 api 22. EB Rt28 dej 23. WB Rt28 api 24. WB Rt28 dej 25. WB Rt28 dej 26. WB Rt28 dej 27. WB Rt28 dej	rch* 1226. rch* 1088. rch* 1072. rch* 1043. par* 1039. rch* 1052. rch* 1050. par* 1069. par* 1121.	$\begin{array}{cccc} 0 & 2185. \ 0 \\ 0 & 1547. \ 0 \\ 1425. \ 0 \\ 0 & 1287. \ 0 \\ 0 & 1194. \ 0 \\ 0 & 1015. \ 0 \\ 0 & 1141. \ 0 \\ 0 & 1197. \ 0 \\ 0 & 1424. \ 0 \end{array}$	58. 0 1087. 0 1072. 0 1344. 5 1043. 0 1049. 0 1050. 5 1121. 0 1126. 0 1257. 0	1172.0 * 1547.0 * 1425.0 * 2758.4 * 1015.0 * 1080.1 * 1424.0 * 1570.0 * 2180.0 *	864. 653. 123. 228. 1502. 179. 175. 61. 233. 146. 624.	267. AG 192. AG 187. AG 192. AG 12. AG 179. AG 359. AG 180. AG 13. AG 2. AG 12. AG	2985. 795. 795. 592. 30. 160. 410. 1295. 1295. 1295.	9.2 9.2 9.2 100.0 9.2 9.2 100.0 9.2 9.2 100.0 9.2 9.2 9.2	.0 56.0 .0 32.0 .0 56.0 .0 36.0 1.91 76. .0 32.0 .0 44.0 .0 24.0 .81 3. .0 44.0 .0 32.0 .0 32.0	

RUN: Site 1 Opt 3 2030 PM

JOB: Site 1 Opt 3 2030 PM 1B3PM30. DAT DATE: 05/10/2009 TIME: 18:54:59.64

ADDITIONAL QUEUE LINK PARAMETERS

	LINK	DESCRI PTI ON	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATION FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3.	NB	Rt1 thru	*	120	46	2.0	2840	1678	84.10	1	3
5.	NB	Rt1 left	*	120	92	2.0	1015	1700	84.10	1	3
12.	SB	Rt1th+rt	*	120	70	2.0	2570	1659	84.10	1	3
15.	SB	Rt1 left	*	120	115	2.0	10	1752	84.10	1	3
21.	EB	Rt28 aprcl	า*	120	105	2.0	795	1523	84.10	1	3
24.	WB	Rt28 aprcl	า*	120	109	2.0	160	1706	84.10	1	3

RECEPTOR LOCATIONS

1. SE MID S * 743.0 1116.0 5.0 2. SE 164 S * 857.0 1123.0 5.0 3. SE 82 S * 939.0 1128.0 5.0 4. SE CNR * 1020.0 1134.0 5.0 5. SE 82 E * 1020.0 1134.0 5.0 5. SE 82 E * 1022.0 1053.0 5.0 6. NE 82 E * 1075.0 1066.0 5.0 7. NE CNR * 1076.0 1137.0 5.0 8. NE 82 N * 1156.0 1142.0 5.0 9. NE 164 N * 1238.0 1146.0 5.0 10. NE MID N * 1443.0 1280.0 5.0 12. NW 164 N * 1316.0 1272.0 5.0 13. NW 82 N * 1234.0 1269.0 5.0	RECEPTOR	* *	COOR X	DINATES (FT) Y	z	* *
14. NW CVR 1130.0 1280.0 5.0 15. NW 82 W * 1137.0 1385.0 5.0 16. NW 164 W * 1145.0 1466.0 5.0 17. NW MID W * 1156.0 1626.0 5.0 18. SW MID W * 1072.0 1597.0 5.0 19. SW 164 W * 1043.0 1434.0 5.0 20. SW 82 W * 1026.0 1354.0 5.0 21. SW CNR * 995.0 1273.0 5.0 22. SW 82 S * 900.0 1248.0 5.0 23. SW 164 S * 819.0 1248.0 5.0 24. SW MID S * 692.0 1243.0 5.0	2. SE 164 S 3. SE 82 S 4. SE CNR 5. SE 82 E 6. NE 82 E 7. NE CNR 8. NE 82 R 9. NE 164 N 10. NE MID N 11. NW MID N 12. NW 164 N 13. NW 82 N 14. NW CNR 15. NW 82 W 16. NW 164 W 17. NW MID W 18. SW MID W 19. SW 164 W 20. SW 82 W 21. SW CNR 22. SW 82 S 23. SW 164 S	******	$\begin{array}{c} 857. \ 0\\ 939. \ 0\\ 1020. \ 0\\ 1022. \ 0\\ 1075. \ 0\\ 1076. \ 0\\ 1156. \ 0\\ 1238. \ 0\\ 1341. \ 0\\ 1453. \ 0\\ 1453. \ 0\\ 1234. \ 0\\ 1138. \ 0\\ 1137. \ 0\\ 1145. \ 0\\ 1145. \ 0\\ 1145. \ 0\\ 1072. \ 0\\ 1072. \ 0\\ 1043. \ 0\\ 1072. \ 0\\ 1043. \ 0\\ 1072. \ 0\\ 1043. \ 0\\ 1026. \ 0\\ 995. \ 0\\ 995. \ 0\\ 990. \ 0\\ 8119. \ 0\end{array}$	$\begin{array}{c} 1123. \ 0\\ 1128. \ 0\\ 1134. \ 0\\ 1056. \ 0\\ 1137. \ 0\\ 1142. \ 0\\ 1142. \ 0\\ 1142. \ 0\\ 1146. \ 0\\ 1153. \ 0\\ 1280. \ 0\\ 1280. \ 0\\ 1280. \ 0\\ 1288. \ 0\\ 1288. \ 0\\ 1385. \ 0\\ 1466. \ 0\\ 1626. \ 0\\ 1597. \ 0\\ 1434. \ 0\\ 1597. \ 0\\ 1434. \ 0\\ 1573. \ 0\\ 1273. \ 0\\ 1273. \ 0\\ 1248. \ 0\\ 1273. \ 0\\ 1248$	$\begin{array}{c} 5, 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 5, 0\\ 0\\ 0\\ 5, 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ $	*****

JOB: Site 1 Opt 3 2030 PM 1B3PM30.DAT

MODEL RESULTS

1

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

WIND * CONCENTRATION ANGLE * (PPM)

RUN: Site 1 Opt 3 2030 PM

PAGE 3

(DEGR)	. *		REC2	REC3	REC4	REC5	REC6	REC7	REC8	REC9		M30. 0U REC11		REC13	REC14	REC15	REC16	REC17	REC18	REC19	REC20
0. 5. 10. 15. 20. 25.	* * * * *	2.7 2.7 2.7 2.8 3.0 3.1	2.8 2.8 2.9 3.2 3.5 3.6	3.0 3.2 3.3 3.7 3.7 3.7 3.7	2.6 3.0 3.0 3.0 2.7 2.2	2. 0 2. 1 2. 2 2. 3 2. 4 2. 0	2.1 2.0 1.6 1.4 1.2 1.0	3.0 2.8 2.5 2.3 2.0 1.8	2.6 2.4 2.3 2.1 1.9 1.9	2.3 2.1 2.0 1.8 1.8 1.8	2.1 2.0 1.8 1.7 1.8 1.8	. 1 . 1 . 0 . 0 . 0 . 0	. 3 . 2 . 1 . 1 . 0 . 1	. 6 . 5 . 3 . 2 . 1 . 0	1.4 1.3 1.0 .6 .3 .1	1.9 1.8 1.5 .9 .7	1.8 1.7 1.4 1.1 .5 .3	2.7 2.4 2.1 1.6 1.2 .7	. 8 1. 3 1. 8 2. 3 2. 6 2. 7	1.1 1.6 2.2 2.6 3.0 3.2	.9 1.7 2.1 2.6 3.0 3.1
30. 35. 40. 45. 50.	* * * *	3.3 3.4 3.4 3.6 3.6	3.7 3.6 3.7 3.6 3.7	3.5 3.4 3.0 3.1 2.9	2.1 2.0 1.8 1.9 2.1	1.8 1.8 1.6 1.5 1.4	1.0 .9 .9 1.0 1.1	1.7 1.7 1.8 1.8 2.0	1.9 2.0 2.0 2.1 2.1	1.9 2.0 2.1 2.1 2.1	1.9 2.0 2.0 2.1 2.2	. 0 . 0 . 0 . 0	. 1 . 1 . 1 . 1 . 1	.1 .1 .1 .1	. 0 . 0 . 0 . 0	. 1 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 0	. 4 . 2 . 1 . 1 . 0	2.9 2.7 2.7 2.6 2.4	3.1 3.0 2.8 2.8 2.6	3.0 2.9 2.7 2.6 2.4
55. 60. 65. 70. 75.	* * * * *	3.6 3.8 3.9 3.6 3.7	3.7 3.6 3.4 3.3	2.8 2.6 2.8 3.0 2.7	2.1 2.4 2.7 3.0 3.0	1.4 1.4 1.3 1.3 1.3	1.1 1.1 1.3 1.2 1.0	2.2 2.3 2.4 2.6	2.2 2.3 2.5 2.6	2.3 2.4 2.5 2.6	2.2 2.4 2.6 2.6 2.5	.0 .2 .3 .6	.1 .2 .4 .7 1.2	. 1 . 2 . 4 . 6 1. 1	. 0 . 0 . 1 . 1 . 5	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	2.3 2.1 2.1 2.0 2.0	2.4 2.3 2.2 2.2	2.3 2.3 2.2 2.1 2.2
80. 85. 90. 95.	* * *	3.4 2.9 2.2 1.4	3.3 3.1 2.6 1.8 1.2	2.7 2.3 2.0 1.3	3.1 2.8 2.3 1.8	1.0 .5 .4 .1	1.0 .5 .4 .1	2.5 2.4 2.1 1.4 .9	2.6 2.5 2.2 1.7 1.0	2.6 2.4 2.0 1.7 .9	2.4 2.0 1.7 1.0	1. 1 1. 7 2. 1 2. 7 3. 1	1.9 2.5 3.0 3.3	1.9 2.4 3.1 3.3	. 8 1. 3 1. 8 2. 1	. 1 . 1 . 3 . 6 . 9	. 0 . 1 . 2 . 4	.0 .0 .1 .2	2.0 2.1 2.1 2.2	2.1 2.1 2.2 2.4 2.7	2.3 2.4 2.9 3.1
100. 105. 110. 115. 120.	* * * * *	. 9 . 4 . 2 . 1 . 1	. 8 . 6 . 3 . 2 . 1	. 9 . 6 . 5 . 3 . 2	1.5 1.3 1.2 1.1 1.1	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 6 . 3 . 2 . 1 . 1	.7 .3 .2 .2 .1	. 6 . 3 . 2 . 2 . 1	. 6 . 4 . 2 . 2 . 1	3.3 3.4 3.2 2.9 2.9	3.7 3.5 3.4 3.1 3.0	3.5 3.3 3.2 3.1 3.0	2.4 2.1 2.1 2.1 2.1	.9 1.0 .9 .9 1.0	. 6 . 8 . 8 . 7 . 5	. 2 . 2 . 4 . 4 . 4	2.2 2.5 2.5 2.6 2.5	3.0 2.9 2.9 2.9 3.0	3.3 3.2 3.2 3.2 3.2
125. 130. 135. 140.	* * * * -	.1 .1 .1 .1	. 1 . 1 . 1 . 1	. 2 . 2 . 1 . 1	1.1 1.1 1.0 1.1	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	.1 .1 .1	. 1 . 1 . 1 . 1	.1 .1 .1 .1	2.8 2.5 2.5 2.4	2.7 2.8 2.7 2.5	2.8 2.7 2.6 2.4	1.9 1.9 1.9 1.8	1.1 1.0 .9 .9	.7 .7 .7 .8	. 5 . 4 . 4 . 5	2.4 2.6 2.6 2.6	3.2 2.9 2.9 2.9	3.0 3.0 2.9 2.9
145. 150. 155. 160. 165.	* * * *	. 1 . 0 . 0 . 0	. 1 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 0	1.0 .9 .6 .4 .3	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 1 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0	2.3 2.4 2.2 2.2 2.3	2.3 2.3 2.4 2.4 2.4	2.4 2.3 2.2 2.2 2.3	1.8 1.7 1.6 1.5 1.4	1.0 1.0 1.0 .8 .9	.7 .7 .7 .7 .8	. 6 . 5 . 4 . 4 . 5	2.7 2.7 2.9 2.9 2.9	2.9 3.0 3.0 3.0 3.1	2.8 2.9 2.7 2.6 2.4
170. 175. 180. 185. 190.	* * * * *	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 2 . 1 . 1 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 1 . 1 . 2 . 3 . 4	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	2.2 2.3 2.2 2.3 2.3 2.2	2.5 2.5 2.5 2.5 2.4	2.2 2.4 2.4 2.2 2.2	1.4 1.3 1.2 1.1 1.1	.9 .8 .9 1.1	.7 .8 .9 1.4	.7 .7 .9 1.4 1.8	2.8 2.9 2.6 2.2 1.9	2.9 2.7 2.4 2.5 1.8	2.3 2.2 1.8 1.6
195. 200.	* *	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0	. 0 . 0	. 0 . 0	. 6	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0 . 0	2.2 2.2 2.2	2.4 2.4 2.4	2.2 2.2	1. 1 1. 1 1. 1	1.0 1.3	1.4 1.4 1.5	2.1 2.6	1.5 1.2	1.6 1.4	1.3 1.3
205.	Ŷ	. 0	. 0	. 0	. 1	. 0	. 0	1.0	. 1	. 1	. 1	2.3	2.4	2.3	1. 1	1.7	1.9	2.9	. 8	1.3	1.4
WI ND	* (Site	.0 1 Opt TRATIO	.0 3203	. 1	. 0	. 0	1.0			. 1		2.4			1.7	1.9	2.9	. 8 Page		1.4
WI ND ANGLE (DEGR)	* (Site CONCEN (I REC1	.0 1 Opt TRATIO PPM) REC2	.0 3 203 N REC3	.1 0 PM 1 REC4	. 0 IB3PM3C REC5	. 0). DAT REC6	REC7	. 1 REC8	. 1 REC9	. 1 RUN: REC10	2.3 Site 1 REC11	2.4 1 Opt 3 REC12	2030 REC13	PM REC14	REC15	REC16	REC17	PAGE REC18	4 REC19	
NI ND ANGLE (DEGR) 210. 215. 220. 225. 230.	* (Site CONCEN (I REC1 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	.0 1 Opt TRATIO PPM)	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1	.1 0 PM 1 REC4 .1 .1 .1 .1 .1 .1	. 0 IB3PM3C 	. 0). DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0		. 1	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 1 . 1	. 1 RUN: 	2.3 Site 1	2.4 1 Opt 3	2030	PM				PAGE	4	REC20
WI ND ANGLE (DEGR) 210. 220. 220. 225. 230. 235. 245. 245. 250. 255.	* (Site CONCEN (REC1 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 1 Opt TRATIO PPM) REC2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .4 .6 1.2	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1 .1 .2 .3 .6 .1 .1	.1 0 PM 1 REC4 .1 .1 .1 .1 .1 .1 .2 .4 .8 1.3	. 0 IB3PM3C . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 D. DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	REC7 1. 1 1. 2 1. 3 1. 3 1. 3 1. 3 1. 3 1. 2 1. 3 1. 5 1. 7 2. 2	. 1 REC8 . 1 . 2 . 2 . 2 . 3 . 4 . 6 . 9 . 1, 4	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 1 . 3 . 4 . 7 . 7 1. 2	. 1 RUN: . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 3 . 7 . 7 . 1	2.3 Site 1 REC11 2.5 2.6 2.7 2.6 2.7 2.8 3.0 3.1 3.3 3.6	2.4 I Opt 3 REC12 2.5 2.6 2.7 2.8 3.0 3.0 3.4 3.6 3.7 3.9	REC13 2.4 2.5 2.6 2.8 2.7 2.9 3.3 3.5 3.6 3.4	PM REC14 1.0 1.5 1.6 1.6 1.6 1.9 2.1 2.2 2.6 2.5 2.6	REC15 1.7 1.8 2.1 2.2 3 2.7 2.5 2.6 2.4 2.2	REC16 2.1 2.2 2.4 2.5 2.8 2.6 2.5 2.5 2.2 2.0	REC17 2.9 2.9 3.0 3.0 2.9 2.7 2.5 2.3 2.3 2.1	PAGE REC18 . 7 . 6 . 7 . 7 . 7 . 7 . 5 . 5 . 4 . 4 . 2	REC19 1.1 1.1 1.0 .9 .9 .5	REC20 1.4 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.0
WI ND ANGLE (DEGR) 210. 215. 2205. 230. 235. 240. 255. 255. 255. 260. 255. 260. 270. 275.	* (Site CONCEN (I REC1 1 .1 .1 .1 .1 .1 .1 .1 .3 .6	.0 1 Opt TRATIO PPM) REC2 .1 .1 .1 .1 .1 .1 .1 .2 .4 .6	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1 .1 .2 .3 .6	. 1 0 PM 1 REC4 . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 8	. 0 B3PM3C . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 0 . DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	REC7 1.1 1.2 1.3 1.3 1.3 1.3 1.2 1.3 1.5 1.7	. 1 REC8 . 1 . 2 . 2 . 2 . 3 . 4 . 4 . 9	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 1 . 3 . 4 . 7	. 1 RUN: . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 3 . 7	2.3 Site 1 REC11 2.5 2.5 2.6 2.7 2.8 3.0 3.1 3.3 3.6	2.4 I Opt 3 REC12 2.5 2.6 2.7 2.8 3.0 3.0 3.0 3.4 3.6 3.7	REC13 2.4 2.5 2.6 2.8 2.7 2.9 3.3 5 3.5 3.6	PM REC14 1.0 1.5 1.6 1.6 1.9 2.1 2.2 2.6 2.5	REC15 1.7 1.8 2.1 2.2 2.3 2.7 2.5 2.6 2.4	REC16 2.1 2.2 2.4 2.5 2.8 2.6 2.5 2.5 2.2	REC17 2.9 2.9 3.0 3.0 2.9 2.7 2.5 2.3 2.3 2.3	PAGE REC18 . 7 . 6 . 7 . 6 . 7 . 6 . 5 . 5 . 5 . 5 . 4	E 4 REC19 1.1 1.1 1.0 .8 1.1 1.0 .9 .9 .6	REC20
WI ND ANGLE (DEGR) 210. 225. 230. 240. 245. 255. 240. 255. 260. 255. 260. 275. 280. 270. 275. 280. 285. 280. 290. 290. 290.	* (Site CONCEN: (REC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 0 1 Opt TRATIO PPM) REC2 . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 4 . 6 1. 2 . 3 2. 9 3. 3 2. 9 3. 3 3. 6 3. 5 3. 4	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .6 .1 .1 .1 .1 .1 .1 .1 .2 .6 .1 .1 .1 .1 .3 .4 3.4 3.5 .4 3.4	. 1 0 PM 1 REC4 . 1 . 1 . 1 . 1 . 2 . 4 . 8 1. 3 2. 5 3. 7 3. 5 3. 7 3. 5 3. 2 9	.0 B3PM3C .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0 . DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	REC7 1. 1 1. 2 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1. 7 2. 2 3. 6 3. 9 3. 8 3. 5 3. 1 2. 7 5 3. 7	. 1 REC8 . 1 . 1 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 3 . 4 . 7 7 1. 6 2. 2 2. 4 2. 7 2. 8 2. 6 2. 5 2. 2 2. 3	. 1 RUN: REC10 . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 3 . 7 1. 5 2. 1 2. 5 2. 8 2. 5 2. 6 2. 4	2.3 Site 1 REC11 2.5 2.5 2.5 2.5 2.6 2.7 2.8 3.0 3.1 3.6 3.6 3.6 3.6 3.6 3.6 1.1 7.5 4.3	2.4 REC12 2.5 2.6 2.7 2.8 3.0 3.4 3.6 3.7 3.9 3.4 3.7 3.9 3.6 3.1 2.6 3.1 2.0 1.4 1.4 1.6 .7 .8 .7 .7 .9 .7 .6 .7 .7 .7 .7 .7 .7 .7 .7 .7 .7	REC13 2.4 2.5 2.6 2.8 2.7 2.9 3.5 3.6 3.4 2.9 2.4 2.9 3.5 3.6 3.4 2.9 2.4 1.8 1.2 1.8 1.2 1.8 8.8 8 8	PM REC14 1.0 1.5 1.6 1.6 1.6 2.1 2.2 2.5 2.0 1.7 1.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	REC15 1.7 1.8 2.2 2.3 2.7 2.5 2.4 2.2 2.1 2.0 1.5 1.6 1.6	REC16 2.1 2.2 2.4 2.5 2.8 2.5 2.2 2.0 9 1.7 1.7 1.6 1.5 1.6 1.5	REC17 2.9 3.0 3.0 2.7 2.5 2.3 2.3 2.3 2.1 2.0 1.9 1.9 1.9 1.9 1.9 1.9 1.9	PAGE REC18 	REC19 1.1 1.1 1.0 .8 1.1 1.0 .9 .9 .6 .5 .4 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC20
WI ND ANGLE (DEGR) 210. 215. 220. 225. 230. 245. 255. 266. 270. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 285. 280. 280. 285. 280. 280. 280. 280. 280. 280. 280. 280	* (Site CONCENT ((REC1) - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	. 0 1 Opt TRATIO PPM) REC2 . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 4 . 6 1.25 2.39 3.6 3.88 3.55 3.4 3.22 3.09	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1 .1 .2 .6 .1 .1 .1 .1 .2 .6 .1 .1 .1 .1 .2 .6 .1 .1 .1 .3 .4 3.4 3.5 .4 3.2 2 3.2 .1 .1 .1 .1 .3 .1 .1 .1 .3 .1 .3 .3 .1 .1 .1 .1 .3 .3 .4 .3 .5 .3 .4 .3 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5	.1 0 PM 1 REC4 .1 .1 .1 .1 .1 .1 .1 .2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0 D. DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	REC7 1.12 1.3 1.3 1.3 1.3 1.57 2.2 3.69 3.5 3.1 2.5 2.21 1.7 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	. 1 REC8 . 1 . 1 . 2 . 2 . 3 . 4 . 9 1. 9 2. 5 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 2. 2 2. 3 2. 2 3. 4 2. 2 3. 4 4. 4 2. 5 3. 0 3.	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	. 1 RUN: REC10 . 1 . 1 . 1 . 1 . 1 . 2 . 3 . 7 1. 1 . 2 . 3 . 7 . 1 . 1 . 2 . 2 . 2 . 5 2. 4 2. 4 2. 4 2. 4 2. 4	2.3 Site 1 REC11 2.5 2.5 2.5 2.5 2.6 2.7 2.8 3.0 3.1 3.6 3.6 3.5 3.0 2.6 1.6 1.6 1.6 1.7 5 5 .5 3.0 2.6 3.3 3.3 3.3 3.3 3.3 3.3	2.4 REC12 2.5 2.6 2.7 2.8 3.0 3.0 3.4 3.7 3.6 3.1 2.0 1.4 3.6 2.0 1.4 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	REC13 2.24 2.5 2.6 2.7 2.9 3.3 3.5 6 3.4 3.4 2.9 2.4 1.8 1.2 1.2 1.8 1.2 1.8 1.2 7 7 7 7 7	PM REC14 1.05 1.6 1.9 2.2 2.5 2.6 2.2 5 2.6 2.0 1.5 1.2 2.5 2.6 1.5 1.2 2.2 1.2 1.2 1.2 1.2 1.2 1.2	REC15 1.7 1.8 2.1 2.3 2.7 2.5 2.4 2.1 2.0 1.5 1.5 1.5 1.6 1.5 1.5 1.5 1.5 1.5 1.5	REC16 2.12 2.2 2.5 2.8 2.5 2.2 2.5 2.2 2.0 9 1.7 1.5 1.6 1.5 1.6 1.6 1.6	REC17 2.9 3.0 3.0 2.9 2.5 2.3 2.3 2.1 2.3 2.1 9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2.1 9 1.9 2.9 2.7 2.3 2.3 2.1 1.9 1.9 2.9 2.9 2.1 2.3 2.3 2.1 2.3 2.3 2.1 2.3 2.3 2.1 2.3 2.3 2.1 2.3 2.3 2.1 2.3 2.3 2.1 2.9 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	PAGE REC18 7 7 6 7 7 6 5 5 5 4 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	REC19 1.1 1.1 1.0 .9 .9 .9 .6 .5 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC22
WI ND ANGLE (DEGR 215. 220. 215. 220. 225. 230. 245. 250. 240. 245. 250. 240. 245. 250. 240. 245. 250. 240. 245. 250. 240. 245. 250. 240. 245. 250. 240. 245. 245. 240. 245. 240. 245. 240. 245. 240. 245. 245. 245. 245. 245. 245. 245. 245	* (Site CONCEN REC1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 0 1 Opt TRATIO PPM) REC2 . 1 . 1 . 1 . 24 . 62 1.53 3.68 3.55 3.42 2.29 3.38 3.55 3.42 2.20 2.26 62 2.26 2.27 2.26 2.27 2.26 2.26 2.27 2.26 2.27 2.26 2.27 2.26 2.27 2.26 2.2	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .3 .6 1.1 7.2.4 1.3.4 8.3.5 .3.42 3.3.09 2.2.9 2.2.67 2.2.67 2.2.80	.1 0 PM 1 REC4 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 D. DAT REC6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC7 1.12 1.3 1.32 1.35 1.37 2.22 3.369 3.57 2.52 2.18 1.7 2.22 2.21 1.8 1.2 2.25 2.21 1.8 1.2 2.25 2.21 1.8 1.2 2.25 2.21 1.8 1.2 2.25 2.21 1.8 1.2 2.25 2.55 2.25 2.25 2.55 2.25 2.55	. 1 REC8 . 1 . 1 . 2 . 2 . 2 . 3 . 4 . 9 1. 9 2. 5 3. 0 3. 0 3. 0 3. 0 3. 0 3. 0 2. 9 2. 3 2. 4 2. 2 2. 3 . 4 . 4 . 9 2. 5 3. 0 3. 0 0. 2 . 9 2. 3 2. 4 . 1 . 8 8 1. 8 8 2. 0 2. 2 2. 3 . 4 . 4 . 5 . 3 . 4 . 4 . 5 . 3 . 0 . 3 . 0 . 2 . 2 . 3 . 4 . 4 . 2 . 5 . 3 . 0 . 2 . 2 . 3 . 2 . 4 . 4 . 5 . 5 . 3 . 0 . 2 . 2 . 2 . 3 . 2 . 2 . 2 . 3 . 2 . 4 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 3 . 4 . 7 1.6 2.24 2.7 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3	. 1 RUN: REC10 . 1 . 1 . 1 . 1 . 1 . 2 . 7 1.15 2.15 2.68 2.7 2.55 2.68 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.3 2.22 2.3 2.3	2.3 Site 1 REC11 2.5 2.5 2.5 2.5 2.6 2.7 2.8 3.0 3.1 3.6 3.6 3.6 3.5 3.0 2.6 1.6 1.6 1.6 1.6 1.7 .5 4 .3 3.3 3.6 3.3 3.3 3.4 4 4.4 4.4 4.5 3.3 2.5 5 2.5 5 2.6 5 2.6 5 2.6 5 2.6 5 2.7 7 2.8 3.0 3.1 3.6 3.6 3.6 3.5 5 3.0 5 2.6 5 2.6 5 2.7 7 2.8 3.0 3.1 3.6 3.6 3.6 3.5 3.0 5 2.6 5 2.6 5 2.7 7 2.8 3.0 7 2.5 5 2.6 5 2.6 5 2.7 7 2.8 3.0 3.1 3.6 5 3.0 5 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 7 2.7 7 2.8 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 3.1 3.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 2.6 5 3.0 7 3.0 3.3 3.6 5 3.3 3.6 5 3.3 3.6 5 5 3.0 7 2.6 5 3.0 7 3.3 3.6 5 3.3 3.6 5 3.3 3.6 5 5 3.0 2.6 5 3.3 3.3 3.6 5 3.3 3.6 5 5 3.0 2.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 5 5 3.3 3.6 3.5 5 3.3 3.5 5 3.3 3.5 5 3.3 3.3 3.3 3	2.4 REC12 2.5 2.6 2.7 2.8 3.0 3.4 3.7 3.9 3.6 3.1 2.6 2.7 2.8 3.0 3.0 3.4 3.7 3.9 3.6 2.0 1.4 3.0 3.6 2.0 1.6 2.5 6 2.5 6 2.7 2.8 3.0 3.0 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.6 3.6 3.0 3.6 5.6 6 6 6 6 6 6 6 6 6 6 6 6 6	REC13 2.4 2.5 2.4 2.5 2.6 2.8 2.7 2.9 3.3 3.5 5 3.4 4 2.9 2.4 2.9 2.4 2.5 2.6 6 3.4 4 2.9 2.4 2.5 7 2.9 2.9 2.4 2.5 5 2.6 6 3.4 4 2.9 2.4 2.7 7 2.9 2.9 2.4 2.9 5 2.6 6 3.3 5 5 3.5 5 3.5 5 8.8 8.7 7 2.9 2.9 2.9 2.4 2.9 2.9 2.9 2.4 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9	PM REC14 1.0 1.5 1.6 1.6 1.9 2.1 2.6 2.5 2.6 2.5 2.6 2.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	REC15 1.7 2.2 2.3 2.7 2.6 2.4 2.2 2.0 1.5 1.5 1.5 1.6 1.6 1.6 1.6 1.5	REC16 2.22 2.52 2.25 2.22 2.52 2.20 1.77 1.65 1.66 1.66 1.66 1.69 1.9 2.0 2.0 2.0 2.0 2.5 2.20 2.5 2.20 2.5 2.20 2.20	REC17 2.99 3.00 2.92 2.5 2.3 2.10 2.9 2.5 2.3 2.10 1.99 1.99 1.99 1.99 1.99 2.1 2.3 2.3 2.2 3.00 2.9 2.2 2.3 2.2 1.9 2.9 2.2 2.3 2.2 2.3 2.2 2.2 2.3 2.2 2.2 2.3 2.2 2.2	PAGE REC18 7 7 6 7 7 6 5 5 5 4 4 2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0	REC19 1.1 1.1 1.0 .8 1.1 1.0 .9 .9 .5 .4 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC22
VI ND NNGLE (DEGR; 210. 220. 235. 240. 245. 255. 2560. 255. 260. 265. 270. 285. 290. 295. 285. 290. 295. 305. 315. 320. 315. 325. 330. 335. 3340. 345. 340.	* (Site CONCEN ((REC1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 0 1 Opt TRATIO PPM) REC2 . 1 . 1 . 1 . 1 . 1 . 2 . 4 . 6 1.25 3.36 3.55 3.4 3.22 3.30 9 2.87 2.26	.0 3 203 N REC3 .1 .1 .1 .1 .1 .1 .3 .61 1.7 2.3 1.1 .3 .61 1.7 2.3 1.1 .3 .61 1.7 2.3 .1 .1 .1 .1 .1 .2 .3 .5 .3 .3 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	.1 0 PM 1 REC4 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 IB3PM3C REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	.0 D. DAT REC6 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC7 1. 2 1. 3 1. 3 1. 3 1. 3 1. 3 1. 3 1. 5 1. 7 2. 2 2. 3 3. 9 3. 8 3. 1 2. 5 2. 2 2. 2 2. 2 2. 2 1. 3 3. 4 3. 3 1. 4 1. 5 2. 2 2. 2 2. 2 2. 1 1. 8 1. 7 2. 5 2. 2 2. 1 1. 8 1. 7 2. 5 2. 2 2. 1 1. 8 1. 7 2. 2 2. 2 2. 1 1. 7 2. 2 2. 2 2. 1 1. 7 2. 2 2. 2 2. 1 1. 7 2. 2 2. 2 2. 1 1. 7 2. 5 2. 2 2. 2 2. 1 1. 7 2. 2 2. 2 2. 1 1. 7 2. 5 2. 2 2. 2 1. 7 1. 7 2. 2 2. 2 2. 2 1. 7 1. 8 7 1. 8 1. 8 2. 9 2. 2 2. 2 1. 7 1. 8 1. 8 2. 9 2. 2 2. 2 2. 2 1. 7 1. 8 2. 9 2. 2 2. 3 2.	. 1 REC8 . 1 . 1 . 2 . 2 . 3 . 4 . 4 . 9 . 4 . 9 . 4 . 9 . 4 . 9 . 4 . 2 . 3 . 3 . 4 . 4 . 9 . 2 . 3 . 3 . 0 . 2 . 3 . 3 . 0 . 2 . 3 . 4 . 4 . 5 . 1 . 5 . 1 . 1 . 2 . 2 . 3 . 3 . 4 . 4 . 5 . 9 . 4 . 5 . 0 . 2 . 3 . 3 . 0 . 2 . 2 . 3 . 3 . 4 . 4 . 5 . 9 . 4 . 2 . 2 . 3 . 3 . 0 . 2 . 2 . 2 . 3 . 4 . 2 . 2 . 3 . 4 . 4 . 2 . 2 . 3 . 4 . 2 . 2 . 2 . 3 . 4 . 2 . 2 . 2 . 2 . 3 . 4 . 2 . 2 . 2 . 2 . 2 . 2 . 4 . 2 . 2 . 2 . 2 . 4 . 2 . 2 . 2 . 2 . 4 . 2 . 2 . 2 . 2 . 2 . 2 . 4 . 8 . 8 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	. 1 REC9 . 1 . 1 . 1 . 1 . 1 . 3 . 7 1. 26 2. 2 2. 3 2. 3 2	. 1 RUN: REC10 . 1 . 1 . 1 . 1 . 1 . 1 . 2 . 3 . 7 1. 5 2. 6 2. 6 2. 4 2. 2 2. 2 2. 2 . 2 . 2 . 2 . 2	2.3 Site 1 REC11 2.5 2.5 2.5 2.5 2.5 2.7 2.8 3.0 3.3 3.6 3.5 3.0 2.6 1.6 1.6 1.6 1.6 1.7 .5 3.3 3.3 3.6 3.5 3.3 3.3 3.4 4 4.4 4.4 3.3 3.3 3.4 4.4 4	2.4 REC12 2.5 2.6 2.5 2.6 3.0 3.0 3.4 3.0 3.4 3.0 3.4 3.0 3.4 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.0 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6	REC13 2.4 2.5 2.6 2.8 2.7 2.9 2.9 2.4 2.5 2.6 3.3 3.5 5 3.3 4 3.5 3.4 3.4 4 3.4 9 2.4 1.2 1.8 8 8.8 8 8.8 8 7 7 7 7 8 8 8 8 8 8 8 8	PM REC14 1.5 1.6 1.6 1.9 2.2 2.6 2.5 2.6 2.5 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2	REC15 1.7 2.237 2.56 2.22 2.0 1.66 1.55 1.66 1.55 1.66 1.56 1.57 1.7 2.0 2.0	REC16 2.12 2.24 2.52 2.65 2.25 2.20 1.77 1.55 1.56 1.66 1.66 1.66 1.66 1.67 1.9 1.9 2.1	REC17 2.99 3.00 2.92.7 2.5 2.3 2.1 1.9 1.99 1.99 1.99 1.99 1.99 2.7 2.3 2.2 2.3 2.2 1.9 2.2 2.3 2.2 2.2 2.3 2.2 2.2 2.3 2.2 2.2	PAGE REC18 	E 4 REC19 1.1 1.1 1.0 8 1.1 1.0 .0 .9 .9 .4 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	REC20

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

 WI ND
 * CONCENTRATI ON ANGLE *
 (PPM)

 (DEGR)*
 REC21
 REC22
 REC23
 REC24

 0.
 *
 .5
 .1
 .0
 .0

_	,	-	-		_					
5. 10. 15. 20. 25. 30. 55. 50. 55. 60. 65. 80. 65. 80. 75. 80. 75. 80. 75. 80. 105. 110. 115. 120. 135. 140. 155. 140. 140. 145. 140. 140. 140. 145. 140. 140. 145. 140. 140. 140. 140. 140. 140. 140. 140	******************	85824310776444547256431986566665544456787790 1122222111111112222221111111111111111	$\begin{array}{c} 2 \\ 4 \\ 5 \\ 8 \\ 0 \\ 9 \\ 9 \\ 8 \\ 8 \\ 9 \\ 9 \\ 8 \\ 8 \\ 9 \\ 0 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$\begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 7 \\ 8 \\ 8 \\ 8 \\ 6 \\ 6 \\ 6 \\ 8 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$.011334456556666817717882188987655553344433332223 .112222233322222222222222222222					
	JOB:	Si te	1 Opt	3 2030	D PM 1	B3PM3	BO. DAT			
WI ND	ANG	LE RANG	GE: ()360.						
WI ND ANGLE (DEGF	<u>=</u> * {)*	REC21 I	PPM)	REC23	REC24					
210. 2215. 220. 225. 230. 240. 245. 255. 260. 275. 266. 275. 285. 270. 285. 299. 295. 300. 315. 320. 335. 330. 340. 345. 355. 360. 245. 260. 275. 275. 280. 295. 295. 295. 295. 295. 295. 295. 295	* * * * * * * * * * * * * * * * * * * *	$\begin{array}{c} 2. \ 1 \\ 2. \ 2 \\ 3 \\ 2. \ 3 \\ 2. \ 2 \\ 2. \ 3 \\ 2. \ 5 \\ 2. \ 4 \\ 2. \ 5 \\ 2. \ 4 \\ 2. \ 5 \\ 2. \ 4 \\ 2. \ 5 \\ 2. \ 4 \\ 1. \ 8 \\ 6 \\ 3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 2 & 5 \\ 2 & 6 \\ 2 & 7 \\ 2 & 2 \\ 2 & 3 \\ 3 & 0 \\ 2 & 2 \\ 3 \\ 3 & 0 \\ 2 & 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 4 \\ 1 \\ 7 \\ 5 \\ 2 \\ 2 \\ 2 \\ 4 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} 2.5\\ 2.6\\ 2.6\\ 2.7\\ 2.9\\ 2.9\\ 2.9\\ 2.8\\ 2.8\\ 2.8\\ 2.6\\ 2.4\\ 1.7\\ 1.2\\ 8\\ 5.5\\ 2.1\\ 1.1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	$\begin{array}{c} 2.3 \\ 2.4 \\ 2.5 \\ 2.4 \\ 2.5 \\ 2.2 \\ 4.5 \\ 2.2 \\ 2.5 \\ 2.5 \\$					
MAX DEGR.	*	2.6 95	3. 1 245	3. 0 245	3.2 105					
TUE 1		FOT OO			~	0 00		075	DEODEE	

THE HIGHEST CONCENTRATION IS 3.90 PPM AT 275 DEGREES FROM REC7. THE 2ND HIGHEST CONCENTRATION IS 3.90 PPM AT 65 DEGREES FROM REC1. THE 3RD HIGHEST CONCENTRATION IS 3.90 PPM AT 255 DEGREES FROM REC12.

RUN: Site 1 Opt 3 2030 PM

Page 3

Site 1 1	Opt 8 2	2014 AM 1B	8AM14.D2	AT	60.	0321.0.00	00.000240.3	0480	000	1
SE MID			743.		116.	5.0				
SE 164 SE 82			857. 939.		123. 128.	5.0 5.0				
SE 62 SE CNR			1020.		134.	5.0				
SE 82			1022.	1	053.	5.0				
NE 82			1075.		056.	5.0				
NE CNR NE 82			1076. 1156.		137. 142.	5.0				
NE 82 NE 164			1238.		142.	5.0 5.0				
NE MID			1341.		153.	5.0				
NW MID	N		1453.	1	280.	5.0				
NW 164			1316.		272.	5.0				
NW 82			1234.		269.	5.0				
NW CNR NW 82			1138. 1137.		288. 385.	5.0 5.0				
NW 82 NW 164			1137. 1145.		466.	5.0				
NW MID			1156.		626.	5.0				
SW MID			1072.		597.	5.0				
SW 164			1043.		434.	5.0				
SW 82			1026.		354.	5.0				
SW CNR SW 82			995. 900.		273. 248.	5.0 5.0				
SW 82 SW 164			900. 819.		243.	5.0				
SW MID			692.		235.	5.0				
	. Opt 8 2	2014 AM			27	1 0				
1	D 1		5.0	1100	F 0 1	1126	000511 4	0	БC	2.0
NB 1	Rtl	aprch AG	58.	1109.	581.	1136.	223511.4	0.	56	30.
NB	Rt1	thru AG	582.	1136.	1083.	1166.	168511.4	0.	56	30.
2										
NB		thru AG				1138.	0. 36	3		
1	120	58	2.0	1682	102.2	1679 1 3				
NB	R+1	left AG	572.	1167.	1065	1195.	55011.4	0.	44	30.
2	1101	1010 110	0,21		2000.		00011.1	•••		
NB	Rt1	left AG	983.			1169.	0. 24	2		
-	120	107	2.0	550	102.2	1700 1 3				
1 NB	D +1	departAG	1095	1167	1470	1100	102511 /	0	56	30.
1	RUI	uepartAG	1005.	1107.	1470.	1100.	192511.4	0.	50	50.
NB	Rt1	departAG	1470.	1188.	1784.	1227.	192511.4	0.	44	30.
1										
NB	Rt1	departAG	1784.	1227.	2072.	1272.	192511.4	0.	44	30.
1	D + 1		2000	1 7 1 1	1 C O A	1064	276011 4	0		20
SB 1	Rti	aprch AG	2069.	1311.	1694.	1264.	376011.4	0.	44	30.
SB	Rt1	aprch AG	1694.	1264.	1395.	1248.	376011.4	0.	44	30.
1		-								
SB	Rt1	th+rt AG	1395.	1248.	1057.	1231.	374011.4	0.	56	30.
2			11/4	1000	1 2 0 0	1040	0 26	ſ		
SB	RtI 120	th+rt AG 66	1144.	1236. 3740		1248. 1665 1 3	0. 36	3		
1	120	00	2.0	5,10	102.2	1000 I J				
SB	Rtl	left AG	1378.	1236.	1241.	1217.	2011.4	0.	32	30.

1							
SB	Rtl left AG	1240. 1217.	1058. 1208.	2011.4	0.	32	30.
2 SB	Rt1 left AG 120 115	1147. 1212. 2.0 20		0. 12	1		
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	433011.4	0.	56	30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	433011.4	0.	56	30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	100011.4	0.	32	30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	100011.4	0.	56	30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	100011.4	0.	56	30.
EB	Rt28 aprchAG 120 93		1068. 1409. 102.2 1523 1 3	0. 36	3		
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	4511.4	0.	32	30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	8511.4	0.	44	30.
WB	Rt28 aprchAG 120 109	1050. 1141. 2.0 85	1051. 1019. 102.2 1694 1 3	0. 24	2		
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	78011.4	0.	44	30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	78011.4	0.	32	30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	78011.4	0.	32	30.

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

JOB: Site 1 Opt 8 2014 AM 1B8AM14.DAT

WIND ANGLE RANGE: 0. -360.

MODEL RESULTS

WIND * CONCENTRATION ANGLE * (PPM)

Page 1

PAGE 1

CAL3QHC: LINE SOURCE DI SPERSI ON MODEL	1B8AM14.OUT - VERSION 2.2, JUNE 2000
2014 AM 1B8AM14. DAT	RUN: Site 1 Opt 8 2014 AM

JOB: Site 1 Opt 8 2014 AM 1B8AM14.DAT DATE: 05/10/2009 TIME: 21:34:45.84

1

1

1

SI TE & METEOROLOGI CAL VARI ABLES											
VS = .0 CM/S U = 1.0 M/S	VD = .0 CM CLAS = 4 (1. CM D. MINUTES	MIXH = 1	000. M AM	B = .0 PPN	1				
LI NK VARI ABLES											
LINK DESCRIPTION	* LI * X1	NK COORDINATES (Y1 X2		* (FT)	BRG TYPE (DEG)	VPH EF (G/MI	H W V/C QUEUE) (FT) (FT) (VEH)				
1. NB Rt1 aprcl 2. NB Rt1 thru 3. NB Rt1 thru 4. NB Rt1 left 5. NB Rt1 left 6. NB Rt1 depa 7. NB Rt1 depa 8. NB Rt1 depa 9. SB Rt1 aprcl 10. SB Rt1 aprcl 11. SB Rt1 th+rt 12. SB Rt1 aprcl 13. SB Rt1 left 14. SB Rt1 left 15. SB Rt1 left 16. SB Rt1 depa 17. SB Rt1 depa 18. EB Rt28 apr 20. EB Rt28 apr 21. EB Rt28 apr <td>1 * 582.0 1 * 984.0 : * 983.0 : * 983.0 : * 983.0 : * 983.0 : * 983.0 : * 983.0 : * 985.0 : 178.0 : * 1269.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1088.0 : : 1088.0 : : 1052.0 : :</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>* 524. * 502. * 178. * 494. * 1737. * 386. * 291. * 378. * 299. * 338. * 299. * 338. * 138. * 135. * 864. * 98. * 135. * 864. * 135. * 653. * 123. * 678. * 175. * 225. * 233. * 146.</td> <td>87. AG 87. AG 267. AG 87. AG 87. AG 87. AG 83. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 266. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 192. AG 192. AG 192. AG 180. AG 180. AG 113. AG 2. AG 3. AG</td> <td>2235. 11.4 1685. 11.4 397. 100.6 550. 11.4 489. 100.6 1925. 11.4 1925. 11.4 3760. 11.4 3760. 11.4 3760. 11.4 452. 100.6 20. 11.4 452. 100.6 4330. 11.4 4330. 11.4 4330. 11.4 4330. 11.4 633. 100.6 4330. 11.4 637. 1000.0 452. 11.4 637. 100.6 485. 11.4 85. 11.4 85. 11.4 780. 11.4</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	1 * 582.0 1 * 984.0 : * 983.0 : * 983.0 : * 983.0 : * 983.0 : * 983.0 : * 983.0 : * 985.0 : 178.0 : * 1269.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1240.0 : * 1088.0 : : 1088.0 : : 1052.0 : :	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	* 524. * 502. * 178. * 494. * 1737. * 386. * 291. * 378. * 299. * 338. * 299. * 338. * 138. * 135. * 864. * 98. * 135. * 864. * 135. * 653. * 123. * 678. * 175. * 225. * 233. * 146.	87. AG 87. AG 267. AG 87. AG 87. AG 87. AG 83. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 266. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 267. AG 192. AG 192. AG 192. AG 180. AG 180. AG 113. AG 2. AG 3. AG	2235. 11.4 1685. 11.4 397. 100.6 550. 11.4 489. 100.6 1925. 11.4 1925. 11.4 3760. 11.4 3760. 11.4 3760. 11.4 452. 100.6 20. 11.4 452. 100.6 4330. 11.4 4330. 11.4 4330. 11.4 4330. 11.4 633. 100.6 4330. 11.4 637. 1000.0 452. 11.4 637. 100.6 485. 11.4 85. 11.4 85. 11.4 780. 11.4	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				

RUN: Site 1 Opt 8 2014 AM

JOB: Site 1 Opt 8 2014 AM 1B8AM14.DAT DATE: 05/10/2009 TIME: 21:34:45.84

ADDITIONAL QUEUE LINK PARAMETERS

LINK DESCRIPTION	* * *	CYCLE LENGTH (SEC)	RED TIME (SEC)	CLEARANCE LOST TIME (SEC)	APPROACH VOL (VPH)	SATURATI ON FLOW RATE (VPH)	IDLE EM FAC (gm/hr)	SI GNAL TYPE	ARRI VAL RATE
3. NB Rt1 thru 5. NB Rt1 left 12. SB Rt1th+rt 15. SB Rt1 left 21. EB Rt28 apro 24. WB Rt28 apro	:h*	120 120 120 120 120 120 120	58 107 66 115 93 109	2.0 2.0 2.0 2.0 2.0 2.0 2.0	1685 550 3740 20 1000 85	1679 1700 1665 1752 1523 1694	102.20 102.20 102.20 102.20 102.20 102.20 102.20	1 1 1 1 1	3 3 3 3 3 3 3

RECEPTOR LOCATIONS

1. SE MID S * 743.0 1116.0	5.0 5.0 5.0	_ * *
2. SE 164 S * 857.0 1123.0 3. SE 82 S * 939.0 1128.0 4. SE CNR * 1020.0 1134.0 5. SE 82 E * 1022.0 1053.0 6. NE 82 E * 1075.0 1056.0 7. NE CNR * 1076.0 1137.0 8. NE 82 N * 1176.0 1142.0 9. NE 164 N * 1238.0 1146.0 10. NE MID N * 1453.0 1280.0 11. NW MID N * 1453.0 1280.0 12. NW 164 N * 1316.0 1272.0 13. NW 82 N * 1137.0 1385.0 14. NW CNR * 1138.0 1288.0 15. NW 82 W * 1137.0 1385.0 16. NW 164 W * 1145.0 1466.0 7. NW MID W * 1145.0 1466.0 7. NW MID W * 1072.0 1597.0 9. SW 164 W * 1026.0 1354.0 21. SW CNR * 1026.0 1354.0 2		* * * * * * * * * * * * * * * * * * * *

RUN: Site 1 Opt 8 2014 AM

PAGE 3

DEGR	* F								REC8	REC9	REC10		REC12	REC13	REC14	REC15	REC16		REC18	REC19	
0. 5. 10. 15. 20. 25. 30.	* * * * * * *	2.3 2.3 2.3 2.3 2.5 2.6 2.7	3. 4 3. 4 3. 6 3. 7 3. 9 4. 2 4. 3	3.6 3.7 4.0 4.1 4.3 4.2 4.1	2.7 2.8 3.0 2.8 2.7 2.4 2.2	2.0 2.0 1.9 1.9 1.8 1.7 1.5	2.0 1.9 1.3 1.3 1.3 1.1 1.2	2.8 2.6 2.7 2.3 2.0 1.8 2.0	2.9 2.6 2.4 2.4 2.4 2.3 2.3	2.6 2.3 2.2 2.1 2.1 2.0 2.0	2.1 1.9 2.0 2.0 2.0 2.0 2.0 2.0	. 0 . 0 . 0 . 0 . 0 . 0	. 1 . 0 . 0 . 1 . 1 . 1	. 5 . 2 . 1 . 0 . 1 . 1 . 1	1.3 1.1 .9 .5 .2 .1	1.6 1.3 1.0 .8 .5 .1	1.7 1.4 1.1 .7 .5 .2	2.2 1.9 1.6 1.1 .8 .4 .2	.7 1.1 1.5 2.0 2.5 2.7 2.9	1.0 1.6 2.1 2.6 3.0 3.3 3.3	1. 1. 2. 3. 3. 3.
35. 40. 45. 50. 55. 60. 65.	* * * * * *	2.9 3.0 3.1 3.5 3.5 3.5 3.8	4.2 4.4 4.3 4.5 4.1 4.2 4.0	3.9 3.6 3.5 3.2 3.0 3.1 3.2	2.0 2.2 2.1 2.4 2.7 2.9	1.3 1.2 1.4 1.3 1.4 1.3 1.4 1.4	1.1 1.2 1.3 1.4 1.3 1.5 1.5	1.8 2.0 2.2 2.3 2.6 2.6 2.9	2.3 2.4 2.4 2.6 2.4 2.7 2.9	1.9 2.2 2.2 2.3 2.4 2.7 2.6	2.2 2.2 2.3 2.6 2.6 2.6 2.6	.0 .0 .1 .1 .2 .5	. 1 . 2 . 2 . 2 . 4 . 6	. 1 . 1 . 2 . 2 . 3 . 6	. 0 . 0 . 0 . 0 . 0 . 0 . 1	. 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 0 . 0	2.9 2.9 2.7 2.6 2.5 2.5 2.4	3.2 3.1 2.8 2.7 2.6 2.5 2.3	3. 3. 2. 2. 2. 2.
70. 75. 80. 85. 90. 95. 00.	* * * * * *	3.7 3.3 2.8 2.2 1.3 .7	3.8 3.9 3.3 2.8 2.2 1.4 .9	3.2 3.3 2.9 2.4 1.9 1.2 .6	3.4 3.3 3.2 3.1 2.5 2.1 1.5	1.5 1.3 1.0 .8 .4 .2 .1	1.3 1.3 .9 .8 .3 .2 .1	2.8 2.8 2.6 2.1 1.5 1.5 .5	2.8 2.7 2.5 2.1 1.5 1.5 .7	2.8 2.8 2.5 2.1 1.5 1.1 .6	2.8 2.7 2.4 2.1 1.5 1.0 .6	. 8 1. 4 2. 2 3. 1 3. 8 4. 2 4. 4	1.1 1.8 2.6 3.5 4.1 4.6 4.9	1.0 1.6 2.4 3.5 4.2 4.7 4.7	. 4 . 7 1. 1 1. 6 2. 3 2. 7 2. 7	.0 .1 .2 .6 .7 1.0 1.2	. 0 . 1 . 2 . 5 . 5 . 7	. 0 . 0 . 1 . 2 . 3 . 4	2.4 2.2 2.3 2.3 2.4 2.4 2.5	2.3 2.3 2.4 2.7 3.0 3.1 3.1	2. 2. 2. 3. 3. 3.
05. 10. 15. 20. 25. 30.	* * * * * *	. 4 . 2 . 1 . 1 . 1 . 1	.5 .1 .1 .1 .1 .1	. 5 . 2 . 1 . 1 . 1	1.2 1.0 .8 .8 .7 .6	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 3 . 1 . 0 . 0 . 0	. 4 . 2 . 1 . 1 . 1 . 1	. 3 . 2 . 1 . 1 . 1 . 1	. 4 . 2 . 1 . 1 . 1 . 1	4.4 4.1 3.9 3.6 3.5 3.3	4.6 4.4 4.1 4.0 3.9 3.7 3.3	4.6 4.2 4.1 3.9 3.6 3.5	2.9 2.9 2.9 2.7 2.7 2.6	1. 2 1. 4 1. 4 1. 2 1. 2 1. 2 1. 3	. 8 . 8 . 9 . 9 . 9 . 9 1. 0	. 4 . 5 . 5 . 6 . 7	2.5 2.7 2.7 2.8 2.9 2.7 2.9	3.3 3.3 3.4 3.2 3.2 3.4	3 3 3 3 3 3 3 3 3
35. 40. 45. 50. 55. 60. 65.	* * * * *	. 1 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 0 . 0 . 0	. 1 . 0 . 0 . 0 . 0 . 0 . 0	. 5 . 4 . 2 . 1 . 1 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0 . 0 . 0	. 1 . 1 . 0 . 0 . 0 . 0	3.3 3.1 3.0 2.9 3.0 2.9 2.9 2.9	3.1 3.0 3.0 3.0 3.0 3.0 3.0	3.4 3.1 3.0 3.0 3.0 3.0 3.0	2. 6 2. 4 2. 5 2. 3 2. 3 2. 2 2. 1	1.3 1.3 1.2 1.2 1.2 1.2	. 8 . 9 . 8 . 7 . 8 . 8 . 8	.6 .65 .55 .55 .55	3. 1 3. 1 3. 2 3. 3 3. 3 3. 3	3.5 3.4 3.6 3.7 3.5 3.3 3.2	3 3 3 3 2 2
70. 75. 80. 85. 90.	* * * *	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	. 0 . 0 . 0 . 0	3.0 2.9 3.0 3.0 2.9	3.0 3.0 3.1 3.1 3.0 3.0	3.2 3.2 3.3 3.2 3.2 3.2 3.2	2.0 1.8 1.7 1.6 1.4 1.5	1.2 1.2 1.1 .9 1.1 1.1	1.0 .8 .9 1.0 1.3 1.2	.7 .9 1.0 1.4 2.1 2.3	3.2 3.3 2.8 2.6 2.3 1.7	3.3 3.1 2.8 2.4 2.1 1.8	2 2 2 2 1 1
95.	* *	. 0	. 0	. 0	. 0	. 0	. 0	.1	. 0	. 0	. 0	2.8 2.8							14		
95. 00. 05.	* *	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0	. 0 . 0	. 1 . 2 . 2	. 0 . 0 . 0	. 0 . 0 . 0	. 0 . 0	2.8 3.0	3.0 3.0	3. 2 3. 2	1.6 1.4	1. 3 1. 5	1.6 1.8	2.7 2.9	1.4 1.2 PAGE	1.6 1.6	1
95. 20. 25.	* (.0 .0 .0 : Site	.0 .0 .0 1 Opt TRATIO	.0 .0 .0 8 201	. 0 . 0 . 0	. 0	. 0 . 0	. 2	. 0	. 0	. 0 . 0	2.8	3.0 3.0	3. 2 3. 2	1.6 1.4	1.3	1.6	2.7	1.2	1.6 1.6	-
95. 00. 05. I ND NGLE DEGR	* (.0 .0 .0 : Site CONCEN (I REC1	.0 .0 .0 1 Opt TRATI0 PPM) REC2	.0 .0 .0 8 201 N REC3 I	.0 .0 .0 4 AM 1 REC4	.0 .0 B8AM14 REC5	. 0 . 0 . DAT REC6	. 2 . 2 REC7	. 0 . 0 REC8	. 0 . 0 REC9	. 0 . 0 RUN: REC10	2.8 3.0 Site 1 REC11	3.0 3.0 Opt 8 REC12	3. 2 3. 2 3. 2 3. 2014 REC13	1.6 1.4 AM REC14	1.3 1.5 REC15	1.6 1.8 REC16	2. 7 2. 9 REC17	1.2 PAGE REC18	1.6 1.6 4 REC19	RE
95. 20. 25. ND NGLE DEGR 10. 15. 20. 25. 30. 35.	* (.0 .0 .0 : Site CONCEN (I REC1 1 .0 .1 .1 .1 .1	.0 .0 .0 1 Opt TRATI O PPM) REC2 .0 .1 .1 .1 .1 .1	.0 .0 .0 8 2014 N REC3 I .1 .1 .1 .1	.0 .0 .0 4 AM 1 REC4 .1 .1 .1 .1 .1 .1	.0 .0 B8AM14 REC5 .0 .0 .0 .0 .0 .0	. 0 . 0 . DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 2 REC7 . 3 . 5 . 6 . 7 . 7 . 9	.0 .0 REC8 .1 .1 .1 .1 .1 .1 .1	.0 .0 REC9 .0 .1 .1 .1 .1 .1	.0 .0 RUN: REC10 .1 .1 .1 .1 .1 .1	2.8 3.0 Site 1 REC11 3.2 3.4 3.5 3.7 3.9	3.0 3.0 Opt & REC12 3.1 3.4 3.5 3.7 3.8 4.1	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2	1.6 1.4 AM REC14 1.6 1.7 2.1 2.2 2.4 2.5	1.3 1.5 REC15 1.6 2.2 2.4 2.8 2.8 3.0	1.6 1.8 REC16 2.1 2.4 2.5 2.8 2.8 2.9	2. 7 2. 9 REC17 3. 0 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1	1.2 PAGE REC18 .9 .8 .6 .7 .7 .7	1.6 1.6 4 REC19 1.2 1.3 1.0 1.1 1.2 1.1	REC
P5. D0. D5. ND VGLE DEGE 10. 15. 20. 25. 30. 35. 40. 45. 55. 55. 55.	* (.0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 1 Opt TRATIO PPM) REC2 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 8 201/ N REC3 I .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .5	.0 .0 .0 4 AM 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 B8AM14 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0 . 0 . DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	.0 .0 REC8 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .7 .7 .1 .1 .7 .7 .7 .2.6	.0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .2 .6 .9 1.5 .2 .2	.0 .0 RUN: .1 .1 .1 .1 .1 .1 .1 .1 .2 .5 .9 1.5 2.0	2.8 3.0 Site 1 REC11 3.2 3.2 3.4 3.5 3.7 4.1 4.4 4.7 4.7 4.7 4.6	3.0 3.0 Opt & REC12 3.1 3.5 3.5 3.7 3.8 4.1 4.6 4.5 5.1 5.0 5.0 5.0 4.5	3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.4 3.4 3.4 3.4 3.4 3.4 3.7 3.9 4.1 4.1 4.3 4.8 4.9 4.5 3.8	1.6 1.4 AM REC14 1.6 1.7 2.1 2.2 2.4 2.5 2.8 3.3 3.3 3.3 3.3 3.3 3.7	1.3 1.5 REC15 1.6 2.2 2.4 2.8 3.0 2.9 2.8 2.6 2.4 2.8 3.0 2.9 2.8 2.6 2.2	1.6 1.8 REC16 2.1 2.4 2.5 2.8 2.9 2.7 2.5 2.3 2.0 1.8	2. 7 2. 9 REC17 3. 0 3. 1 3. 1 3. 1 3. 1 3. 1 2. 8 2. 4 2. 3 2. 2 1	1.2 PAGE REC18 .9 .8 .6 .7 .7 .7 .7 .7 .5 .5 .5 .3 .2 .1	1.6 1.6 4 REC19 1.2 1.3 1.0 1.1 1.2 1.1 1.2 1.1 1.1 1.1 3.0 9 .7 .3	REC
95. 00. 05. ND NGLE 10. 15. 20. 30. 35. 40. 55. 50. 55. 50. 55. 75. 30. 30. 30. 35. 45. 55. 55. 55. 55. 55. 55. 5	* (.0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .4 8 1.3 1.7 .2 .3 .2 .7 2.9 .2 .3 .0 2.9	.0 .0 .0 TRATIO PPM) REC2 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 8 201- N REC3 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .5 .5 .5 .3 .3 .8 4.0 .3 4.3 4.1	.0 .0 4 AM 1 REC4 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 B8AM14 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0 . 0 . DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	.0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .2 .6 .9 .2.6 2.9 3.0 .2.5 2.5 2.5	.0 .0 RUN: .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .5 .5 .2.0 2.0 2.8 2.8 3.0 2.8	2.8 3.0 Site 1 REC11 	3.0 3.0 Opt & REC12 3.1 3.5 3.7 3.8 4.1 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 5.0 4.5 1.5 1.0	3. 2 3. 2 3. 2 3. 2014 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3.	1.6 1.4 AM REC14 1.6 1.7 2.1 2.2 2.5 2.8 3.3 3.3 3.1 2.7 2.7 2.5 2.8 3.3 3.3 1.2 2.7 1.5 1.2 1.2 1.2	1.3 1.5 REC15 1.6 2.2 2.4 2.8 3.0 9 2.9 2.6 2.4 2.2 4 2.9 2.9 2.9 2.6 2.4 2.2 2.4 2.2 2.4 2.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	1.6 1.8 REC16 2.1 2.5 2.8 2.9 2.7 2.5 2.3 2.0 1.8 1.6 1.6 1.6 1.6	2, 7 2, 9 REC17 3, 0 3, 1 3, 1 3, 1 3, 1 3, 1 3, 1 3, 1 3, 1	1.2 PAGE REC18 .9 .9 .8 .6 .7 .7 .7 .7 .5 .3 .2 .2 .1 0 .0 .0 .0 .0 .0 .0 .0	1. 6 1. 6 2. 4 REC19 1. 2 1. 3 1. 0 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1 1. 1	REC
95. ND MGLE MODELESS NGGLE M	* (.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	. 0 . 0 . 0 TRATIO PPM) REC2 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	.0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 4 AM 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 BBAM14 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0 . 0 . DAT REC6 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	.0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 .1 .1 .1 .1 .1 .2 .6 .9 .2.6 2.6 2.6 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5	.0 .0 RUN: .1 .1 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .0 2.6 2.8 3.0 9 2.8 2.8 2.8 2.8 2.8 2.6 2.4 2.4	2.8 3.0 Site 1 REC11 3.2 3.4 3.5 3.7 3.9 4.4 4.4 4.7 4.7 4.6 4.1 3.3 2.1 4.4 4.4 4.7 4.7 4.6 3.3 2.3 3.4 3.5 3.7 3.9 4.4 4.4 4.4 4.7 4.7 4.6 3.3 2 3.2 3.4 3.5 5 3.7 3.9 4.4 4.4 4.5 7 5 5 6 6 6 6 7 6 7 6 7 6 7 8 7 7 8 7 8 7 8 7	3.0 3.0 Opt & REC12 3.1 3.5 3.7 3.8 4.1 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3. 2 3. 2 3. 2 3. 2 3. 2 3. 4 3. 4 3. 4 3. 4 3. 6 3. 7 4. 1 4. 3 4. 9 4. 1 4. 3 4. 9 4. 5 3. 8 3. 3 2. 4 4. 1 4. 5 3. 8 3. 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1.6 1.4 AM REC14 1.6 1.6 2.1 2.24 2.5 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 1.4 1.2 2 1.2 2 1.2 2 1.2 2.4 2.5 3.3 3.3 3.3 3.3 1.4 1.2 2 1.2 2 1.2 2.4 2.5 1.2 2.5 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3	1.3 1.5 REC15 1.62 2.4 2.8 3.0 9 2.9 2.2 4 2.2 4 2.8 3.0 9 2.9 2.6 4 2.2 4 2.2 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	1.6 1.8 REC16 2.1 2.5 2.8 2.9 2.5 2.3 2.7 2.5 2.3 2.9 2.7 2.7 2.5 2.3 2.0 8 1.8 1.6 1.6 1.6 1.6 1.6 1.6 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8	2. 7 2. 9 3. 0 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1	1.2 PAGE REC18 .9 .6 .7 .7 .7 .7 .5 .5 .5 .5 .5 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	RE
95. 00. 05. I ND EGR 10. 10. 10. 10. 10. 10. 10. 10.	**************************************	0 0 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.0 .0 .0 TRATIO PPPM) REC2 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 8 201- N REC3 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.00.00.00 .00.00 4 AM 1 .11.11.11.11.11.11.11.11.11.11.11.11.1	.0 .0 BBAM14 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. DAT REC6 . 00 . 11 . 44 . 128 . 1.88 . 1.88 . 1.88 . 1.66 . 1.66	22 22 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	.00.00 .00 .11.11.11.11.11.11.11.11.11.11.11.11.11	.0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	.0 .0 RUN: REC10 .1 .1 .1 .1 .1 .1 .2 .5 .5 .5 .2 .6 .2 .8 .2 .8 .2 .9 .2 .8 .2 .9 .2 .8 .2 .9 .2 .8 .2 .9 .2 .8 .2 .9 .2 .2 .8 .2 .2 .4 .2 .2 .4 .2 .2 .4 .2 .2 .4 .2 .2 .4 .2 .2 .4 .2 .2 .4 .2 .2 .2 .2 .2 .4 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2 .2	2.8 3.0 Site 1 REC11 3.22 3.4 3.5 3.7 3.9 4.1 4.7 4.7 4.7 4.7 4.7 4.7 4.1 3.2 3.1 1.4 1.1 4.7 4.3 3.2 3.4 3.9 4.1 1.1 1.4 1.5 3.2 3.4 3.2 3.4 3.5 7 3.9 4.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	3.0 3.0 0pt & REC12 3.1 3.4 3.5 3.3 4.6 4.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3. 2 3. 2 3. 2 3. 2 3. 2 3. 2 3. 2 3. 2	1.6 1.4 AM REC14 1.67 2.2245 3.33 3.317 2.2245 2.8333 3.317 2.55 1.42 1.22 1.33 1.33 1.44 1.44 1.44 1.45	$\begin{array}{c} 1.3\\ 1.5\\ \\ REC15\\ 1.6\\ 2.4\\ 2.2\\ 4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 2.2\\ 2.4\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$	1.6 1.8 REC16 2.1 2.5 2.28 2.77 2.5 2.30 2.77 2.5 2.30 2.77 2.5 2.30 2.77 2.5 2.30 2.77 2.5 2.30 2.77 2.5 2.30 2.14 2.5 2.30 2.77 2.5 2.30 2.14 2.5 2.30 2.77 2.5 2.30 2.14 2.5 2.5 2.30 2.77 2.5 2.30 2.14 2.5 2.4 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2. 7 2. 9 REC17 3. 0 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1	1.2 PAGE REC18 .9 .6 .7 .7 .7 .7 .7 .7 .7 .7 .5 .3 .2 .2 .2 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	RE(
95. 00. 05. IND NGLER 10. 120. 230. 230. 230. 230. 230. 230. 230. 25. 445. 560. 570. 75. 885. 905. 20. 20. 20. 20. 20. 20. 20. 20	**************************************	.0 .0 .0 .0 .0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 TRATIO PPM) REC2 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 8 2014 N REC3 1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.00.00 .00.00 4 AM 1 .11.11.11.11.11.11.11.11.11.11.11.11.1	.0 .0 B8AM14 REC5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	. 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	.0 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.0 .0 .0 .1 .1 .1 .1 .1 .2 .6 .9 1.5 2.6 2.6 2.5 2.6 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	.0 .0 RUN: .1 .1 .1 .1 .1 .1 .1 .1 .2 .5 .9 1.0 2.6 2.8 3.0 9 2.8 2.6 2.2 8 2.6 2.2 4 2.2 4 2.4 2.4 2.4 2.4 2.2	2.8 3.0 Site 1 REC11 3.2 3.4 3.57 3.9 4.4 4.35 3.7 3.9 4.4 4.4 4.7 4.7 4.6 1.3 3 2.1 1.4 1.1 1.4 1.1 7 .6 3 .3 4 .3 3 .4 3.5 7 3.1 2 3.2 3.4 3.5 7 3.9 4.4 4.4 4.4 4.5 3.2 3.4 3.5 7 3.2 3.4 4.4 4.4 4.5 3.2 3.4 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 4.5 7 5 7 5 7 4.5 7 7 4.5 7 7 5 7 7 8 7 7 7 7 8 7 7 7 8 7 7 7 8 7 7 7 7 7 8 7 7 7 8 7 7 7 7 8 7 7 7 7 7 8 7 7 7 7 7 7 7 7 7 7 7 7 8 7	3.0 3.0 Opt & REC12 3.1 3.5 3.7 3.5 3.7 3.5 3.7 3.5 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5	3. 2 3. 2 3. 2 3. 2 3. 2 3. 4 3. 4 3. 4 3. 4 3. 6 3. 7 4. 1 4. 3 4. 8 4. 9 4. 5 3. 8 3. 3 2. 4 4. 1 4. 5 3. 8 3. 3 2. 4 5 5 7 9 9 9 9 9 9 9 9 9 9 7 7 7 7	1.6 1.4 AM REC14 1.6 1.7 2.2 4.2 5.8 3.3 3.3 3.3 3.3 1.7 2.0 5 1.4 2.2 4.2 5 8.3 3.3 3.3 3.3 1.7 2.0 5 1.4 1.2 2.4 4.1 2.2 4.1 2.2 5 8.3 3.3 3.3 3.3 1.7 2.0 5 1.4 1.2 2.4 2.5 8.3 3.3 3.3 3.3 1.7 2.2 5 1.4 2.2 5 8.3 3.3 3.3 3.3 3.3 1.7 2.2 5 1.4 2.1 2.2 5 8.3 3.3 3.3 3.3 3.3 1.7 2.2 5 1.4 2.1 2.2 5 1.4 2.2 5 1.4 2.5 5 1.4 2.1 2.2 5 5 3.3 3.3 3.3 3.3 1.7 2.2 5 1.4 2.1 2.2 5 1.4 2.1 2.4 5 1.4 2.1 2.4 2.5 1.4 2.2 5 1.4 2.1 2.4 2.5 5 3.3 3.3 3.3 1.7 2.2 5 1.4 2.1 2.4 2.5 5 3.3 3.3 3.3 3.3 1.7 2.2 5 1.4 2.1 2.5 2.1 2.1 2.4 2.5 5 3.3 3.3 3.3 3.3 1.7 2.2 5 1.4 2.1 2.5 5 1.4 2.1 2.1 2.5 5 1.4 2.1 2.5 5 1.4 2.1 2.5 5 1.4 2.1 2.5 5 1.4 2.1 2.5 5 1.4 2.1 2.5 1.5 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.4 2.5 5 1.5 2.5 5 1.4 2.5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	$\begin{array}{c} 1.3\\ 1.5\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	1.6 1.8 REC16 2.1 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	2. 7 2. 9 REC17 3. 0 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1 3. 1	1.2 PAGE REC18 .9 .8 .6 .7 .7 .7 .7 .7 .5 .5 .5 .5 .3 .2 .2 .1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	REC

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

5. 10. 15. 20. 25. 30. 45. 50. 55. 60. 65. 80. 75. 80. 95. 100. 105. 110. 115. 120. 125. 130. 155. 140. 155. 155. 140. 155. 155. 155. 155. 155. 155. 155. 15	* * * * * * * * * * * * * * * * * * * *	. 9 4 8 1 3 4 3 1 9 8 7 5 5 5 9 1 9 2 4 4 1 8 6 5 4 1 0 1 1 9 9 8 9 0 0 1 2 2 3 5 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	124689009809251849105341222323232224331123 101122334433333333333222243331123	01235688889261838399979876443222111332188889	$\begin{smallmatrix} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 5 \\ & 6 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 3 \\ & 3 \\ & 3 \\ & 2 \\ & $			1
WI ND		8: Site GLE RANG		8 2014 D360.		38AM14.DAT		R
WI ND ANGLI (DEGI	E * R)*	REC21 F	PPM) REC22 I	REC23	REC24			
210. 215. 220. 225. 230. 235. 240. 245. 255. 260. 275. 285. 275. 285. 275. 285. 285. 275. 285. 275. 285. 290. 295. 300. 315. 330. 335. 335. 336. 345. 355. 340. 345. 355. 340. 345. 355. 340. 345. 345. 345. 345. 345. 345. 345. 345	* * * * * * * * * * * * * * * * * * * *	$\begin{array}{c} 3.1 \\ 3.0 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.3 \\ 3.5 \\ 3.5 \\ 3.5 \\ 1.4 \\ 9 \\ 4.4 \\ .0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 3.4\\ 3.3.4\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.79\\ 4.1\\ 3.55\\ 2.70\\ 1.38\\ 5.5\\ 2.70\\ 1.38\\ 5.5\\ 2.20\\ 1.38\\ 2.22\\ 2.1\\ 1.1\\ 100\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ 00\\ $	$\begin{array}{c} 2,8\\ 9,\\ 3,3\\ 3,8\\ 3,8\\ 3,8\\ 3,8\\ 3,8\\ 3,3\\ 3,3$	2 9 3 3 0 3 3 3 3 4 3 6 8 4 0 4 4 0 7 3 7 2 7 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 0 0 0 0			
DEGR.			4. 1 95	4.3 95	4.4 95			

THE HIGHEST CONCENTRATION IS 5. 10 PPM AT 250 DEGREES FROM REC12. THE 2ND HIGHEST CONCENTRATION IS 4. 90 PPM AT 255 DEGREES FROM REC13. THE 3RD HIGHEST CONCENTRATION IS 4. 70 PPM AT 255 DEGREES FROM REC11.

RUN: Site 1 Opt 8 2014 AM

Page 3

Site 1 1	Opt 8	2030 AM 1E	88AM30.D	AT	60.	0321.0.00	00.002	240.3	0480	000	1
SE MID			743.		16.	5.0					
SE 164			857.		23.	5.0					
SE 82 SE CNR			939. 1020.		28. 34.	5.0 5.0					
SE 82			1022.		53.	5.0					
NE 82			1075.		56.	5.0					
NE CNR	-		1076.		37.	5.0					
NE 82			1156.	11	42.	5.0					
NE 164			1238.		46.	5.0					
NE MID			1341.		53.	5.0					
NW MID			1453.		80.	5.0					
NW 164 NW 82			1316. 1234.		72. 69.	5.0 5.0					
NW CNR			1138.		88.	5.0					
NW 82			1137.		85.	5.0					
NW 164			1145.		66.	5.0					
NW MID			1156.		26.	5.0					
SW MID			1072.		97.	5.0					
SW 164	W		1043.	14	34.	5.0					
SW 82	W		1026.	13	54.	5.0					
SW CNR			995.		73.	5.0					
SW 82			900.		48.	5.0					
SW 164			819.		43.	5.0					
SW MID			692.	12	35.	5.0					
l site i	Opt 8	2030 AM			27	1 0					
NB	R+1	aprch AG	58	1109	581	1136.	2295	92	0.	56	30.
1	Rei	apren ne	50.	1100.	501.	1190.	22/5		0.	50	50.
NB	Rt1	thru AG	582.	1136.	1083.	1166.	1715	9.2	0.	56	30.
2	_										
NB		thru AG				1138.	0.	36	3		
1	125	58	2.0	1715	84.⊥	1679 1 3					
1 NB	D+1	left AG	F 70	1167.	1065	1195.	EQO	9.2	0.	44	30.
2	KUI	IEIC AG	572.	1107.	1005.	1195.	200	9.2	0.	77	50.
NB	Rt1	left AG	983.	1190.	604.	1169.	0.	24	2		
112	125	111	2.0			1700 1 3			-		
1											
NB	Rt1	departAG	1085.	1167.	1470.	1188.	1930	9.2	0.	56	30.
1											
NB	Rt1	departAG	1470.	1188.	1784.	1227.	1930	9.2	0.	44	30.
1			4 - 0 4			1050					
NB	Rtl	departAG	1784.	1227.	2072.	1272.	1930	9.2	0.	44	30.
1		annah AC	2060	1 2 1 1	1604	1064	2425	0 2	0.	44	20
SB 1	RUI	aprch AG	2069.	1311.	1694.	1264.	3435	9.2	0.	44	30.
SB	R+1	aprch AG	1694.	1264.	1395.	1248.	3435	92	0.	44	30.
1	1.01	~ <u>r</u> = 011 110		~.	_0/0.		5.00		~ •		
SB	Rt1	th+rt AG	1395.	1248.	1057.	1231.	3415	9.2	0.	56	30.
2											
SB		th+rt AG	1144.	1236.	1388.		0.	36	3		
	125	67	2.0	3415	84.1	1666 1 3					
1		1 ()	1000	1026	1041	1015	0.0	0 0	0	22	2.0
SB	Rtl	left AG	1378.	1236.	1241.	1217.	20	9.2	0.	32	30.

1						
SB 2	Rt1 left AG	1240. 1217.	1058. 1208.	20 9.2	0.	32 30.
SB	Rt1 left AG 125 120	1147. 1212. 2.0 20		0. 12	1	
1 SB 1	Rt1 departAG	1056. 1231.	921. 1221.	4030 9.2	0.	56 30.
SB 1	Rt1 departAG	921. 1221.	58. 1172.	4030 9.2	0.	56 30.
EB 1	Rt28 aprchAG	1226. 2185.	1087. 1547.	965 9.2	0.	32 30.
EB 1	Rt28 aprchAG	1088. 1547.	1072. 1425.	965 9.2	0.	56 30.
EB 2	Rt28 aprchAG	1072. 1425.	1025. 1202.	965 9.2	0.	56 30.
EB	Rt28 aprchAG 125 100	1043. 1287. 2.0 965		0. 36	3	
1 EB 1	Rt28 deparAG	1039. 1194.	1043. 1015.	45 9.2	0.	32 30.
WB 2	Rt28 aprchAG	1052. 1015.	1049. 1190.	85 9.2	0.	44 30.
WB		1050. 1141. 2.0 85	1051. 1019. 84.1 1694 1 3	0. 24	2	
1 WB 1	Rt28 deparAG	1069. 1197.	1121. 1424.	775 9.2	0.	44 30.
WB 1	Rt28 deparAG	1121. 1424.	1126. 1570.	775 9.2	0.	32 30.
WB 1.0	Rt28 deparAG 04 1000. 0Y 5	1126. 1570. 0 72	1257. 2180.	775 9.2	0.	32 30.

RUN: Site 1 Opt 8 2030 AM

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

JOB: Site 1 Opt 8 2030 AM 1B8AM30.DAT

WIND ANGLE RANGE: 0. -360.

MODEL RESULTS

WIND * CONCENTRATION ANGLE * (PPM)

1. 2. 3. 4. 5. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

1

| RECEPTOR LOCATIONS * COORDINATES (FT) * * X Y Z * * 1. SE MID S * 743.0 1116.0 5.0 * 2. SE 164 S * 857.0 1123.0 5.0 * 3. SE 82 S * 939.0 1128.0 5.0 * 4. SE CNR * 1020.0 1134.0 5.0 * 5. SE 82 E * 1075.0 1056.0 5.0 * 6. NE 82 E * 1076.0 1137.0 5.0 * 7. NE CNR * 1076.0 1137.0 5.0 * 9. NE 164 N * 1238.0 1146.0 5.0 * 1. NW MID N * 1453.0 1280.0 5.0 * 1. NW MID N * 1138.0 1288.0 5.0 * 3. NW 82 N * 1138.0 1288.0 5.0 * 7. NW MID W * 1145.0 1466.0 5.0 * 7. NW 82 W * 1138.0 1288.0 5.0 * < | | NB
NB
SB
SB
EB
WB | Rt1 thru *
Rt1 left *
Rt1th+rt *
Rt1 left *
Rt28 aprch*
Rt28 aprch* | 125
125
125
125
125
125
125 | 58
111
67
120
100
114 | 2.0
2.0
2.0
2.0
2.0
2.0
2.0 | 171
58
341
20
96 | 0
5
0
5 |
|---|--|--|--|--|--|---|------------------------------|---|
| RECEPTOR * X Y Z * 1. SE MID S * 743.0 1116.0 5.0 * 2. SE 164 S * 857.0 1123.0 5.0 * 3. SE 82 S * 939.0 1128.0 5.0 * 4. SE CNR * 1020.0 1134.0 5.0 * 5. SE 82 E * 1075.0 1053.0 5.0 * 6. NE 82 E * 1075.0 1056.0 5.0 * 7. NE CNR * 1166.0 1142.0 5.0 * 8. NE 82 N * 1156.0 1142.0 5.0 * 9. NE 164 N * 1238.0 1146.0 5.0 * 1. NW MID N * 1341.0 1153.0 5.0 * 1. NW HID N * 1346.0 1269.0 5.0 * 1. NW MID N * 1337.0 1385.0 5.0 * NW 82 N * | RE | CEPTOR LOCA | ATI ONS | | | | | |
| 1. SE MID S * 743.0 1116.0 5.0 * 2. SE 164 S * 857.0 1123.0 5.0 * 3. SE 82 S * 939.0 1128.0 5.0 * 4. SE CNR * 1020.0 1134.0 5.0 * 5. SE 82 E * 1020.0 1134.0 5.0 * 6. NE 82 E * 1020.0 1053.0 5.0 * 7. NE CNR * 1076.0 1137.0 5.0 * 8. NE 82 N * 1128.0 1142.0 5.0 * 9. NE 164 N * 1238.0 1146.0 5.0 * 1. NW MID N * 1341.0 1153.0 5.0 * 1. NW MID N * 1340.0 1269.0 5.0 * 3. NW 82 N * 1138.0 1288.0 5.0 * 3. NW 82 W * 1137.0 1385.0 5.0 * 4. NW CNR * 1137.0 1385.0 5.0 * 5. NW 82 W < | | RECEPTOR | * | | | (FT)
Z | | * |
| | 2.
3.
4.
5.
6.
7.
8.
9.
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
0.
1.
2.
3.
4.
5.
6.
7.
8.
9.
0.
1.
2.
4.
5.
6.
7.
8.
9.
0.
1.
2.
5.
6.
7.
8.
9.
0.
1.
2.
5.
6.
7.
8.
9.
0.
1.
2.
5.
6.
7.
8.
9.
0.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2.
2. | SE 164 S
SE 82 S
SE 82 CNR
NE 82 E
NE CNR
NE 82 N
NE 164 N
NE MID N
NW 164 N
NW 82 N
NW CNR
NW 82 W
NW 164 W
NW 164 W
NW 164 W
NW 164 W
SW 164 W
SW 164 W
SW 82 S
SW 82 S
SW 82 S
SW 84 S | * | 857.0
939.0
1020.0
1075.0
1075.0
1156.0
1238.0
1341.0
1341.0
1343.0
1136.0
1234.0
1137.0
1137.0
1145.0
1137.0
1145.0
1072.0
1043.0
1026.0
995.0
900.0 | 1123. (
1128. (
1134. (
1053. (
1137. (
1146. (
1146. (
1288. (
1288. (
1288. (
1288. (
1288. (
1288. (
1288. (
1385. (
1385. (
1354. (
1354. (
1273. (
1273. (
1273. (
1274. (
1274. (
1248. | | | * |

| LINK DES | SCRIPTION * * * | CYCLE
LENGTH
(SEC) | RED
TIME
(SEC) | CLEARANCE
LOST TIME
(SEC) | APPROACH
VOL
(VPH) | SATURATI ON
FLOW RATE
(VPH) | IDLE
EM FAC
(gm/hr) | SI GNAL
TYPE | ARRI VAL
RATE |
|----------|-----------------|--------------------------|----------------------|---------------------------------|--------------------------|-----------------------------------|---------------------------|-----------------|------------------|
| 3. NB | Rt1 thru * | 125 | 58 | 2.0 | 1715 | 1679 | 84.10 | 1 | 3 |
| 5. NB | Rt1 left * | 125 | 111 | 2.0 | 580 | 1700 | 84.10 | 1 | 3 |
| 12. SB | Rt1th+rt * | 125 | 67 | 2.0 | 3415 | 1666 | 84.10 | 1 | 3 |
| 15. SB | Rt1 left * | 125 | 120 | 2.0 | 20 | 1752 | 84.10 | 1 | 3 |
| 21. EB | Rt28 aprch* | 125 | 100 | 2.0 | 965 | 1524 | 84.10 | 1 | 3 |
| 24. WB | Rt28 aprch* | 125 | 114 | 2.0 | 85 | 1694 | 84.10 | 1 | 3 |

J D

| 10 | SB | Rt1 aprch * | 1694.0 | 1264.0 | 1395.0 | 1248.0 * | 299. | 267. AG | 3435. | 9.2 | .0 4 |
|----|-------------|----------------|-----------------|--------|-----------|----------|--------------|--------------------|---------|--------------|------|
| | . SB | Rt1 th+rt * | 1395.0 | 1248.0 | 1057.0 | 1248.0 | | 267. AG | 3435. | 9.2 | .0 4 |
| | . SB | Rt1th+rt * | 1144.0 | 1246.0 | 5885.5 | 1469.2 * | | 87. AG | 363. | 100.0 | .030 |
| | . SB | Rt1 left * | 1378.0 | 1236.0 | 1241.0 | 1217.0 * | | 262. AG | 20. | 9.2 | .03 |
| | . SB | Rt1 left * | 1240.0 | 1230.0 | 1058.0 | 1208.0 * | | 262. AG
267. AG | 20. | 9.2 | .03 |
| 15 | | Rt1 left * | 1147.0 | 1217.0 | 1245.3 | 1208.0 | | 87. AG | 20. | 9.2
100.0 | .03 |
| | . SB | | | 1212.0 | 921.0 | 1221.0 * | | 266. AG | 4030. | 9.2 | |
| | . SB | Rt1 depart* | 1056.0
921.0 | | 58.0 | 1172.0 * | | | 4030. | 9.2 | .05 |
| | | Rt1 depart* | | 1221.0 | | | | 267. AG | | 9.2 | .050 |
| | . EB | Rt28 aprch* | 1226.0 | 2185.0 | 1087.0 | 1547.0 * | | 192. AG | 965. | | .03 |
| | . EB | Rt28 aprch* | 1088.0 | 1547.0 | 1072.0 | 1425.0 * | | 187. AG | 965. | 9.2 | .05 |
| | . EB | Rt28 aprch* | 1072.0 | 1425.0 | 1025.0 | 1202.0 * | | 192. AG | 965. | 9.2 | .05 |
| | . EB | Rt28 aprch* | 1043.0 | 1287.0 | 1226.3 | 2181.3 * | | 12. AG | 541. | 100.0 | .03 |
| | . EB | Rt28 depar* | 1039.0 | 1194.0 | 1043.0 | 1015.0 * | | 179. AG | 45. | 9.2 | .03 |
| | . WB | Rt28 aprch* | 1052.0 | 1015.0 | 1049.0 | 1190.0 * | | 359. AG | 85. | 9.2 | .04 |
| | . WB | Rt28 aprch* | 1050.0 | 1141.0 | 1050.2 | 1114.8 * | | 180. AG | 411. | 100.0 | .02 |
| 25 | | Rt28 depar* | 1069.0 | 1197.0 | 1121.0 | 1424.0 * | | 13. AG | 775. | 9.2 | .04 |
| | . WB | Rt28 depar* | 1121.0 | 1424.0 | 1126.0 | 1570.0 * | | 2. AG | 775. | 9.2 | .03 |
| 27 | . WB | Rt28 depar* | 1126.0 | 1570.0 | 1257.0 | 2180.0 * | 624. | 12. AG | 775. | 9.2 | .03 |
| | | | | | | | | | | | |
| | D 011 4 | | | - | | | | | | | 1 |
| | | Opt 8 2030 AM | | 1 | | RUN: SIT | e 1 Opt 8 20 | 030 AM | | | |
| DA | TE: 05/10/2 | 2009 TIME: 2 | 1: 49: 28. 11 | | | | | | | | |
| | | | | | | | | | | | |
| А | DDITIONAL (| QUEUE LINK PAR | AMETERS | | | | | | | | |
| - | LINK DESCH | RIPTION * | CYCLE | RED | CLEARANCE | APPROACH | SATURATI ON | I DLE | SI GNAL | ARRIV | //1 |
| | LINK DESCI | * | LENGTH | TIME | LOST TIME | VOL | FLOW RATE | EM FAC | TYPE | RATE | |
| | | * | (SEC) | (SEC) | (SEC) | (VPH) | (VPH) | (gm/hr) | TIPE | KAIE | - |
| | | ** | (SEC) | (320) | (310) | (VFП) | (VPT) | (90710) | | | |
| | | | | | | | | | | | |

| | US = .0 CM/S VD = .0 CM/S Z0 = 321. CM
U = 1.0 M/S CLAS = 4 (D) ATIM = 60. MINUTES MIXH = 1000. M AMB = .0 PPM | | | | | | | | | | | | | | | |
|--|---|---|-------------|--|--|--|----|---|--|--|---|--|--|---|------------------------|----------------|
| | LINK VARIABLES | | | | | | | | | | | | | | | |
| | LINK | DESCRI PTI ON | * | X1 | ¥1 | DI NATES (FT) | ¥2 | * * * | LENGTH
(FT) | BRG
(DEG) | | VPH | EF
(G/MI) | | v/c | QUEUE
(VEH) |
| 1.
2.
3.
4.
5.
6.
7.
8. | NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
NB
N | Rt1 aprch
Rt1 thru
Rt1 thru
Rt1 left
Rt1 left
Rt1 depar
Rt1 depar
Rt1 aprch
Rt1 aprch
Rt1 aprch
Rt1 h+rt
Rt1 left
Rt1 left
Rt1 left
Rt1 depar
Rt28 aprc
Rt28 aprc
Rt28 aprc
Rt28 depa
Rt28 depa
Rt28 depa
Rt28 depa
Rt28 depa | <pre></pre> | 58.0
582.0
984.0
978.0
1085.0
1085.0
11470.0
11784.0
11395.0
11395.0
1144.0
11395.0
1144.0
11395.0
1240.0
1147.0
11240.0
1052.0
1053.0
1043.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055.0
1055 | 1109.0
1136.0
1160.0
1167.0
1190.0
1188.0
1227.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0
1248.0 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | * | 524.
502.
181.
494.
1813.
386.
378.
299.
338.
4747.
138.
182.
98.
135.
864.
653.
123.
228.
913.
179.
175.
26.
233.
146.
624. | 87.
87.
87.
267.
87.
83.
81.
263.
267.
87.
262.
267.
192.
187.
192.
187.
179.
359.
180.
13.
212. | AG
AG
AG
AG
AG
AG
AG
AG
AG
AG
AG
AG
AG
A | 2295.
1715.
314.
580.
1930.
1930.
1930.
1930.
1930.
3435.
3435.
3435.
3435.
20.
20.
217.
4030.
965.
965.
965.
541.
45.
85.
411.
775.
775. | $\begin{array}{c} 9.2\\ 100.0\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2\\ 9.2$ | $\begin{array}{c} 0 & 56.0 \\ 0 & 56.0 \\ 0 & 36.0 \\ . & 0 & 44.0 \\ 0 & 24.0 & 2. \\ 0 & 56.0 \\ 0 & 44.0 \\ 0 & 44.0 \\ 0 & 44.0 \\ 0 & 56.0 \\ 0 & 32.0 \\ 0 & 32.0 \\ 0 & 56.0 \\ 0 & 32.0 \\ 0 & 56.0 \\ 0 & 52.0 \\ 0 & 32.0 \\ 0 & 32.0 \\ \end{array}$ | 13
58 2
43
25 | 41. 2
5. 0 |
| | | | | | | | | | | | | | | PAGE | 2 | |

RUN: Site 1 Opt 8 2030 AM

JOB: Site 1 Opt 8 2030 AM 1B8AM30.DAT DATE: 05/10/2009 TIME: 21:49:28.11

SITE & METEOROLOGICAL VARIABLES

1

1

1B8AM30. OUT CAL3QHC: LINE SOURCE DI SPERSI ON MODEL - VERSI ON 2.2, JUNE 2000

PAGE 1

PAGE 2

| 245. * .1 .1 .3 .0 .0 1.1 .3 .1 .2 3.3 3.7 3.4 2.5 2.5 2.1 2.3 .2 250. * .4 .4 .4 .4 .0 .0 1.3 .5 .4 .3 3.8 3.7 2.7 2.3 2.1 2.1 .3 |
|--|
|--|

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

| 5. | * | R | . 1 | . 0 | . 0 | | | | | |
|---|---|---|--|--|--|-----------|-------|-----|---------|--|
| 30. 15. 20. 25. 30. 55. 60. 65. 70. 75. 80. 70. 75. 80. 70. 75. 80. 70. 75. 80. 70. 75. 80. 70. 85. 90. 110. 1150. 120. 1330. 135. 140. 155. 160. 165. 160. 175. 180. 180. 180. 195. 200. | * | .8270098876542258157632996666555655466667899 | - 2 4 6 7 8 7 8 8 7 8 8 0 3 7 3 8 9 2 9 7 5 3 5 4 4 5 5 5 6 7 7 7 6 5 6 6 5 5 6 6
1 1 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 | . 1 2 3 4 6 7 6 6 6 7 7 0 1 5 1 7 8 2 0 0 9 9 8 9 9 8 6 6 5 5 5 5 6 6 5 5 3 3 2 3
1.112233332222222222222222222222222222 | .0023334455556711398244333510877554221122322211101 | | | | | |
| 1 | JOB | | | | | B8AM30. I | DAT | | | |
| WI ND | | LE RANG | | D360. | | 5074000.1 | 5711 | | | |
| WI ND
ANGLE
(DEGF | = *
?* | CONCEN
(I
REC21 I | PPM)
RFC22 I | REC23 | REC24 | | | | | |
| 210.
215.
220.
225.
230.
255.
260.
265.
260.
275.
280.
290.
295.
300.
295.
300.
295.
310.
325.
310.
325.
330.
335.
330.
335.
330.
340.
345.
355.
360.
265.
260.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
280.
295.
295.
295.
295.
295.
295.
295.
295 | * | $\begin{array}{c} 2 & 2 \\ 2 & 2 \\ 2 & 4 \\ 2 & 3 \\ 2 & 4 \\ 2 & 6 \\ 2 & 5 \\ 2 & 5 \\ 2 & 5 \\ 2 & 5 \\ 2 & 6 \\ 1 & 2 \\ 1 & 6 \\ 3 & 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$ | $\begin{array}{c} 2.7\\ 2.7\\ 2.8\\ 2.7\\ 2.8\\ 2.0\\ 3.1\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 3.2\\ 1.0\\ 0\\ .0\\ 1.1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 1\\ 1\end{array}$ | $\begin{array}{c} 2 & 2 \\ 2 & 4 \\ 2 & 5 \\ 2 & 7 \\ 2 & 8 \\ 2 & 9 \\ 3 & 2 \\ 3 & 3 \\ 2 & 1 \\ 2 & 6 \\ 2 & 1 \\ 1 & 5 \\ 1 & 6 \\ 4 \\ 3 \\ 2 \\ 2 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0$ | $\begin{array}{c} 2,2\\ 2,4\\ 2,6\\ 2,6\\ 3,0\\ 0\\ 3,1\\ 1\\ 3,1\\ 2,6\\ 1,5\\ 2,6\\ 1\\ 1,5\\ 2,2\\ 2,6\\ 1,5\\ 2,2\\ 2,2\\ 1,5\\ 1,5\\ 2,2\\ 2,2\\ 1,5\\ 1,5\\ 1,5\\ 2,2\\ 2,2\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5\\ 1,5$ | | | | | |
| MAX
DEGR. | | 2.7
95 | 3. 2
255 | 3. 2
255 | 3.5
110 | | | | | |
| TUE 1 | | | | | C | 2 00 00 | A A T | 250 | DECDEEC | |

THE HIGHEST CONCENTRATION IS 3.80 PPM AT 250 DEGREES FROM REC12. THE 2ND HIGHEST CONCENTRATION IS 3.80 PPM AT 250 DEGREES FROM REC11. THE 3RD HIGHEST CONCENTRATION IS 3.70 PPM AT 250 DEGREES FROM REC13.

1B8AM30. OUT

RUN: Site 1 Opt 8 2030 AM

| Site 1 Opt 8 2014 PM 1 | B8PM14.DAT | 60.0321.0.00 | 00.000240.3 | 04800 | 00 | 1 |
|--------------------------|----------------|-----------------------------------|-------------|-------|----|-----|
| 1
SE MID S | 743. | 1116. 5.0 | | | | |
| SE 164 S
SE 82 S | 857.
939. | 1123.5.01128.5.0 | | | | |
| SE CNR | 1020. | 1134. 5.0 | | | | |
| SE 82 E | 1022. | 1053. 5.0 | | | | |
| NE 82 E
NE CNR | 1075.
1076. | 1056. 5.0
1137. 5.0 | | | | |
| NE 82 N | 1156. | 1142. 5.0 | | | | |
| NE 164 N | 1238. | 1146. 5.0 | | | | |
| NE MID N
NW MID N | 1341.
1453. | 1153.5.01280.5.0 | | | | |
| NW 164 N | 1316. | 1272. 5.0 | | | | |
| NW 82 N | 1234. | 1269. 5.0 | | | | |
| NW CNR | 1138. | 1288. 5.0 | | | | |
| NW 82 W
NW 164 W | 1137.
1145. | 1385. 5.0
1466. 5.0 | | | | |
| NW MID W | 1156. | 1626. 5.0 | | | | |
| SW MID W | 1072. | 1597. 5.0 | | | | |
| SW 164 W
SW 82 W | 1043.
1026. | 1434.5.01354.5.0 | | | | |
| SW CNR | 995. | 1273. 5.0 | | | | |
| SW 82 S | 900. | 1248. 5.0 | | | | |
| SW 164 S
SW MID S | 819.
692. | 1243.5.01235.5.0 | | | | |
| Site 1 Opt 8 2014 PM | 092. | 27 1 0 | | | | |
| 1 | | | | | | |
| NB Rtl aprch AG | 58. 110 | 9. 581. 1136. | 398511.4 | 0. | 56 | 30. |
| NB Rt1 thru AG | 582. 113 | 6. 1083. 1166. | 296511.4 | 0. | 56 | 30. |
| NB Rt1 thru AG | | 0. 603. 1138. | 0. 36 | 3 | | |
| 120 59 | 2.0 296 | 5 102.2 1678 1 3 | | | | |
| 1
NB Rtl left AG | 572. 116 | 7. 1065. 1195. | 101511.4 | 0. | 44 | 30. |
| 2 | | | | | | |
| NB Rtl left AG | | 0. 604. 1169.
5 102.2 1700 1 3 | 0. 24 | 2 | | |
| 120 96
1 | 2.0 101 | 5 102.2 1700 1 5 | | | | |
| | 1085. 116 | 7. 1470. 1188. | 320011.4 | 0. | 56 | 30. |
| 1
NB Rt1 departAG | 1470 118 | 8. 1784. 1227. | 320011.4 | 0 | 44 | 30. |
| 1 | 11/0. 110 | | 520011.1 | 0. | | 50. |
| NB Rt1 departAG | 1784. 122 | 7. 2072. 1272. | 320011.4 | 0. | 44 | 30. |
| 1
SB Rt1 aprch AG | 2069. 131 | 1. 1694. 1264. | 256511.4 | 0. | 44 | 30. |
| 1 | | | | | | |
| SB Rtl aprch AG | 1694. 126 | 4. 1395. 1248. | 256511.4 | 0. | 44 | 30. |
| SB Rt1 th+rt AG | 1395. 124 | 8. 1057. 1231. | 256011.4 | 0. | 56 | 30. |
| 2
SB Rtlth+rt AG | 1144. 123 | 6. 1388. 1248. | 0. 36 | 3 | | |
| SB Rtlth+rt AG
120 80 | 2.0 256 | | 0. 30 | З | | |
| 1 | | | | | | |
| SB Rtl left AG | 1378. 123 | 6. 1241. 1217. | 1011.4 | 0. | 32 | 30. |

| 1 | | | | | | | |
|--------------|-------------------------------|------------------------|-------------------------------|----------|----|----|-----|
| SB | Rt1 left AG | 1240. 1217. | 1058. 1208. | 1011.4 | 0. | 32 | 30. |
| 2
SB | Rt1 left AG
120 115 | 1147. 1212.
2.0 10 | | 0. 12 | 1 | | |
| 1
SB
1 | Rt1 departAG | 1056. 1231. | 921. 1221. | 298011.4 | 0. | 56 | 30. |
| SB
1 | Rt1 departAG | 921. 1221. | 58. 1172. | 298011.4 | 0. | 56 | 30. |
| EB
1 | Rt28 aprchAG | 1226. 2185. | 1087. 1547. | 78511.4 | 0. | 32 | 30. |
| EB
1 | Rt28 aprchAG | 1088. 1547. | 1072. 1425. | 78511.4 | 0. | 56 | 30. |
| EB
2 | Rt28 aprchAG | 1072. 1425. | 1025. 1202. | 78511.4 | 0. | 56 | 30. |
| EB | Rt28 aprchAG
120 95 | | 1068. 1409.
102.2 1523 1 3 | 0. 36 | 3 | | |
| 1
EB
1 | Rt28 deparAG | 1039. 1194. | 1043. 1015. | 3011.4 | 0. | 32 | 30. |
| WB
2 | Rt28 aprchAG | 1052. 1015. | 1049. 1190. | 16011.4 | 0. | 44 | 30. |
| WB | Rt28 aprchAG
120 104 | 1050. 1141.
2.0 160 | 1051. 1019.
102.2 1706 1 3 | 0. 24 | 2 | | |
| 1
WB
1 | Rt28 deparAG | 1069. 1197. | 1121. 1424. | 128511.4 | 0. | 44 | 30. |
| WB
1 | Rt28 deparAG | 1121. 1424. | 1126. 1570. | 128511.4 | 0. | 32 | 30. |
| WB
1.0 | Rt28 deparAG
04 1000. 0Y 5 | 1126. 1570.
0 72 | 1257. 2180. | 128511.4 | 0. | 32 | 30. |

PAGE 3

PAGE 2

692.0 1235.0 5.0 * RUN: Site 1 Opt 8 2014 PM

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND * CONCENTRATION ANGLE * (PPM)

1

1

1

| 100 | C: + - | 4 | 0+ | ~ | 0014 | DM | | |
|------|--------|-----|-------|---|------|------|----------------|--|
| JOB: | Site | 1 | Upt | 8 | 2014 | РМ | 1B8PM14.DAT | |
| DATE | : 05/' | 10, | /2009 | 9 | TIME | E: 2 | 21: 41: 43. 00 | |

SITE & METEOROLOGICAL VARIABLES

| VS = .0 CM/S
U = 1.0 M/S | VD = .
CLAS = | 0 CM/S
4 (D) | ZO = 321. C
ATIM = 60. M | M
INUTES M | 11 XH = 10 | OO. M AME | 3 = .0 PPM | |
|-----------------------------|------------------|-----------------|-----------------------------|---------------|------------|-----------|------------|-----------|
| LINK VARIABLES | | | | | | | | |
| LINK DESCRIPTION | *
* V1 | LINK C | DORDI NATES (FT) | * | LENGTH | BRG TYPE | VPH EF | H
(FT) |

1B8PM14. OUT CAL3QHC: LINE SOURCE DI SPERSI ON MODEL - VERSI ON 2.2, JUNE 2000

| LINK | DESCRIPTION * | | NK COORDIN | | * | LENGTH | | VPH | EF | H W V/C QUEUE |
|------------------------|---------------|--------|------------|---------|----------|--------|---------|-------|--------|------------------------|
| | * | X1 | Y1 | X2 | Y2 * | (FT) | (DEG) | | (G/MI) | (FT) (FT) (VEH) |
| | *- | | | | * | | | | | |
| NB | Rt1 aprch * | 58.0 | 1109.0 | 581.0 | 1136.0 * | 524. | 87. AG | 3985. | 11.4 | .0 56.0 |
| NB | Rt1 thru * | 582.0 | 1136.0 | 1083.0 | 1166.0 * | 502. | 87. AG | 2965. | 11.4 | . 0 56. 0 |
| NB | Rt1 thru * | 984.0 | 1160.0 | -1381.0 | 1023.4 * | 2369. | 267. AG | 404. | 100.0 | . 0 36. 0 1. 24 120. 3 |
| 4. NB | Rt1 left * | 572.0 | 1167.0 | 1065.0 | 1195.0 * | 494. | 87. AG | 1015. | 11.4 | . 0 44. 0 |
| 5. NB | Rt1 left * | 983.0 | 1190.0 | -1630.5 | 1045.2 * | 2618. | 267. AG | 439. | 100.0 | .0 24.0 1.79 133.0 |
| 6. NB | Rt1 depart* | 1085.0 | 1167.0 | 1470.0 | 1188.0 * | 386. | 87. AG | 3200. | 11.4 | . 0 56. 0 |
| 7. NB | Rt1 depart* | 1470.0 | 1188.0 | 1784.0 | 1227.0 * | 316. | 83. AG | 3200. | 11.4 | . 0 44. 0 |
| 8. NB | Rt1 depart* | 1784.0 | 1227.0 | 2072.0 | 1272.0 * | 291. | 81. AG | 3200. | 11.4 | . 0 44. 0 |
| 9. SB | Rt1 aprch * | 2069.0 | 1311.0 | 1694.0 | 1264.0 * | 378. | 263. AG | 2565. | 11.4 | . 0 44. 0 |
| 10. SB | Rt1 aprch * | 1694.0 | 1264.0 | 1395.0 | 1248.0 * | 299. | 267. AG | 2565. | 11.4 | . 0 44. 0 |
| 11. SB | Rt1 th+rt * | 1395.0 | 1248.0 | 1057.0 | 1231.0 * | 338. | 267. AG | 2560. | 11.4 | .0 56.0 |
| 12. SB | Rt1th+rt * | 1144.0 | 1236.0 | 5202.1 | 1435.6 * | 4063. | 87. AG | 548. | 100.0 | . 0 36. 0 1. 72 206. 4 |
| 13. SB | Rt1 left * | 1378.0 | 1236.0 | 1241.0 | 1217.0 * | 138. | 262. AG | 10. | 11.4 | . 0 32. 0 |
| 14. SB | Rt1 left * | 1240.0 | 1217.0 | 1058.0 | 1208.0 * | 182. | 267. AG | 10. | 11.4 | . 0 32. 0 |
| 15. SB | Rt1 left * | 1147.0 | 1212.0 | 1157.4 | 1212.5 * | 10. | 87. AG | 263. | 100.0 | .012.0.71.5 |
| 16. SB | Rt1 depart* | 1056.0 | 1231.0 | 921.0 | 1221.0 * | 135. | 266. AG | 2980. | 11.4 | . 0 56. 0 |
| 17. SB | Rt1 depart* | 921.0 | 1221.0 | 58.0 | 1172.0 * | 864. | 267. AG | 2980. | 11.4 | .0 56.0 |
| 18. EB | Rt28 aprch* | 1226.0 | 2185.0 | 1087.0 | 1547.0 * | 653. | 192. AG | 785. | 11.4 | . 0 32. 0 |
| 19. EB | Rt28 aprch* | 1088.0 | 1547.0 | 1072.0 | 1425.0 * | 123. | 187. AG | 785. | 11.4 | .0 56.0 |
| 20. EB | Rt28 aprch* | 1072.0 | 1425.0 | 1025.0 | 1202.0 * | 228. | 192. AG | 785. | 11.4 | .0 56.0 |
| 21. EB | Rt28 aprch* | 1043.0 | 1287.0 | 1083.9 | 1486.8 * | 204. | 12. AG | 651. | 100.0 | . 0 36. 0 . 98 10. 4 |
| 22. EB | Rt28 depar* | 1039.0 | 1194.0 | 1043.0 | 1015.0 * | 179. | 179. AG | 30. | 11.4 | . 0 32. 0 |
| 23. WB | Rt28 aprch* | 1052.0 | 1015.0 | 1049.0 | 1190.0 * | 175. | 359. AG | 160. | 11.4 | . 0 44. 0 |
| 24. WB | Rt28 aprch* | 1050.0 | 1141.0 | 1050.4 | 1095.5 * | 45. | 180. AG | 475. | 100.0 | . 0 24. 0 . 47 2. 3 |
| 25. WB | Rt28 depar* | 1069.0 | 1197.0 | 1121.0 | 1424.0 * | 233. | 13. AG | 1285. | 11.4 | . 0 44. 0 |
| 26. WB | Rt28 depar* | 1121.0 | 1424.0 | 1126.0 | 1570.0 * | 146. | 2. AG | 1285. | 11.4 | . 0 32. 0 |
| 27. WB | Rt28 depar* | 1126.0 | 1570.0 | 1257.0 | 2180.0 * | 624. | 12. AG | 1285. | 11.4 | . 0 32. 0 |
| | | | | | | | | | | |

RUN: Site 1 Opt 8 2014 PM

RUN: Site 1 Opt 8 2014 PM

JOB: Site 1 Opt 8 2014 PM 1B8PM14.DAT DATE: 05/10/2009 TIME: 21:41:43.00

ADDITIONAL QUEUE LINK PARAMETERS

| | LINK | DESCRI PTI ON | *
*
* | CYCLE
LENGTH
(SEC) | RED
TIME
(SEC) | CLEARANCE
LOST TIME
(SEC) | APPROACH
VOL
(VPH) | SATURATION
FLOW RATE
(VPH) | IDLE
EM FAC
(gm/hr) | SI GNAL
TYPE | ARRI VAL
RATE |
|-----|------|---------------|-------------|--------------------------|----------------------|---------------------------------|--------------------------|----------------------------------|---------------------------|-----------------|------------------|
| 3. | NB | Rt1 thru | * | 120 | 59 | 2.0 | 2965 | 1678 | 102.20 | 1 | 3 |
| 5. | NB | Rt1 left | * | 120 | 96 | 2.0 | 1015 | 1700 | 102.20 | 1 | 3 |
| 12. | SB | Rt1th+rt | * | 120 | 80 | 2.0 | 2560 | 1660 | 102.20 | 1 | 3 |
| 15. | SB | Rt1 left | * | 120 | 115 | 2.0 | 10 | 1752 | 102.20 | 1 | 3 |
| 21. | EB | Rt28 aprc | h* | 120 | 95 | 2.0 | 785 | 1523 | 102.20 | 1 | 3 |
| 24. | WB | Rt28 aprc | h* | 120 | 104 | 2.0 | 160 | 1706 | 102.20 | 1 | 3 |

RECEPTOR LOCATIONS

| | * | COOR | DINATES (FT) | | * |
|--------------------------|---|--------|--------------|-----|---|
| RECEPTOR | * | X | Y | Z | * |
| 1. SE MID S | * | 743.0 | 1116.0 | 5.0 | * |
| 2. SE 164 S | * | 857.0 | 1123.0 | 5.0 | * |
| 3. SE 82 S | * | 939.0 | 1128.0 | 5.0 | * |
| 4. SE CNR | * | 1020.0 | 1134.0 | 5.0 | * |
| 5. SE 82 E | * | 1022.0 | 1053.0 | 5.0 | * |
| 6. NE 82 E | * | 1075.0 | 1056.0 | 5.0 | * |
| NE CNR | * | 1076.0 | 1137.0 | 5.0 | * |
| 8. NE 82 N | * | 1156.0 | 1142.0 | 5.0 | * |
| 9. NE 164 N | * | 1238.0 | 1146.0 | 5.0 | * |
| 10. NE MID N | * | 1341.0 | 1153.0 | 5.0 | * |
| 11. NW MID N | * | 1453.0 | 1280.0 | 5.0 | * |
| 12. NW 164 N | * | 1316.0 | 1272.0 | 5.0 | * |
| 13. NW 82 N | * | 1234.0 | 1269.0 | 5.0 | * |
| 14. NW CNR | * | 1138.0 | 1288.0 | 5.0 | * |
| 15. NW 82 W | * | 1137.0 | 1385.0 | 5.0 | * |
| 16. NW 164 W | * | 1145.0 | 1466.0 | 5.0 | * |
| 17. NW MID W | * | 1156.0 | 1626.0 | 5.0 | * |
| 18. SW MID W | * | 1072.0 | 1597.0 | 5.0 | * |
| 19. SW 164 W | * | 1043.0 | 1434.0 | 5.0 | * |
| 20. SW 82 W | * | 1026.0 | 1354.0 | 5.0 | * |
| 21. SW CNR | * | 995.0 | 1273.0 | 5.0 | * |
| 22. SW 82 S | * | 900.0 | 1248.0 | 5.0 | * |
| 23. SW 164 S | * | 819.0 | 1243.0 | 5.0 | * |
| 24. SW MID S | * | 692.0 | 1235.0 | 5.0 | * |

JOB: Site 1 Opt 8 2014 PM 1B8PM14.DAT

WIND ANGLE RANGE: 0. -360.

| שאו | | CONCEINTRATION |
|-----|---|----------------|
| GLE | * | (PPM) |

| (DEGR |)* | REC1 | REC2 | REC3 | REC4 | REC5 | REC6 | REC7 | REC8 | REC9 | | /14.0U
REC11 | | REC13 | REC14 | REC15 | REC16 | REC17 | REC18 | REC19 | REC20 |
|---|------------------|--|---|---|---|---|--|--|--|---|---|---|---|--|---|---|--|--|---|---|---|
| $\begin{array}{c} 0.\\ 5.\\ 10.\\ 15.\\ 20.\\ 30.\\ 35.\\ 40.\\ 450.\\ 55.\\ 60.\\ 70.\\ 80.\\ 90.\\ 105.\\ 105.\\ 105.\\ 125.\\ 130.\\ 140.\\ 1150.\\ 125.\\ 130.\\ 140.\\ 150.\\ 165.\\ 175.\\ 180.\\ 165.\\ 175.\\ 180.\\ 195.\\ 2005 \end{array}$ | -
-
-
- | $\begin{array}{c} 3.6\\ 3.55\\ 3.55\\ 3.55\\ 3.55\\ 3.3\\ 3.5\\ 3.3\\ 3.5\\ 3.3\\ 3.5\\ 3.3\\ 3.3$ | $\begin{array}{c} 3.7\\ 3.6\\ 3.7\\ 3.80\\ 4.4\\ 4.5\\ 4.6\\ 4.5\\ 4.6\\ 4.5\\ 2.82\\ 1.82\\ 1.7\\ 3.21\\ 1.1\\ 1.1\\ 1.1\\ 0.0\\ 0.0\\ 0.0\\ 0.0\\ 0.$ | 3.8
3.0
4.13
4.14
4.31
4.0
3.7
5.7
9.7
5.3
2.2
1.1
1.1
1.1
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | $\begin{array}{c} 2.6 \\ 2.99 \\ 2.28 \\ 2.55 \\ 2.5$ | $\begin{array}{c} 2.0\\ 1.8\\ 2.1\\ 2.3\\ 2.3\\ 2.8\\ 1.8\\ 1.8\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.7\\ 1.6\\ 3.2\\ .1\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\$ | $\begin{array}{c} 2.1\\ 1.8\\ 1.6\\ 1.5\\ 1.2\\ 2.1\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.2\\ 1.3\\ 1.5\\ 1.2\\ 2.2\\ 1.3\\ 1.5\\ 1.5\\ 1.2\\ 2.2\\ 1.3\\ 1.5\\ 1.5\\ 1.2\\ 2.2\\ 1.3\\ 1.5\\ 1.5\\ 1.2\\ 1.5\\ 1.5\\ 1.5\\ 1.2\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5\\ 1.5$ | $\begin{array}{c} 2.8\\ 2.85\\ 2.22\\ 2.0\\ 2.23\\ 2.5\\ 2.2\\ 2.3\\ 2.5\\ 2.5\\ 2.2\\ 2.3\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5\\ 2.5$ | $\begin{array}{c} 2,963\\ 2,233\\ 2,25\\ 2,22\\ 2,25\\ 2,22\\ 2,25\\ 2,22\\ 2,25\\ 2,22\\ 2,25\\ 2,22\\ 2,25\\ 2,22\\ 2,25\\ 2,22\\ 2,25\\ 2,2$ | $\begin{array}{c} 2 & 5 \\ 2 & 2 \\ 3 & 2 \\ 2 & 3 \\ 2 & 4 \\ 2 & 2 \\ 4 \\ 2 &$ | $\begin{array}{c} 2.5\\ 2.4\\ 2.3\\ 2.3\\ 2.3\\ 2.4\\ 2.5\\ 2.6\\ 2.7\\ 9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ 2.9\\ $ | $\begin{array}{c} . \\ 0 \\ . \\ 0 \\ . \\ 0 \\ . \\ 0 \\ . \\ 0 \\ . \\ 0 \\ 0$ | .100.00
.01.11.11.22.55
.2.55.14.78.44.11.8.65.42.11.1.1.22.11.1.1.2.2.3.4.4.78.44.4.1.8.65.42.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3. | . 1 1 0 0 0 1 1 1 1 3 5 9 6 5 2 9 4 6 8 3 2 9 8 6 4 3 2 2 1 1 1 1 1 1 3 3 5 9 6 5 2 3 3 4 4 6 8 3 3 3 3 3 3 3 1 1 1 1 1 2 2 1 1 1 1 1 2 3 3 3 4 4 4 4 3 3 3 6 4 3 3 3 3 3 3 3 3 | $\begin{array}{c} .7\\ .5\\ .3\\ .1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | . 9
. 8
. 5
. 3
. 3
. 1
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0 | $ \begin{array}{c} .7 \\ .6 \\ .4 \\ .2 \\ .1 \\ .0 \\ $ | 1.00
.97
.64
.22
.11
.11
.00
.00
.00
.00
.11
.23
.33
.56
.66
.77
.55
.66
.77
.55
.66
.77
.66
.77
.55
.66
.77
.66
.77
.55
.66
.77
.67
.77
.67
.77
.75
.66
.77
.55
.66
.77
.75
.66
.77
.75
.66
.77
.75
.66
.77
.77
.66
.77
.75
.66
.77
.77
.75
.66
.77
.77
.75
.66
.77
.77
.77
.77
.75
.66
.77
.77
.77
.77
.77
.77
.77 | . 1 3 3 . 5 5 7 7 7 7 7 7 6 6 6 6 6 6 6 7 7 7 8 0 2 3 3 4 1 3 2 4 4 1 5 6 6 8 7 9 0 9 5 5 5 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | $\begin{smallmatrix} & 4 & 6 \\ & 7 & 2 \\ & 1 & 5 & 6 \\ & 1 & 1 & 5 & 6 \\ & 1 & 1 & 5 & 6 \\ & 1 & 1 & 2 & 2 & 3 \\ & 2 & 2 & 2 & 2 & 4 \\ & 2 & 2 & 2 & 2 & 2 & 2 \\ & 2 & 2 & 2$ | .792
1.7032.2778677645556033399755532209874407657 |
| 205.
1 | Ŷ | . 1 | . 1 | . 1 | . 1 | . 0 | . 0 | . 9 | . 1 | . 1 | . 1 | 3. 1 | 3.1 | 3.1 | 1.3 | 2.0 | 2.2 | 2.3 | 1.3 | 1.5 | 1.7 |
| | | | 1 Ont | 0 201 | 4 DM 1 | | DAT | | | | DUN | Si to 1 | Ont o | 2014 | DM | | | | PAGE | 4 | |
| WI ND
ANGLE | * | CONCEN | | | 4 PM 1 | IB8PM14 | . DAT | | | | RUN: | Site 1 | Opt 8 | 3 2014 | PM | | | | PAGE | 4 | |
| WI ND
ANGLE
(DEGR | * | CONCEN
REC1 | ITRATI O
PPM)
REC2 | N
REC3 | REC4 | REC5 | REC6 | REC7 | REC8 | REC9 | REC10 | REC11 | REC12 | REC13 | REC14 | | | | REC18 | REC19 | |
| WI ND
ANGLE
(DEGR
210.
210.
220.
225.
240.
245.
255.
260.
275.
280.
285.
295.
300.
315.
320.
335.
330.
335.
345.
345.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
355.
360.
355.
360.
355.
355.
355.
355.
355.
355.
355.
35 | * | CONCEN
REC1
1
1
1
1
1
1
1
1
1
1
1
1
1 | ITRATI O
PPM) | N
REC3
.1
.1
.1
.2
.5
1.0
8
3.6
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4
5.4 | REC4
. 1
. 1
. 1
. 2
. 5
. 5
. 1
. 1
. 1
. 2
. 5
. 1
. 1
. 2
. 5
. 2
. 5
. 1
. 1
. 2
. 5
. 2
. 2
. 2
. 2
. 2
. 2
. 2
. 2 | REC5
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0 | REC6
0
1
1
1
1
1
1
1
1
1
1
1
1
1 | $\begin{array}{c} 1 & 0 \\ 1 & 1 \\ 2 \\ 1 & 3 \\ 1 & 4 \\ 1 & 1 \\ 2 & 9 \\ 2 & 9 \\ 4 & 1 \\ 1 & 6 \\ 8 \\ 3 \\ 2 \\ 2 \\ 9 \\ 4 \\ 4 \\ 4 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$ | $\begin{array}{c} & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 3 \\ & 5 \\ & 5 \\ & 6 \\ & 3 \\ & 5 \\ & 6 \\ & 3 \\ & 4 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 2 \\ & 2 \\ & 4 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 2 \\ & 2 \\ & 4 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 2 \\ & 2 \\ & 2 \\ & 4 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 2 \\ & 2 \\ & 2 \\ & 4 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 6 \\ & 2 \\ & 2 \\ & 2 \\ & 6 \\ & 5 \\ & 2 \\ & 2 \\ & 6 \\ & 5 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 5 \\ & 6 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 9 \\ & 2 \\ & 2 \\ & 9 \\ & 2 \\ & 9 \\ & 2 \\ & 2 \\ & 9 \\ & 1 \\$ | $\begin{array}{c} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 6 \\ & 1 \\ & 0 \\ & 1 \\ & 6 \\ & 3 \\ & 3 \\ & 6 \\ & 3 \\ & 3 \\ & 3 \\ & 6 \\ & 3 \\ & 3 \\ & 3 \\ & 5 \\ & 3 \\ & 1 \\ & 2 \\ & 2 \\ & 7 \\ & 2 \\ & 7 \\ & 2 \\ & 7 \\ & 2 \\ & 7 \\ & 2 \\ & 7 \\ & 2 \\ & 2 \\ & 5 \\ & 2 \\ & 5 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\$ | REC10
1
1
1
1
1
1
2
2
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
3
5
5
3
5
5
3
5
5
3
1
6
2
2
3
5
5
3
5
5
3
5
5
3
5
5
3
5
5
3
5
5
3
5
5
3
5
5
3
5
5
3
5
5
3
1
6
2
2
5
5
3
5
5
3
5
5
3
2
6
6
2
2
5
5
3
5
5
3
2
6
2
2
5
5
5
3
5
5
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
6
2
2
6
2
2
6
6
2
5
5
3
5
5
3
1
6
7
7
7
7
7
7
7
7
7
7
7
7
7 | REC11
3.3
3.3
3.4
3.6
3.7
3.9
4.2
4.8
5.0
4.2
3.5
1.0
4.2
3.5
1.5
1.0
4.2
3.5
1.5
1.0
4.2
3.15
1.5
1.0
4.2
3.5
1.5
1.0
0
.0
0
0.0 | REC12
3.3
3.3
3.5
3.6
4.0
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | REC13
3. 2
3. 4
3. 5
3. 6
4. 1
4. 4
4. 5
4. 6
4. 7
4. 4
4. 5
4. 6
7
4. 4
4. 5
8
1. 4
1. 1
1. 0
9
8
8
8
6
7
6
5
4
4
4
2
2
. 6
8
1. 4
4
1. 4
4
1. 5
1. 6
8
1. 4
4
2
2. 6
8
1. 4
4
3. 2
3. 4
4
3. 5
5
3. 6
4
4. 1
4
4. 5
5
5
4. 1
4
4. 5
5
5
5
6
4. 1
4
4. 5
6
7
4. 4
4
5
6
7
4. 4
7
4. 4
4
5
5
7
4. 4
7
4. 4
7
7
6
7
6
7
7
8
7
6
7
7
8
7
7
8
7
7
8
7
8 | REC14
1.7
1.7
2.0
2.2
4
2.8
3.0
2.4
1.5
1.2
1.2
1.2
1.2
1.3
1.3
1.3
1.5
1.5
1.5
1.5
1.5
1.2
7
7 | $\begin{array}{c} 2 \\ 2 \\ 2 \\ 1 \\ 2 \\ 7 \\ 2 \\ 9 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 1 \\ 2 \\ 2 \\ 1 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 7 \\ 1 \\ 5 \\ 1 \\ 5 \\ 1 \\ 4 \\ 1 \\ 2 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2$ | 2.79
2.92
3.34
3.22
3.34
3.22
5.23
2.55
2.39
1.65
1.4
1.54
1.14
1.1
1.09
.98
.77
.77
.88
.88
.88
.89
.77 | 2:3
2:1
1.9
1.7
1.5
1.3
1.3
1.3
1.3
9
.9
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7 | REC18 1.1 1.0 .9 .8 .8 .9 .8 .8 .9 .8 .6 .6 .6 .2 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | REC19 1.6 1.5 1.4 1.3 1.4 1.3 1.4 1.3 1.4 1.3 1.2 1.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | $\begin{array}{c} 1.55\\ 1.7\\ 1.6\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ |
| WI ND
ANGLE
(DEGR
210.
225.
230.
235.
245.
255.
265.
270.
255.
265.
270.
285.
295.
300.
310.
325.
310.
335.
330.
335.
345.
355. | * | CONCEN
REC1
 | TRATIO
PPM)
REC2
.1
.1
.1
.2
.6
.9
1.7
2.5
5.0
4.5
5.0
4.5
5.0
4.5
5.0
4.5
5.0
4.5
5.0
4.4
4.4
4.2
4.4
4.4
4.2
4.4
4.4 | N
REC3
1
1
1
1
2
3
5
1
1.08
3.66
1
2.88
3.66
1
4.09
4.74
4.31
3.77
3.77
3.57
3.68
3.87
3.57
3.68
3.87 | REC4
1 1
1 1
1 2
3 3
5 1
1 1
1 8
3 0
4 0
4 8
1 3
5 2
1 3
4 0
4 8
4 0
3 6
4 0
3 6
4 0
2 2
2 2
2 2
2 2
2 2
2 3
4 0
2 2
2 2
1 2
2 3
2 2
2 2
1 2
2 3
2 2
2 2
1 2
2 3
2 2
2 2
1 2
1 2
1 2
1 2
1 2
1 2 | REC5
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0 | REC6
0
1
1
1
1
1
1
1
1
1
1
1
1
1 | $\begin{array}{c} 1. \ 0 \\ 1. \ 1 \\ 1. \ 2 \\ 1. \ 3 \\ 1. \ 5 \\ 1. \ 5 \\ 2. \ 9 \\ 3. \ 6 \\ 4. \ 4 \\ 3. \ 3 \\ 2. \ 5 \\ 2. \ 4 \\ 2. \ 1 \\ 2. \ 2 \\ 2. \ 5 \ 5 \\ 2$ | $\begin{array}{c} . & 1 \\ . & 1 \\ . & 1 \\ . & 2 \\ . & 5 \\ . & 6 \\ 3 \\ . & 8 \\ 9 \\ . & 5 \\ 0 \\ 2 \\ . & 3 \\ . & 4 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 4 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 4 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\ . & 2 \\ . & 5 \\ . & 2 \\$ | $\begin{array}{c} . & 1 \\ . & 1 \\ . & 1 \\ . & 1 \\ . & 2 \\ . & 6 \\ 0 \\ 1 \\ . \\ 0 \\ 4 \\ 2 \\ 3 \\ 3 \\ 6 \\ 6 \\ 5 \\ 1 \\ 0 \\ 2 \\ 2 \\ 7 \\ 2 \\ 2 \\ 7 \\ 2 \\ 2 \\ 7 \\ 2 \\ 2$ | REC10
. 1
. 1
. 1
. 2
. 2
. 3
. 5
. 6
2. 2
. 3
. 5
. 6
2. 2
. 3
. 5
. 3
. 6
. 2
. 2
. 3
. 5
. 3
. 5
. 3
. 5
. 3
. 6
. 2
. 2
. 3
. 5
. 3
. 5
. 3
. 6
. 3
. 5
. 3
. 6
. 2
. 2
. 3
. 5
. 3
. 6
. 3
. 5
. 3
. 6
. 2
. 2
. 3
. 5
. 3
. 6
. 3
. 5
. 3
. 6
. 2
. 2
. 3
. 0
. 2
. 3
. 0
. 2
. 2
. 3
. 0
. 2
. 2
. 3
. 0
. 2
. 2
. 3
. 0
. 0
. 2
. 2
. 3
. 0
. 0
. 2
. 2
. 3
. 0
. 2
. 2
. 3
. 0
. 2
. 2
. 3
. 0
. 2
. 2
. 3
. 0
. 2
. 2
. 2
. 3
. 0
. 2
. 2
. 2
. 3
. 0
. 2
. 2
. 4
. 4
. 4
. 4
. 4
. 4
. 4
. 4 | REC11
3.33
3.44
3.63
3.7
3.92
4.8
5.0
4.2
3.53
1.5
1.0
4.2
3.53
1.5
1.0
4.2
3.15
1.0
1.0
1.1
1.1
1.1
0.0 | REC12
3.3
3.5
3.6
3.5
3.6
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9 | REC13
3. 2
3. 4
3. 5
3. 4
4. 5
4. 6
4. 1
4. 5
4. 6
4. 7
4. 4
4. 5
4. 6
4. 7
4. 4
4. 5
6
7
4. 4
4. 5
6
7
6
8
8
6
7
6
5
6
7
6
7
6
7
6
7
6
7
7
7
7
7
7
7
7
7
7
7
7
7 | REC14
1.7
1.7
2.0
2.24
2.8
3.4
3.5
3.6
3.2
3.4
1.5
1.2
1.2
1.2
1.3
1.3
1.3
1.3
1.5
1.5
1.5
1.5
1.5
1.2
1.2
1.3
1.4
1.5
1.5
1.5
1.5
1.5
1.5
1.5
1.5 | 2.2
2.7
2.9
3.4
3.4
3.4
3.4
3.4
3.4
3.4
3.4
2.6
3.4
3.4
3.4
2.6
3.1
1.7
7
1.5
1.5
4
1.7
7
1.5
5 | 2.9
2.9
2.9
3.3
3.3
4
2.5
2.3
3.0
2.5
2.3
3.0
2.5
2.3
3.0
2.5
2.3
1.6
4.1
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9
2.9 | 2:3
2:3
2:19
1.7
1.5
1.3
1.3
1.3
1.3
9
.9
7.7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7 | REC18 1.1 1.0 .9 .9 .8 .8 .8 .7 .6 .6 .6 .2 .2 .2 .2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 | REC19
1.6
1.5
1.4
1.3
1.3
1.4
1.3
1.2
1.0
.6
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | 1.5
1.7
1.6
1.7
1.8
1.8
1.9
1.9
1.9
1.9
1.6
1.2
.9
6
.3
.0
.0
.0
.0 |

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

 WI ND
 * CONCENTRATI ON ANGLE *
 (PPM)

 (DEGR)*
 REC21
 REC22
 REC23
 REC24

 0.
 *
 .2
 .0
 .0
 .0

| $\begin{array}{c} 5.\\ 10.\\ 15.\\ 20.\\ 25.\\ 30.\\ 35.\\ 40.\\ 55.\\ 55.\\ 60.\\ 65.\\ 70.\\ 75.\\ 80.\\ 85.\\ 80.\\ 95.\\ 100.\\ 105.\\ 100.\\ 115.\\ 125.\\ 130.\\ 125.\\ 130.\\ 125.\\ 130.\\ 125.\\ 140.\\ 125.\\ 160.\\ 165.\\ 160.\\ 165.\\ 170.\\ 175.\\ 180. \end{array}$ | ************** | $\begin{array}{c} 58269\\ 111222219\\ 22211111222333322220989999997901\\ 1112222219\\ 1111223333222222111111112219\\ 1112219\\ 1112219\\ 1112219\\ 11122219\\ 11122219\\ 11122219\\ 11122219\\ 11122219\\ 11122219\\ 1112222222222$ | .00
.13
.45
.89
.99
.112.71
.33.46
.33.20
.99.30
.00
.33.00
.33.00
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.11
.33.3 | 00012444546803742577746656421100990111119
 | .00.0111223345
.1163169000000000000000000000000000000000 | | | |
|---|-------------------|---|--|---|---|------------|-----|--|
| 185.
190.
195.
200. | * * * | 2.1
2.2
2.3 | 3.1
3.1
3.0
3.1 | 2.9
3.0 | 3.1
2.9
3.0 | | | |
| 205.
1 | *
JOB: | 2.4 | | 3.1 | 3.2 | IB8PM14. | ΠΑΤ | |
| WI ND | | LE RANG | | 0360. | | IDOI MIT4. | DAT | |
| WI ND
ANGLE | | | | 0. 000. | | | | |
| (DEGF | <u>=</u> *
{)* | CONCEN | TRATIO
PPM)
REC22 | | | | | |
| (DEG)
210.
210.
220.
220.
225.
230.
235.
245.
255.
255.
255.
270.
275.
270.
255.
270.
255.
270.
255.
270.
255.
270.
290.
295.
300.
305.
305.
305.
305.
305.
305.
30 | *********** | CONCENT
REC21 1
2.6
2.7
2.8
2.9
3.1
3.2
3.4
3.5
3.3
2.9
2.3
1.6
1.0
4
.2
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 | FRATIO | N
REC23 F
3. 1
3. 2
3. 4
3. 6
3. 6
3. 9
4. 2
4. 4
4. 4
3. 4
3. 6
3. 9
4. 2
4. 4
3. 4
3. 6
3. 9
4. 2
4. 4
3. 4
3. 6
3. 9
4. 2
4. 4
3. 6
3. 9
4. 1
7. 1
7. 1
7. 1
7. 1
7. 1
7. 1
7. 1
7 | | | | |

THE HIGHEST CONCENTRATION IS 5.40 PPM AT 280 DEGREES FROM REC2. THE 2ND HIGHEST CONCENTRATION IS 5.40 PPM AT 280 DEGREES FROM REC3. THE 3RD HIGHEST CONCENTRATION IS 5.30 PPM AT 275 DEGREES FROM REC7.

RUN: Site 1 Opt 8 2014 PM

| Site 1 Opt | 82 | 2030 F | PM 18 | 38PM30.D | ΑT | 60.0 | 0321.0.0 | 000.000 | 240. | 30480 | 000 | 1 |
|--|--|---|-------------------------------------|---|--|---|---|--|---|----------------------------|----------------------|--------------------------|
| 1
SE MID S | | | | 743. | | 16. | 5.0 | | | | | |
| SE 164 S | | | | 857. | | 23. | 5.0 | | | | | |
| SE 82 S
SE CNR | | | | 939.
1020. | | 28.
34. | 5.0
5.0 | | | | | |
| SE 82 E | | | | 1020. | | 53. | 5.0 | | | | | |
| NE 82 E | | | | 1075. | | 56. | 5.0 | | | | | |
| NE CNR | | | | 1076. | 11 | 37. | 5.0 | | | | | |
| NE 82 N | | | | 1156. | | 42. | 5.0 | | | | | |
| NE 164 N | | | | 1238. | | 46. | 5.0 | | | | | |
| NE MID N
NW MID N | | | | 1341.
1453. | | 53.
80. | 5.0
5.0 | | | | | |
| NW 164 N | | | | 1316. | | 72. | 5.0 | | | | | |
| NW 82 N | | | | 1234. | | 69. | 5.0 | | | | | |
| NW CNR | | | | 1138. | | 88. | 5.0 | | | | | |
| NW 82 W | | | | 1137. | 13 | 85. | 5.0 | | | | | |
| NW 164 W | | | | 1145. | | 66. | 5.0 | | | | | |
| NW MID W | | | | 1156. | | 26. | 5.0 | | | | | |
| SW MID W | | | | 1072.
1043. | | 97.
24 | 5.0 | | | | | |
| SW 164 W
SW 82 W | | | | 1043. | | 34.
54. | 5.0
5.0 | | | | | |
| SW CNR | | | | 995. | | 73. | 5.0 | | | | | |
| SW 82 S | | | | 900. | | 48. | 5.0 | | | | | |
| SW 164 S | | | | 819. | 12 | 43. | 5.0 | | | | | |
| SW MID S | | | | 692. | 12 | 35. | 5.0 | | | | | |
| Site 1 Opt | . 8 2 | 2030 F | M | | | 27 | 1 0 | | | | | |
| 1 | ⊓+1 | anwah | | EQ | 1100 | E 0 1 | 1126 | 2665 | 0 0 | 0. | 56 | 20 |
| NB
1 | RUI | aprei | I AG | 58. | 1109. | 201. | 1136. | 3665 | 9.2 | υ. | 50 | 30. |
| | Rt1 | thru | AG | 582. | 1136. | 1083. | 1166. | 2720 | 9.2 | 0. | 56 | 30. |
| 2 | D+ 1 | + 1 + | ъc | 0.0.4 | 1100 | 602 | 1120 | 0 | 20 | 2 | | |
| NB
125 | | thru
4 | AG
4 | | 2720 | | 1138.
L678 1 3 | | 36 | 3 | | |
| 1 | | | | 2.0 | 2720 | 01.1 | | | | | | |
| | Rt1 | left | AG | 572. | 1167. | 1065. | 1195. | 940 | 9.2 | Ο. | 44 | 30. |
| 2 | | | | | | | | | | | | |
| | | left | | 983. | 1190. | C 0 1 | | | | 0 | | |
| 125
1 | | ç | | | | | | 0. | 24 | 2 | | |
| | | | 8 | 2.0 | 940 | | 1169.
L700 1 3 | | 24 | 2 | | |
| | ₽+1 | | | | 940 | 84.1 1 | L700 1 3 | 3 | | | 56 | 30 |
| 1 | Rt1 | | | 2.0
1085. | 940 | 84.1 1 | L700 1 3 | | | | 56 | 30. |
| 1
NB | | depar | tAG | | 940
1167. | 84.1 1
1470. | 1188. | 2995 | 9.2 | 0. | 56
44 | 30.
30. |
| NB
1 | Rtl | depar
depar | tAG
tAG | 1085.
1470. | 940
1167.
1188. | 84.1 1
1470.
1784. | 1188.
1227. | 2995
2995 | 9.2
9.2 | 0.
0. | 44 | 30. |
| NB
1
NB | Rtl | depar | tAG
tAG | 1085.
1470. | 940
1167. | 84.1 1
1470. | 1188. | 2995 | 9.2
9.2 | 0.
0. | | |
| NB
1
NB
1 | Rt1
Rt1 | depar
depar
depar | tAG
tAG
tAG | 1085.
1470.
1784. | 940
1167.
1188.
1227. | 84.1 1
1470.
1784.
2072. | 1188.
1227.
1272. | 2995
2995
2995
2995 | 9.2
9.2
9.2 | 0.
0.
0. | 44
44 | 30.
30. |
| NB
1
NB
1
SB | Rt1
Rt1 | depar
depar | tAG
tAG
tAG | 1085.
1470.
1784. | 940
1167.
1188. | 84.1 1
1470.
1784. | 1188.
1227. | 2995
2995 | 9.2
9.2
9.2 | 0.
0.
0. | 44 | 30. |
| NB
1
NB
1
SB
1 | Rt1
Rt1
Rt1 | depar
depar
depar | tAG
tAG
tAG
A AG | 1085.
1470.
1784.
2069. | 940
1167.
1188.
1227.
1311. | 84.1 1470. 1784. 2072. 1694. | 1188.
1227.
1272. | 2995
2995
2995
2995 | 9.2
9.2
9.2
9.2 | 0.
0.
0. | 44
44 | 30.
30.
30. |
| NB
1
NB
1
SB
1
SB
1 | Rt1
Rt1
Rt1
Rt1 | depar
depar
depar
aprch
aprch | tAG
tAG
tAG
A AG | 1085.
1470.
1784.
2069.
1694. | 940
1167.
1188.
1227. | 84.1 1
1470.
1784.
2072. | 1188.
1227.
1272.
1264. | 2995
2995
2995
2995
2490
2490 | 9.2
9.2
9.2
9.2
9.2
9.2 | 0.
0.
0.
0. | 44
44
44 | 30.
30.
30.
30. |
| NB
1
NB
1
SB
1
SB
1
SB | Rt1
Rt1
Rt1
Rt1 | depar
depar
depar
aprch | tAG
tAG
tAG
A AG | 1085.
1470.
1784.
2069.
1694. | 940
1167.
1188.
1227.
1311. | 84.1 1470. 1784. 2072. 1694. | 1188.
1227.
1272.
1264. | 2995
2995
2995
2995
2490 | 9.2
9.2
9.2
9.2
9.2
9.2 | 0.
0.
0.
0. | 44
44
44 | 30.
30.
30. |
| NB
1
NB
1
SB
1
SB
2 | Rt1
Rt1
Rt1
Rt1
Rt1
Rt1 | depar
depar
aprch
aprch
th+rt | tAG
tAG
A AG
A AG
A AG | 1085.
1470.
1784.
2069.
1694.
1395. | <pre>940 1167. 1188. 1227. 1311. 1264. 1248.</pre> | 84.1 1 1470. 1784. 2072. 1694. 1395. 1057. | 1188.
1227.
1272.
1264.
1248.
1231. | 2995
2995
2995
2490
2490
2485 | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 0.
0.
0.
0.
0. | 44
44
44
44 | 30.
30.
30.
30. |
| NB
1
NB
1
SB
1
SB
2
SB | Rtl
Rtl
Rtl
Rtl
Rtl
Rtl | depar
depar
aprch
aprch
th+rt | tAG
tAG
tAG
AG
AG
AG | 1085.
1470.
1784.
2069.
1694.
1395.
1144. | <pre>940 1167. 1188. 1227. 1311. 1264. 1248. 1236.</pre> | 84.1 1 1470. 1784. 2072. 1694. 1395. 1057. 1388. | 1188.
1227.
1272.
1264.
1248.
1231.
1248. | 2995
2995
2995
2490
2490
2485
0. | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 0.
0.
0.
0.
0. | 44
44
44
44 | 30.
30.
30.
30. |
| NB
1
NB
1
SB
1
SB
2 | Rtl
Rtl
Rtl
Rtl
Rtl
Rtl | depar
depar
aprch
aprch
th+rt | tAG
tAG
A AG
A AG
A AG | 1085.
1470.
1784.
2069.
1694.
1395.
1144. | <pre>940 1167. 1188. 1227. 1311. 1264. 1248.</pre> | 84.1 1 1470. 1784. 2072. 1694. 1395. 1057. 1388. | 1188.
1227.
1272.
1264.
1248.
1231. | 2995
2995
2995
2490
2490
2485
0. | 9.2
9.2
9.2
9.2
9.2
9.2
9.2 | 0.
0.
0.
0.
0. | 44
44
44
44 | 30.
30.
30.
30. |

| 1 | | | | | | | |
|--------------|-------------------------------|------------------------|------------------------------|----------|----|----|-----|
| SB
2 | Rt1 left AG | 1240. 1217. | 1058. 1208. | 10 9.2 | 0. | 32 | 30. |
| SB | Rt1 left AG
125 122 | 1147. 1212.
2.0 10 | | 0. 12 | 1 | | |
| 1
SB
1 | Rt1 departAG | 1056. 1231. | 921. 1221. | 2780 9.2 | 0. | 56 | 30. |
| SB
1 | Rt1 departAG | 921. 1221. | 58. 1172. | 2780 9.2 | 0. | 56 | 30. |
| EB
1 | Rt28 aprchAG | 1226. 2185. | 1087. 1547. | 755 9.2 | 0. | 32 | 30. |
| EB | Rt28 aprchAG | 1088. 1547. | 1072. 1425. | 755 9.2 | 0. | 56 | 30. |
| 1
EB
2 | Rt28 aprchAG | 1072. 1425. | 1025. 1202. | 755 9.2 | 0. | 56 | 30. |
| EB | Rt28 aprchAG
125 109 | 1043. 1287.
2.0 755 | 1068. 1409.
84.1 1523 1 3 | 0. 36 | 3 | | |
| 1
EB
1 | Rt28 deparAG | 1039. 1194. | 1043. 1015. | 30 9.2 | 0. | 32 | 30. |
| WB
2 | Rt28 aprchAG | 1052. 1015. | 1049. 1190. | 160 9.2 | 0. | 44 | 30. |
| WB | Rt28 aprchAG
125 116 | 1050. 1141.
2.0 160 | 1051. 1019.
84.1 1706 1 3 | 0. 24 | 2 | | |
| 1
WB
1 | Rt28 deparAG | 1069. 1197. | 1121. 1424. | 1265 9.2 | 0. | 44 | 30. |
| WB
1 | Rt28 deparAG | 1121. 1424. | 1126. 1570. | 1265 9.2 | 0. | 32 | 30. |
| WB
1.0 | Rt28 deparAG
04 1000. 0Y 5 | 1126. 1570.
0 72 | 1257. 2180. | 1265 9.2 | 0. | 32 | 30. |

RUN: Site 1 Opt 8 2030 PM

PAGE 3

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

JOB: Site 1 Opt 8 2030 PM 1B8PM30.DAT

WIND ANGLE RANGE: 0. -360.

MODEL RESULTS

WIND * CONCENTRATION ANGLE * (PPM)

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24.

1

| 3. NB
5. NB
12. SB
15. SB
21. EB
24. WB | Rt1 thru *
Rt1 left *
Rt1th+rt *
Rt1 left *
Rt28 aprch*
Rt28 aprch* | 125
125
125
125
125
125
125 | 44
98
68
122
109
116 | 2.0
2.0
2.0
2.0
2.0
2.0
2.0 | 2720
940
2485
10
755
160 | 5
5
5
5 |
|---|--|--|---|---|---|---|
| RECEPTOR LOC | ATI ONS | 0 | | (FT) | | * |
| RECEPTOR | | | ORDI NATES
Y | Z | | * |
| 1. SE MID S
2. SE 164 S
3. SE 82 S
4. SE CNR
5. SE 82 E
6. NE 82 E
7. NE CNR
8. NE 82 N
9. NE 164 N
0. NE MID N
1. NW MID N
2. NW 82 N
4. NW CNR
5. NW 82 N
4. NW CNR
5. NW 82 W
6. NW 164 W
9. SW 164 W
9. SW 164 W
11. SW CNR
22. SW 82 S
33. SW 164 S
44. SW MID S | * * * * * * * * * * * * * * * * * * | $\begin{array}{c} 743.0\\ 857.0\\ 939.0\\ 1020.0\\ 1022.0\\ 1075.0\\ 1076.0\\ 1156.0\\ 1238.0\\ 1341.0\\ 1341.0\\ 1344.0\\ 1344.0\\ 1344.0\\ 1138.0\\ 1137.0\\ 1145.0\\ 1156.0\\ 1043.0\\ 1043.0\\ 1026.0\\ 995.0\\ 990.0\\ 819.0\\ 692.0\\ \end{array}$ | 1128,
1134,
1053,
1056,
1137,
1142,
1146,
1280,
1272,
1288,
1385,
1466,
1626,
1597,
1434,
1354,
1273, | 0 | 50000000000000000000000000000000000000 | . * * * * * * * * * * * * * * * * * * * |

ADDITIONAL QUEUE LINK PARAMETERS

| _ | 1 | LINK | DESCRI PTI ON | *
*
* | CYCLE
LENGTH
(SEC) | RED
TIME
(SEC) | CLEARANCE
LOST TIME
(SEC) | APPROACH
VOL
(VPH) | SATURATION
FLOW RATE
(VPH) | IDLE
EM FAC
(gm/hr) | SI GNAL
TYPE | ARRI VAL
RATE | |
|---|----|------|---------------|-------------|--------------------------|----------------------|---------------------------------|--------------------------|----------------------------------|---------------------------|-----------------|------------------|--|
| | 3. | NB | Rt1 thru | * | 125 | 44 | 2.0 | 2720 | 1678 | 84.10 | 1 | 3 | |
| | 5. | NB | Rt1 left | * | 125 | 98 | 2.0 | 940 | 1700 | 84.10 | 1 | 3 | |
| 1 | 2. | SB | Rt1th+rt | * | 125 | 68 | 2.0 | 2485 | 1654 | 84.10 | 1 | 3 | |
| 1 | 5. | SB | Rt1 left | * | 125 | 122 | 2.0 | 10 | 1752 | 84.10 | 1 | 3 | |
| 2 | 1. | EB | Rt28 aprch | า* | 125 | 109 | 2.0 | 755 | 1523 | 84.10 | 1 | 3 | |
| 2 | 4. | WB | Rt28 aprcl | า* | 125 | 116 | 2.0 | 160 | 1706 | 84.10 | 1 | 3 | |
| | | | | | | | | | | | | | |

| 14. SB | Rt1 left * | 1240.0 | 1217.0 | 1058.0 | 1208.0 * | 182. | 267. AG | 10. | 9.2 | . 0 32. 0 |
|------------|------------------------------|-------------|---------|--------|-----------|---------|---------|-------|-------|--------------|
| 15. SB | Rt1 left * | 1147.0 | 1212.0 | 1154.9 | 1212.4 * | 8. | 87. AG | 220. | 100.0 | .0 12.071 |
| 16. SB | Rt1 depart* | 1056.0 | 1231.0 | 921.0 | 1221.0 * | 135. | 266. AG | 2780. | 9.2 | .0 56.0 |
| 17. SB | Rt1 depart* | 921.0 | 1221.0 | 58.0 | 1172.0 * | 864. | 267. AG | 2780. | 9.2 | .0 56.0 |
| 18. EB | Rt28 aprch* | 1226.0 | 2185.0 | 1087.0 | 1547.0 * | 653. | 192. AG | 755. | 9.2 | .0 32.0 |
| 19. EB | Rt28 aprch* | 1088.0 | 1547.0 | 1072.0 | 1425.0 * | 123. | 187. AG | 755. | 9.2 | .0 56.0 |
| 20. EB | Rt28 aprch* | 1072.0 | 1425.0 | 1025.0 | 1202.0 * | 228. | 192. AG | 755. | 9.2 | .0 56.0 |
| 21. EB | Rt28 aprch* | 1043.0 | 1287.0 | 1300.8 | 2545.2 * | 1284. | 12. AG | 590. | 100.0 | .0 36.0 1.72 |
| 22. EB | Rt28 depar* | 1039.0 | 1194.0 | 1043.0 | 1015.0 * | 179. | 179. AG | 30. | 9.2 | .0 32.0 |
| 23. WB | Rt28 aprch* | 1052.0 | 1015.0 | 1049.0 | 1190.0 * | 175. | 359. AG | 160. | 9.2 | .0 44.0 |
| 24. WB | Rt28 aprch* | 1050.0 | 1141.0 | 1051.8 | 924.7 * | 216. | 180. AG | 419. | 100.0 | .0 24.0 1.18 |
| 25. WB | Rt28 depar* | 1069.0 | 1197.0 | 1121.0 | 1424.0 * | 233. | 13. AG | 1265. | 9.2 | .0 44.0 |
| 26. WB | Rt28 depar* | 1121.0 | 1424.0 | 1126.0 | 1570.0 * | 146. | 2. AG | 1265. | 9.2 | .0 32.0 |
| 27. WB | Rt28 depar* | 1126.0 | 1570. 0 | 1257.0 | 2180.0 * | 624. | 12. AG | 1265. | 9.2 | .0 32.0 |
| | | | | | | | | | | PAGE 2 |
| JOB: Site | 1 Opt 8 2030 PM ⁻ | 1B8PM30, DA | т | | RUN: Site | 8 1q0 1 | 2030 PM | | | THOL 2 |
| DATE: 05/1 | | | | | | | | | | |
| | | | | | | | | | | |

SITE & METEOROLOGICAL VARIABLES

| VS = .0 CM/S
U = 1.0 M/S | VD = .0 CM/S
CLAS = 4 (D) | ZO = 321. CM
ATIM = 60. MINUTES | MIXH = 1000. M | AMB = . 0 PPM | |
|-----------------------------|------------------------------|------------------------------------|----------------|---------------|--|
| | | | | | |

1B8PM30. OUT CAL3QHC: LINE SOURCE DI SPERSI ON MODEL - VERSI ON 2.2, JUNE 2000

LINK VARIABLES

1

1

| LINK | DESCRIPTION * | LI | NK COORDIN | WATES (FT) | * | LENGTH | BRG TYPE | VPH | EF | H W V/C | QUEUE |
|------|---------------|----|--|--|--|---|--|--|--|---|---|
| | * | X1 | Y1 | X2 ` ´ | Y2 * | (FT) | (DEG) | | (G/MI) | (FT) (FT) | (VEH) |
| | | | | | | | | | | | |
| | | | | | | | | 3665. | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | 12.0 |
| | | | | | | | | | | | |
| | | | | | | | | | | | 98.4 |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | Rt1 depart* | | | | | | | | | | |
| | Rt1 aprch * | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | 86.9 |
| | | | | | | | | | | | |
| | | | | | | | | | | | |
| | | | | | | | | | | | . 4 |
| | | | | | | | | | | | |
| | Rti depart | | | | | | | | | | |
| | Rt28 aprch* | | | | | | | | | | |
| | Rtzo aproh* | | | | | | | | | | |
| | Rtzo aproh* | | | | | | | | | | 45 2 |
| | | | | | | | | | | | 05. Z |
| | Pt29 aprob* | | | | | | | | | | |
| | Pt29 aprob* | | | | | | | | | | 11 0 |
| | Rt20 dpi Cli | | | | | | | | | | 11.0 |
| | | | | | | | | | | | |
| | | * | * X1
. NB Rt1 aprch * 58.0
. NB Rt1 thru * 582.0
. NB Rt1 thru * 984.0
. NB Rt1 left * 572.0
. NB Rt1 left * 983.0
. NB Rt1 depart* 1085.0
. NB Rt1 depart* 1085.0
. NB Rt1 depart* 1085.0
. NB Rt1 depart* 1784.0
. SB Rt1 aprch * 2069.0
. SB Rt1 aprch * 1694.0
. SB Rt1 aprch * 1694.0
. SB Rt1 th+rt * 1144.0
. SB Rt1 left * 1378.0
. SB Rt1 left * 1378.0
. SB Rt1 left * 1470.0
. SB Rt1 left * 1240.0
. SB Rt1 depart* 1056.0
. SB Rt1 depart* 1056.0
. SB Rt1 depart* 1056.0
. SB Rt28 aprch* 1072.0
. EB Rt28 aprch* 1072.0
. EB Rt28 aprch* 1032.0
. EB Rt28 aprch* 1032.0
. EB Rt28 aprch* 1032.0
. EB Rt28 aprch* 1052.0
. WB Rt28 aprch* 1050.0
. WB Rt28 aprch* 1069.0 | * X1 Y1 . NB Rt1 aprch * 58.0 1109.0 2. NB Rt1 thru * 582.0 1136.0 3. NB Rt1 thru * 582.0 1160.0 4. NB Rt1 thru * 582.0 1160.0 5. NB Rt1 left * 572.0 1167.0 6. NB Rt1 left * 983.0 1190.0 5. NB Rt1 depart* 1085.0 1167.0 7. NB Rt1 depart* 1085.0 1167.0 8. NB Rt1 depart* 1740.0 1227.0 9. SB Rt1 aprch * 2069.0 1311.0 0. SB Rt1 aprch * 1694.0 1246.0 1. SB Rt1 th+rt * 1395.0 1248.0 2. SB Rt1th+rt * 1378.0 1236.0 3. SB Rt1 left * 1240.0 1217.0 5. SB Rt1 depart* 1266.0 1231.0 5. SB Rt1 depart* 1266.0 1231.0 5. SB Rt1 depart* | * X1 Y1 X2 . NB Rt1 aprch * 58.0 1109.0 581.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 3. NB Rt1 thru * 582.0 1136.0 1083.0 3. NB Rt1 thru * 984.0 1160.0 747.8 4. NB Rt1 left * 572.0 1167.0 1065.0 5. NB Rt1 depart* 1085.0 1167.0 1470.0 5. NB Rt1 depart* 1085.0 1167.0 1470.0 6. NB Rt1 depart* 1784.0 1227.0 2072.0 7. SB Rt1 aprch * 1694.0 1395.0 1248.0 1057.0 5. SB Rt1 th+rt * 1378.0 1236.0 1241.0 1236.0 1241.0 5. SB Rt1 heft * 1378.0 1236.0 1241.0 154.9 5. SB Rt1 left * 1240.0 | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ |

RUN: Site 1 Opt 8 2030 PM

JOB: Site 1 Opt 8 2030 PM 1B8PM30.DAT DATE: 05/10/2009 TIME: 21:56:11.10

PAGE 1

| (DEGR) | * RE | C1 RI | EC2 I | REC3 | REC4 | REC5 | REC6 | REC7 | REC8 | REC9 | | 130.00
REC11 | | REC13 | REC14 | REC15 | REC16 | REC17 | REC18 | REC19 | REC20 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{c} 0,\\ 5,\\ 10,\\ 15,\\ 20,\\ 25,\\ 30,\\ 25,\\ 30,\\ 35,\\ 40,\\ 45,\\ 50,\\ 55,\\ 60,\\ 65,\\ 70,\\ 75,\\ 80,\\ 70,\\ 75,\\ 80,\\ 95,\\ 100,\\ 105,\\ 120,\\ 125,\\ 140,\\ 115,\\ 120,\\ 125,\\ 140,\\ 145,\\ 150,\\ 145,\\ 140,\\ 145,\\ 155,\\ 140,\\ 145,\\ 155,\\ 140,\\ 145,\\ 155,\\ 140,\\ 145,\\ 150,\\ 145,\\ 140,\\ 145,\\ 150,\\ 145,\\ 140,\\ 145,\\ 150,\\ 140,\\ 145,\\ 150,\\ 140,\\ 145,\\ 150,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 140,\\ 145,\\ 140,\\ 145,\\ 140,\\ 140,\\ 145,\\ 140,\\ 140,\\ 145,\\ 140,\\ $ | * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} 2 & 2 \\ 2 & 2 \\ 2 & 3 \\ 2 & 4 \\ 2 & 2 \\ 4 \\ 2 & 2 \\ 2 & 7 \\ 2 & 3 \\ 3 & 1 \\ 2 & 2 \\ 3 & 3 \\ 4 \\ 1 & 1 \\ 1 & 0 \\ 6 \\ 1 & 1 \\ 1 \\ 1 & 0 \\$ | $\begin{array}{c} 2.8\\ 2.9\\ 3.0\\ 3.3\\ 3.3\\ 4\\ 3.3\\ 3.4\\ 3.3\\ 3.4\\ 3.3\\ 3.3$ | 3.30256742997755776661920765555554322110000000
 | $\begin{array}{c} 2.4\\ 2.8\\ 2.7\\ 2.2\\ 2.7\\ 2.2\\ 2.2\\ 1.9\\ 0\\ 2.7\\ 2.2\\ 2.2\\ 1.9\\ 0\\ 1.8\\ 9\\ 2.1\\ 1.2\\ 1.4\\ 2.1\\ 1.2\\ 2.4\\ 1.2\\ 2.7\\ 2.3\\ 3.0\\ 2.7\\ 2.3\\ 3.2\\ 7\\ 2.3\\ 1.4\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2\\ 1.2$ | $\begin{array}{c} 1,8\\ 2,2\\ 2,4\\ 4,2\\ 2,1\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2,2\\ 2$ | $\begin{array}{c} 2.0\\ 2.0\\ 2.0\\ 1.6\\ 1.4\\ 1.2\\ 2.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ 9.9\\ 9$ | $\begin{array}{c} 2.7\\ 2.7\\ 2.5\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2\\ 2.2$ | $\begin{array}{c} 2.5 \\ 2.4 \\ 1.1 \\ 9 \\ 1.8 \\ 1.9 \\ 2.2 \\ 2.2 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.3 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2.2 \\ 2$ | $\begin{array}{c} 2.3\\ 2.19\\ 1.8\\ 1.7\\ 1.8\\ 1.8\\ 1.7\\ 1.8\\ 2.11\\ 2.3\\ 2.5\\ 2.5\\ 2.3\\ 2.5\\ 2.3\\ 2.5\\ 2.3\\ 2.5\\ 2.3\\ 2.5\\ 1.6\\ 9\\ 6.3\\ 2.11\\ 1.1\\ 1.1\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$ | $\begin{array}{c} 2.0\\ 1.8\\ 7.1\\ 7.7\\ 1.7\\ 1.7\\ 1.8\\ 2.00\\ 2.2\\ 2.3\\ 2.4\\ 2.39\\ 1.6\\ 0.4\\ 2.2\\ 2.3\\ 2.4\\ 2.39\\ 1.6\\ 0.6\\ 4\\ 2.2\\ 1.1\\ 1.1\\ 1.1\\ 0.0\\ 0.0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$ | $\begin{array}{c} .1\\ .1\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0$ | $\begin{array}{c} 3\\ 2\\ 2\\ 1\\ 0\\ 0\\ 0\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 2\\ 3\\ 3\\ 3\\ 3\\ 3\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\ 2\\$ | $\begin{array}{c} \cdot \ 6 \ 4 \ 2 \\ \cdot \ 1 \ 1 \ 0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 2 \ 4 \ 6 \ 0 \ 7 \ 2 \ 9 \ 2 \ 3 \ 3 \ 3 \ 0 \ 9 \ 7 \ 6 \ 5 \ 4 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2$ | $\begin{array}{c} 1.4\\ 1.2\\ 9\\ .52\\ .10\\ 00\\ 00\\ .00\\ .11\\ 47\\ 1.27\\ 92\\ 1.22\\ 1.22\\ 00\\ 98\\ 87\\ 1.65\\ 54\\ 1.55\\ 43\\ 32\\ 22\\ 33\\ 21\\ .12\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\ 1.23\\$ | $\begin{array}{c} 1.9\\ 1.6\\ 1.9\\ .9\\ .3\\ .10\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00$ | $\begin{array}{c} 1.8\\ 1.63\\ 1.05\\ .31\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .0$ | $\begin{array}{c} 2.6 \\ 2.4 \\ 2.0 \\ 1.6 \\ 1.7 \\ 4.2 \\ .11 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\ .00 \\$ | .82725787654211000001124435445657779888897300522222222222222222222222222222222222 | $\begin{array}{c}1.\ 0\ 6\ 1\\2.\ 2\\3.\ 3\\3.\ 0\ 0\\8.\ 6\\5.\ 4\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\ 2\\2.\$ | .961222239122239121120009978885543875322222222222222222222222222222222222 |
| 1 | | | | | | | | | | | | | | | | | | | | | |
| | | | | | | B8PM30 |). DAT | | | | RUN: | Site 1 | I Opt 8 | 8 2030 | PM | | | | PAGE | 4 | |
| WI ND
ANGLE
(DEGR) | * CO | NCENTI
(PI | RATIO
PM) | N | 0 PM 1 | | 0. DAT
REC6 | REC7 | REC8 | REC9 | | | | | | REC15 | REC16 | REC17 | PAGE
REC18 | | REC20 |
| WI ND
ANGLE
(DEGR)
210.
215.
220.
225.
230.
235.
240.
245.
250.
245.
255.
260.
265.
270.
275.
280.
285.
290.
295.
300.
311.
325.
330.
335.
330.
335.
330.
335.
340.
345.
355.
360.
345.
355.
360.
345.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
355.
355.
355.
355.
355.
355.
35 | * * * * * * * * * * * * * * * * * * * | NCENTI
(PI
(1 R R)
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1 | RATION
PM) FC2 F
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1 | N
REC3
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1 | C PM 1
REC4
.1
.1
.1
.1
.1
.1
.1
.1
.1
.1 | REC5
. 0
. 0
. 0
. 0
. 0
. 0
. 0
. 0 | REC6
1.4
1.3
1.3
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2 | $\begin{array}{c} 1.\ 6 \\ 1.\ 5 \\ 1.\ 5 \\ 1.\ 3 \\ 1.\ 3 \\ 1.\ 3 \\ 1.\ 3 \\ 1.\ 3 \\ 1.\ 3 \\ 1.\ 3 \\ 2.\ 4 \\ 3.\ 4 \\ 3.\ 3 \\ 3.\ 6 \\ 4 \\ 3.\ 3 \\ 2.\ 6 \\ 2.\ 3 \\ 2.\ 9 \\ 1.\ 6 \\ 1.\ 5 \\ 1.\ 8 \\ 1.\ 5 \\ 2.\ 7 \\ 2.\ 7 \\ 2.\ 7 \\ \end{array}$ | . 45
. 56
. 66
. 66
. 77
. 60
1.5
1.9
2.37
2.30
2.8
2.11
2.00
2.12
2.23
2.5
2.5 | REC9
2 2
2 3
3 4
4 4
4 4
2 4
1. 4
2. 1
2. 2
4
2. 4
2. 4
2. 4
2. 4
2. 4
2. 2
2. 4
2. 4
2. 2
3
2. 4
2. 4
2. 2
3
2. 4
2. 4
2. 2
3
2. 4
2. 4
2. 2
3
3
2. 4
2. 4
2. 2
3
3
2. 4
2. 4
2. 1
2. 2
4
2. 2
3
2. 4
2. 4
2. 1
2. 2
2. 4
2. 1
2. 2
2. 4
2. 1
2. 2
2. 2
4
2. 2
4
2. 2
2. 4
2. 1
2. 2
2. 2
4
2. 2
2. 4
2. 2
2. 2
2. 4
2. 1
2. 2
2. 2
2. 4
2. 1
2. 2
2. 2
2. 4
2. 1
2. 2
2. 2
2. 1
2. 2
2. 3
2. 2
2. 4
2. 2
2. 3
2. 2
2. 4
2. 2
2. 3
2. 2
2. 4
2. 3
2. 2
2. 3
2. 2
2. 4
2. 4
2. 2
2. 3
2. 2
2. 4
2. 3
2. 4
2. 4
2. 3
2. 4
2. 4
2. 3
3. 5
2. 4
2. 4
2. 5
3. | REC10
.1
.1
.2
.2
.2
.5
.8
1.2
1.6
1.6
1.6
2.4
2.5
2.4
2.5
2.4
2.5
2.2
2.4
2.5
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.2
2.4
2.5
2.2
2.2
2.4
2.5
2.2
2.2
2.2
2.2
2.4
2.5
2.2
2.2
2.2
2.2
2.2
2.2
2.2 | REC11
2.3
2.5
2.6
2.8
2.9
3.1
3.6
5
3.4
2.2
1.6
1.1
.7
.5
3.3
4
2.2
2.6
3.1
3.1
3.5
3.4
2.2
1.6
1.1
.7
.3
3.3
3.3
.3
3.3
.3
2.2
1.6
2.8
2.9
3.1
3.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.5
5
3.4
2.2
2.1
3.1
3.5
5
3.4
2.2
2.1
5
3.1
3.1
5
5
3.4
2.2
2.1
5
3.1
2.2
2.1
5
3.1
3.5
5
3.2
4
2.2
2.1
5
3.1
5
5
3.2
4
2.2
2.2
1.5
7
5
3.2
2.2
2.1
5
3.1
5
5
3.2
2.2
2.3
3.1
2.2
2.2
3.1
3.5
5
3.2
2.2
2.2
3.1
3.5
5
3.2
3.2
2.2
2.2
3.1
3.5
5
3.2
3.2
3.2
3.3
3.5
5
3.2
3.2
2.2
2.2
3.1
3.5
5
3.2
3.2
3.3
3.5
5
3.2
3.3
3.2
3.2
3.2
3.2
3.2
3.2
3.2
3.2 | REC12
2.3
2.5
2.7
2.9
3.0
3.3
5
3.7
3.5
3.5
3.5
3.5
3.5
3.5
1.3
2.6
1.3
.8
.6
6.5
6.6
5.5
5.5
5.5
5.5
3.3 | REC13
2.4
2.5
2.7
2.7
2.7
3.0
3.3
3.3
3.3
3.1
2.3
3.3
3.1
2.3
3.3
1.7
1.2
7
.7
.7
.7
.7
.7
.7
.8
.7
7
.7
.7
.8
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7
.7 | REC14
1.2
1.7
1.6
2.1
2.4
2.5
2.2
2.0
1.7
1.2
2.4
2.5
2.2
2.0
1.7
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2 | $\begin{array}{c} 1,9\\ 1,2,5562212222222222$ | $\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $ | $\begin{array}{c} 2.87\\ 2.99\\ 2.57\\ 2.29\\ 2.75\\ 2.24\\ 2.33\\ 2.10\\ 1.99\\ 1.99\\ 1.99\\ 1.99\\ 1.99\\ 1.99\\ 1.99\\ 2.23\\ 2.55\\ 2.67\\ 2.6\\ 7\\ 2.6\end{array}$ | REC18
7
6
6
6
6
6
6
6
6
7
7
6
6
6
6
6
7
7
6
6
6
6
6
6
7
7
6
6
6
6
6
6
6
6
6
6
6
6
6 | REC19 1.0 9 9 9 9 1.0 8 8 6 5 5 4 2 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | $\begin{array}{c} 1.2\\ 1.1\\ 1.3\\ 1.1\\ 1.3\\ 1.1\\ 1.3\\ 1.3\\ 1.1\\ 2\\ 1.0\\ 7\\ .5\\ .2\\ .00\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .0\\ .$ |
| WI ND
ANGLE
(DEGR)
210.
225.
220.
225.
220.
225.
240.
245.
250.
250.
255.
260.
275.
280.
275.
280.
275.
280.
275.
280.
275.
280.
300.
305.
310.
315.
320.
335.
330.
335.
340.
355.
360.
 | * CO CO RE | NCENTI
(PR
(PR
()
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
) | RATION
PMD F 1
EC2 1
. 1
. 1
. 1
. 1
. 1
. 2
. 5
0
. 2
. 2
. 9
. 3
. 1
. 2
. 2
. 9
. 3
. 2
. 2
. 7
. 7
. 7
. 7
. 7
. 7
. 7
. 7
. 7
. 7 | N REC3
. 1
. 1
. 1
. 1
. 1
. 1
. 1
. 1 | 0 PM 1
REC4
.11
.11
.11
.11
.11
.11
.11
.1 | REC5
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | REC6
1.4
1.3
1.3
1.2
1.2
1.2
1.2
1.2
2.5
2.6
2.7
2.7
2.5
2.5
2.5
2.5
2.4
2.0
2.2
1.2
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2 | $\begin{array}{c} 1.66\\ 1.55\\ 1.43\\ 1.33\\ 1.58\\ 1.43\\ 1.33\\ 1.58\\ 2.41\\ 3.76\\ 4.33\\ 2.63\\ 2.22\\ 1.86\\ 5.6\\ 1.56\\ $ | . 4
5
. 5
6
6
6
7
. 6
6
1. 0
1. 5
1. 9
2. 7
3. 0
2. 7
3. 0
2. 8
2. 1
2. 0
0
2. 0
1. 8
2. 0
1. 8
2. 0
2. 0
2. 0
2. 0
2. 0
2. 0
2. 0
2. 0 | REC9
. 22
. 3
. 4
. 4
. 4
. 4
. 8
1. 4
1. 4
2. 1
2. 2
4
2. 4
2. 4
2. 4
2. 2
. 4
2. 2
. 4
2. 2
. 4
. 4
. 4
. 2
. 3
. 4
. 4
. 4
. 2
. 3
. 4
. 4
. 4
. 4
. 2
. 4
. 4
. 4
. 2
. 4
. 4
. 4
. 2
. 4
. 4
. 4
. 4
. 2
. 4
. 4
. 4
. 2
. 4
. 4
. 4
. 4
. 4
. 2
. 4
. 4
. 4
. 2
. 4
. 4
. 2
. 4
. 4
. 2
. 2
. 2
. 2
. 2
. 4
. 2
. 2
. 2
. 4
. 2
. 2
. 2
. 2
. 4
. 2
. 2
. 2
. 2
. 2
. 2
. 2
. 2 | REC10
11
12
22
24
45
1.22
1.66
1.9
2.46
2.46
2.55
2.24
2.55
2.24
2.55
2.24
2.55
2.24
2.55
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.22
2.24
2.25
2.24
2.25
2.24
2.25
2.24
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22
2.22 | REC11
2.3
2.6
2.8
2.9
3.1
3.5
2.6
2.8
2.9
3.5
3.5
4.8
2.6
2.8
2.9
3.5
4.3
2.6
2.8
2.9
3.5
4.3
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
3.5
4.8
2.6
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3
5.3 | REC12
2.3
2.7
2.9
3.0
3.3
3.5
2.7
2.9
3.0
3.3
3.5
1.3
3.5
1.3
8.7
6
6.6
6.5
6.6
6.5
6.5
5.5
5.3 | REC13
2.4
2.57
2.7
2.7
2.7
2.7
2.7
2.7
2.7
3.3
3.3
3.3
3.3
3.3
1.2
2.3
3.3
3.1
2.3
3.3
1.7
1.2
3.3
3.1
2.3
7.7
7.7
8
7.7
7.7
8
7.7
7.8
8
8
8
8
8
8 | REC14
1.2
1.7
1.69
2.1
2.4
2.2
2.0
1.7
1.2
1.2
2.2
2.0
1.7
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.2 | $\begin{array}{c} & -1, 7 \\ 1, 1, 2, 2, 5, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,$ | $\begin{array}{c} 2.2\\ 2.2\\ 2.4\\ 5\\ 2.2\\ 2.5\\ 8\\ 6\\ 4\\ 2.2\\ 0\\ 9\\ 1.7\\ 7\\ 1.5\\ 5\\ 5\\ 6\\ 6\\ 6\\ 7\\ 8\\ 9\\ 9\\ 9\\ 0\\ 0\end{array}$ | $\begin{array}{c} 2.7\\ 2.9\\ 2.7\\ 2.9\\ 2.7\\ 2.9\\ 2.7\\ 2.3\\ 2.1\\ 2.3\\ 2.1\\ 2.1\\ 2.9\\ 1.9\\ 9\\ 1.9\\ 9\\ 1.9\\ 9\\ 1.9\\ 9\\ 1.9\\ 9\\ 2.2\\ 3\\ 2.5\\ 5\\ 2.6\\ 6\\ 7\\ 6\end{array}$ | REC18
7
6
6
6
6
6
4
4
4
2
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0 | REC19
1.0
.9
.9
.9
.8
.7
.6
.5
.2
.1
.0
.0
.0
.0
.0
.0
.0
.0
.0
.0 | $\begin{array}{c} 1.2\\ 1.1\\ 1.3\\ 1.1\\ 1.3\\ 1.1\\ 1.3\\ 1.12\\ 1.0\\ .52\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .00\\ .0$ |

MODEL RESULTS

REMARKS : In search of the angle corresponding to the maximum concentration, only the first angle, of the angles with same maximum concentrations, is indicated as maximum.

WIND ANGLE RANGE: 0. -360.

 WI ND
 * CONCENTRATI ON ANGLE *
 (PPM)

 (DEGR)*
 REC21
 REC22
 REC23
 REC24

 0.
 *
 .5
 .1
 .0
 .0

| $\begin{array}{c} 5.\\ 10.\\ 15.\\ 20.\\ 30.\\ 35.\\ 40.\\ 45.\\ 50.\\ 55.\\ 60.\\ 65.\\ 70.\\ 75.\\ 80.\\ 85.\\ 90.\\ 95.\\ 100.\\ 105.\\ 100.\\ 125.\\ 130.\\ 125.\\ 135.\\ 140.\\ 135.\\ 145.\\ 155.\\ 155.\\ 160. \end{array}$ | * | . 1. 8 5 8 1 1 3 1 0 7 7 6 4 4 4 4 6 1 4 4 3 1 1 7 7 5 5 5 6 6 5 5 5 5 6 6 | 2357899889004724765013344656453
11047247650133344656453 | $\begin{array}{c} . 1 \\ . 2 \\ . 7 \\ . 8 \\ . 6 \\ . 6 \\ . 6 \\ . 0 \\ 0 \\ 2 \\ . 5 \\ . 7 \\ . 8 \\ . 6 \\ . 6 \\ . 6 \\ 0 \\ 0 \\ 0 \\ 2 \\ . 5 \\ . 7 \\ . 8 \\ . 6 \\$ | 0012345555568150368008766542210 | | | | |
|--|---|--|--|--|--|----------|-----------|-----------|-----|
| 165.
170.
175.
180.
185.
190.
195.
200.
205.
1 | * * * * * * * | 1. 6
1. 6
1. 5
1. 6
1. 6
1. 5
1. 6
1. 7 | 2.3
2.4
2.2
2.2
2.2
2.2
2.2
2.2
2.3
2.3 | 2. 2
2. 2
2. 3
2. 3
2. 2
2. 2
2. 2
2. 3
2. 3 | 1.9
2.0
2.1
2.1
2.0
1.9
1.9
2.0
2.0 | | | | |
| | JOE | B: Site | 1 Opt | 8 2030 |) PM 1B | 3PM30. D | AT | | |
| WI ND | ANC | GLE RANG | GE: (| 0360. | | | | | |
| WI ND
ANGLI
(DEGI | *
E *
R)* | CONCEN
(I
REC21 | | | REC24 | | | | |
| 210.
215.
220.
225.
235.
245.
250.
245.
250.
245.
270.
275.
285.
290.
295.
300.
305.
310.
315.
320.
325.
330.
325.
335.
340.
335.
340.
335.
340.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
335.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
360.
355.
355.
355.
355.
355.
355.
355.
35 | * | Õ | $\begin{array}{c} 2.4\\ 2.4\\ 2.5\\ 5.5\\ 2.2\\ 7\\ 2.5\\ 5\\ 2.2\\ 7\\ 2.5\\ 2.2\\ 2.7\\ 2.5\\ 2.2\\ 1\\ 1\\ .6\\ 5\\ 2\\ 2\\ 1\\ 1\\ 1\\ 1\\ 1\\ 1\\ 0\\ 0\\ 0\\ 0\\ 1\end{array}$ | $\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 3 \\ 3 \\ 2 \\ 2 \\ 2 \\ 2 \\$ | $\begin{array}{c} 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 $ | | | | |
| MAX
DEGR | * | 2.4
90 | 2.9 | 2.8 | 3.0
105 | | | | |
| | | | | | | 70 PPM | AT
PPM | 275
∆T | DEG |

THE HIGHEST CONCENTRATION IS 3.70 PPM AT 275 DEGREES FROM REC7. THE 2ND HIGHEST CONCENTRATION IS 3.70 PPM AT 65 DEGREES FROM REC1. THE 3RD HIGHEST CONCENTRATION IS 3.70 PPM AT 40 DEGREES FROM REC2.

1B8PM30. OUT

RUN: Site 1 Opt 8 2030 PM

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 7B8PM30. OUT |
|---|----------------------------------|
| 1
JOB: Site 7 Opt 8 2030 PM - 7B8PM30.DAT | RUN: Site 7 Opt 8 2030 PM PAGE 6 |
| WIND ANGLE RANGE: 0360.
WIND * CONCENTRATION
ANGLE * (PPM)
(DEGR)* REC21 | |
| (DEGR) * REC21
 | |

Attachment B Mobile Source Air Toxic Analysis

GUAM MILITARY RELOCATION

GUAM ROAD NETWORK

FINAL

MOBILE SOURCE AIR TOXIC ANALYSIS

April 29, 2010

1.0 Introduction

The relocation of 8,000 Marines and their families from Okinawa to Guam by 2014 is expected to have a significant impact on the local roads on Guam. Project-related changes in roadway volumes as a result of the Guam Military Relocation Project could affect local air quality conditions near the affected roadways. The result of the air quality analyses conducted for the Environmental Impact Statement (EIS) for this project is that the proposed project alternatives would not cause or exacerbate a violation of an air quality standard. In addition, while the EIS qualitatively addressed the potential affects of project-related changes on local mobile source air toxic (MSAT) concentrations (as per current FHWA guidance), the United States Environmental Protection Agency (EPA) and the Department of Defense (DOD) requested that a quantitative (screening-level) MSAT dispersion modeling analysis be conducted to determine whether these changes would be acceptable.

2.0 Air Toxics

Controlling air toxic emissions became a national priority with the passage of the Clean Air Act Amendments (CAAA) of 1990, whereby Congress mandated that the U.S. Environmental Protection Agency (EPA) regulate 188 air toxics, also known as hazardous air pollutants. The EPA has assessed this expansive list in their latest rule on the Control of Hazardous Air Pollutants from Mobile Sources (Federal Register, Vol. 72, No. 37, page 8430, February 26, 2007) and identified a group of 93 compounds emitted from mobile sources that are listed in their Integrated Risk Information System (IRIS) (<u>http://www.epa.gov/ncea/iris/index.html</u>). In addition, EPA identified seven compounds with significant contributions from mobile sources that are among the national and regional-scale cancer risk drivers from their 1999 National Air Toxics Assessment (NATA) (<u>http://www.epa.gov/ttn/atw/nata1999/</u>). These are acrolein, benzene, 1,3-butadiene, diesel particulate matter plus diesel exhaust organic gases (diesel PM), formaldehyde, naphthalene, and polycyclic organic matter. While FHWA considers these the priority mobile source air toxics, the list is subject to change and may be adjusted in consideration of future EPA rules.

As part of the National Environmental Policy Act (NEPA), EISs require review and evaluation of air toxics, as they could affect the quality of the human environment. For these analyses, the FHWA developed a tiered approach in their September 30, 2009 Interim Guidance Update on Mobile Source Air Toxic Analyses (MSAT) in NEPA documents, which includes the following three levels of analysis:

- 1. No analysis for projects with no potential for meaningful MSAT effects;
- 2. Qualitative analysis for projects with low potential MSAT effects; or
- 3. Quantitative analysis to differentiate alternatives for projects with higher potential MSAT effects.

Using this methodology, an initial MSAT analysis for this project indicated that it would have a low potential for MSAT effects. However, a quantitative MSAT analysis was requested for this project based on the methodology described in the research report entitled, "Analyzing, Documenting, and Communicating the Impacts of Mobile Source Air Toxic Emissions in the NEPA Process" (American Association of State Highway and Transportation Officials (AASHTO) 2007).

3.0 Approach

The analysis approach was developed based on available project information, potential community impact, and the public's level of concern. Not only were the impacts of the project on localized MSAT levels raised as a concern with this project, but several intersections in the project area under the Build alternatives are projected to have Annual Average Daily Traffic (AADTs) over the 40,000 threshold specified in the AASHTO report.

As a result, a screening-level MSAT dispersion modeling analysis was conducted based on the procedures provided in Appendix C of the AASHTO report to estimate whether the incremental health-related risk associated with the proposed project would exceed the following thresholds:

- A maximum total incremental carcinogenic risk from the exposure to all identified pollutants of 10 in a million (i.e., 10 x 10⁻⁶); and
- A maximum total incremental non-carcinogenic Hazard Index risk from the exposure to all identified pollutants of 1.

The analysis has focused on the potential impacts of operational emissions rather than construction phase emissions, because the health-related risks, if any, associated with this project would primarily be the result of long-term exposure. This is because the roadway construction phase of this project is temporary (i.e., less than 5 years) and will be occurring at any given location for a relatively short period of time. Therefore, this analysis has focused on the long-term operational impacts of the project.

The following tasks were conducted for the dispersion modeling analysis:

- Local microscale sites (congested intersections) were selected for analysis.
- MSAT emission factors were estimated using EPA's MOBILE6.2 model (Note: input parameters to accurately model MSAT were determined through consultation with FHWA and EPA).
- CAL3QHCR dispersion modeling was conducted using worst case meteorology to estimate 1-hour concentrations of each MSAT, which were used to estimate acute (short-term) impacts. These 1-hour values were then converted, using conservative traffic and meteorological persistence factors, to annual values in order to estimate annual impacts.

Diesel PM was not quantitatively considered in the screening-level dispersion modeling analysis because of the significant limitations of the MOBILE6.2 model noted by the USEPA in the 2006 Conformity Rule (71 FR 12498):

"We continue to believe that appropriate tools and guidance are necessary to ensure credible and meaningful PM2.5 and PM10 hot-spot analyses. Before such analyses can be performed, technical limitations in applying existing motor vehicle emission factor models must be addressed, and proper federal guidance for using dispersion models for PM hotspot analysis must be issued. With the release of MOBILE6.2, state and local transportation agencies now have an approved model for estimating regional PM2.5 and PM10 emission factors in SIP [State Implementation Plan] inventories and regional emissions analyses for transportation conformity. However, MOBILE6.2 has significant limitations that make it unsatisfactory for use in microscale analysis of PM2.5 and PM10 emissions as necessary for quantitative hot-spot analysis."

Federal guidance for using dispersion models for PM hotspot analyses has not been issued. As a result, a qualitative analysis of diesel PM was completed based on FHWA/USEPA's March 29, 2006 joint direction *Transportation Conformity Guidance for Qualitative Hot-spot Analyses in PM*_{2.5} and PM₁₀ Nonattainment and Maintenance Areas (EPA420-B-06-902).

4.0 MSAT Considered

The seven priority MSAT compounds considered were:

- Acrolein, benzene, 1,3-butadiene, formaldehyde, and naphthalene were analyzed quantitatively;
- Polycyclic organic matter (POM) was considered as being comprised of the following compounds, which were quantitatively analyzed on a pollutant-by pollutant basis:
 - acenaphthene acenaphylene anthracene benzo(g,h,i) perylene benzo[b]fluoranthene benzo[k]fluoranthene benz[a]anthracene benzo[a]pyrene
- chrysene debenz[a,h]anthracene fluoranthene fluorene ideno[1,2,3-cd]pyrene phenanthrene, and pyrene
- Diesel PM was analyzed qualitatively.

Table 1 presents each of the MSAT compounds considered, together with their applicable health guideline values. As shown, two of these compounds – acenaphthylene and benzo(g,h,i) perylene – have no health guideline values and, therefore, were not included in the screening-level dispersion modeling analysis.

| MSAT | CAS No. ⁽¹⁾ | Toxicity | AIEC ⁽²⁾
(1-hour
Values)
(ug/m ³) | RfC ⁽³⁾
(Lifetime
Exposure
Values)
(ug/m ³) | URF
(Unit Risk
Factors)
(ug/m ³) ⁻¹ |
|------------------------|------------------------|---------------------|---|--|---|
| Acrolein | 107-02-8 | non-carcinogen | 0.19 | 0.02 | |
| Benzene | 71-43-2 | carcinogen | 1,300 | 30 | 7.8E-06 ⁽⁴⁾ |
| 1,3-Butadiene | 106-99-0 | carcinogen | | 2.3 | 3.0E-05 |
| Diesel PM | - | carcinogen | | 5.0 ⁽⁵⁾ | (6) |
| Formaldehyde | 50-00-0 | carcinogen | 94 | 9.8 | 1.3E-05 |
| Naphthalene | 91-20-3 | non-carcinogen | 75,000 | 3.0 | |
| | POM (Polyc | yclic Organic Matte | r) constituents: | | |
| Acenaphthylene | 208-24-2 | non-carcinogen | | | |
| Acenaphthene | 83-32-9 | non-carcinogen | 1300 | 210 | |
| Anthracene | 120-12-7 | non-carcinogen | 600 | 1,000 | |
| Benzo(g,h,i) perylene | 191-24-2 | non-carcinogen | | | |
| Benzo[b]fluoranthene | 205-99-2 | carcinogen | 600 | | 1.1E-04 |
| Benzo[k]fluoranthene | 207-08-9 | carcinogen | 600 | | 1.1E-04 |
| Benz[a]anthracene | 56-55-3 | carcinogen | 300 | | 1.1E-04 |
| Benzo[a]pyrene | 50-32-8 | carcinogen | 600 | | 1.1E-03 |
| Chrysene | 218-01-9 | carcinogen | 600 | | 1.1E-05 |
| Dibenzo[a,h]anthracene | 53-70-3 | carcinogen | 30,000 | | 1.2E-03 |
| Fluoranthene | 206-44-0 | non-carcinogen | 15 | 140 | |
| Fluorene | 86-73-7 | non-carcinogen | 11,560 | 140 | |
| Ideno[1,2,3-cd]pyrene | 193-39-5 | carcinogen | 500 | | 1.1E-04 |
| Phenanthrene | 85-01-8 | non-carcinogen | 1.000 | | |
| Pyrene | 129-00-0 | non-carcinogen | 15,000 | 110 | |

Table 1 – Mobile Source Air Toxics

Notes:

1. CAS Number = unique numerical identifiers for each chemical, elements, compounds, etc.

2. AIEC = Acute Inhalation Exposure Concentration (as provided by EPA)

3. RfC= Reference Concentration (which is a daily exposure during a lifetime).

4. The most conservative unit risk factor for benzene (from the range of 2.2E-06 to 7.8E-06) was used.

^{5.} In addition, as stated in the USEPA's "Regulatory Impacts Analysis, Control of Hazardous Air Pollutants from Mobile Sources" (EPA420-R-07-002, February 2007): "The Diesel HAD [Health Assessment Document] also briefly summarizes health effects associated with ambient PM and discusses the EPA's annual National Ambient Air Quality Standard (NAAQS) of 15 ug/m³. There is a much more extensive body of human data showing a wide spectrum of adverse health effects associated with exposure to ambient PM, of which diesel exhaust is an important component. The PM2.5 NAAQS is designed to provide protection from the noncancer and premature mortality effects of PM_{2.5} as a whole, of which diesel PM is a constituent".

^{6.} According to the USEPA's "Health Assessment Document for Diesel Engine Exhaust" (EPA/600/8-90/057F, May 202, pp 8-16, http://www.epa.gov/risk/basicinformation.htm#g): "an exploratory risk analysis shows that environmental cancer risks possible range from 10⁵ to nearly 10⁵, while a consideration of numerous uncertainties and assumptions also indicates that lower risk is possible and zero risk cannot be ruled out. These risk findings are only general indicators of the potential significance of the lung cancer hazard and should not be viewed as a definitive quantitative characterization of risk or be used to estimate an exposure-specific population impact, i.e., estimating numbers of cancer deaths".

5.0 Qualitative Diesel PM Analysis

Absent the appropriate tools and guidance necessary to ensure credible and meaningful quantitative PM hot-spot analyses, a qualitative analysis of diesel PM was conducted. The objective of the analysis is to determine if the proposed project could produce levels in excess of the annual $PM_{2.5}$ NAAQS, which is designed to provide protection from the noncancer and premature mortality effects of $PM_{2.5}$ as a whole, of which diesel PM is a constituent. The 2-step approach was adopted based on the March 10, 2006 Final Rule issued by the USEPA regarding the localized or "hot-spot" analysis of $PM_{2.5}$ (40 CFR Part 93): 1) apply criteria to determine if the project would involve a significant number or significant increase in the number of diesel vehicles and 2) comparing air monitoring values from an area representative of project conditions. As previously discussed, the study area is classified as attainment for $PM_{2.5}$ NAAQS.

The criteria to determine if the project would involve a significant number or significant increase in the number of diesel vehicles were applied and evaluated as follows:

(i) New or expanded highway projects that have a significant number of or significant increase in diesel vehicles.

The average daily traffic (ADT) on the highest volume roadways under all Build options is provided in Tables 2 and 3. Additional ADT information can be found in Appendix A. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 2 percent for both the No Build and Build options.

As shown in Table 2, the largest increase in 2014 ADT for the roadways presented is predicted to occur under Option 3 on Route 3, South of Route 28. By applying a 2 percent truck percentage, the largest daily increase of 8,100 vehicles would result in a daily increase of 162 trucks. As shown in Table 3, the largest increase in 2030 ADT for the roadways presented is predicted to occur under Option 1 and 2 on Route 3, South of Route 28. By applying a 2 percent truck percentage, the largest daily increase of 13,200 vehicles would result in a daily increase of 264 trucks. Both of these levels are substantially below the USEPA example for a new or expanded highway project of 125,000 AADT with 8 percent trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be an expanded highway with a significant number of or significant increase in diesel vehicles.

| | | 0 | ption 1 and | 12 | | Option 3 | 8 | | Option 8 | |
|--------------------|--|-------------|-------------|-------------|-------------|----------|-------------|-------------|----------|-------------|
| Analysis
Region | Roadway | No
Build | Build | %
Change | No
Build | Build | %
Change | No
Build | Build | %
Change |
| North | Route 3 and
North
Commercial
Gate | 66,900 | 66,900 | 0.0% | 25,200 | 24,300 | -3.6% | 65,500 | 65,500 | 0.0% |
| | Route 3
South of
Route 28 | 46,300 | 53,100 | 14.7% | 48,500 | 56,600 | 16.7% | 49,200 | 57,000 | 15.9% |
| | Route 1 | 100,800 | 100,300 | 0.0% | 98,800 | 97,400 | -1.4% | 100,700 | 100,500 | -0.2% |
| Central | Route 8 | 64,600 | 65,600 | 2.0 % | 67,400 | 68,000 | 0.9% | 65,600 | 66,800 | 1.8% |
| | Route 18 | 73,200 | 74,000 | 1.0% | 86,400 | 92,800 | 7.4% | 78,500 | 80,100 | 2.0% |
| Apra
Harbor | Route 1 near
Route 18 | 49,800 | 49,800 | 0.0% | 49,800 | 49,800 | 0.0% | 49,800 | 49,800 | 0.0% |
| South | Route 4 | 17,600 | 17,600 | 0.0% | 17,600 | 17,600 | 0.0% | 17,600 | 17,600 | 0.0% |

 Table 2 – 2014 Average Daily Traffic for Major Roadways

 Table 3 – 2030 Average Daily Traffic for Major Roadways

| | | 0 | ption 1 ar | nd 2 | | Option 3 | | | Option 8 | |
|--------------------|---|-------------|------------|-------------|-------------|-----------------|-------------|-------------|----------|-------------|
| Analysis
Region | Roadway | No
Build | Build | %
Change | No
Build | Build | %
Change | No
Build | Build | %
Change |
| North | Route 3 near
North
Commercial
Gate | 50,500 | 45,900 | -9.0% | 18,300 | 18,800 | 2.7% | 44,400 | 45,200 | 1.8% |
| | Route 3
South of
Route 28 | 20,800 | 34,000 | 63% | 38,200 | 43,000 | 12.6% | 35,500 | 25,000 | -29.6% |
| | Route 1 | 95,600 | 95,600 | 0.0% | 95,100 | 93,100 | -2.1% | 96,100 | 95,300 | -0.8% |
| Central | Route 8 | 58,500 | 58,600 | 0.2% | 59,000 | 60,400 | 2.4% | 58,800 | 59,700 | 1.5% |
| | Route 18 | 70,500 | 70,500 | 0.0% | 83,600 | 89,200 | 6.7% | 75,100 | 75,100 | 0.0% |
| Apra
Harbor | Route 1 near
Route 18 | 48,300 | 48,300 | 0.0% | 48,400 | 48,400 | 0.0% | 48,300 | 48,600 | 0.6% |
| South | Route 4 | 20,100 | 20,100 | 0.0% | 20,000 | 20,000 | 0.0% | 20,100 | 19,900 | -1.0% |

(ii) Projects affecting intersections that are at LOS D, E, or F with a significant number of diesel vehicles, or those that will change to LOS D, E, or F because of increased traffic volumes from a significant number of diesel vehicles related to the project.

The proposed project is expected to affect intersections with a LOS of D, E or F. However, the effect on LOS due to the project options is due to an overall increase in volumes rather than a significant increase in diesel vehicles. The LOS for intersections throughout the study area is detailed in Appendix A of this report.

(iii) New bus and rail terminals and transfer points that have a significant number of diesel vehicles congregating at a single location.

The project does not involve bus and rail terminals.

(iv) Expanded bus and rail terminals and transfer points that significantly increase the number of diesel vehicles congregating at a single location.

The project does not involve bus and rail terminals.

(v) Projects in or affecting locations, areas, or categories of sites which are identified in the PM_{2.5} applicable implementation plan or implementation plan submission, as appropriate, as sites of violation or possible violation.

The area is classified as attainment of the PM2.5 NAAQS. There is no applicable implementation plan or implementation plan submission.

Based on the above analysis, it is determined that the project will not involve a significant number or significant increase in the number of diesel vehicles and is not a project of air quality concern with respect to PM_{2.5}.

Guam does not currently have any ambient air quality monitoring locations for $PM_{2.5}$. The closest representative monitor to the study area, based on meteorological conditions, is located in Hawaii. As shown in Figure 1, Hawaii has not had a violation of the applicable $PM_{2.5}$ standard in the last three years of certified data (2006-2008). The values in Hawaii can be used as a general indicator of the range of values expected in Guam, although there are some notable differences between the locations – the population is greater in Hawaii than in Guam, roadway VMTs are approximately 3 times higher in Hawaii than in Guam, and high sulfur fuel is not used in the power plants of Hawaii while it is in Guam. The monitored $PM_{2.5}$ values in Hawaii are approximately 50% lower than the applicable standard. Using these values as a conservative estimate of $PM_{2.5}$ levels within the study area under Build conditions, it indicates that the mobile source impacts of the project are not expected to cause a violation of the applicable $PM_{2.5}$ standard, designed in part to provide protection from the noncancer and premature mortality effects of diesel PM.

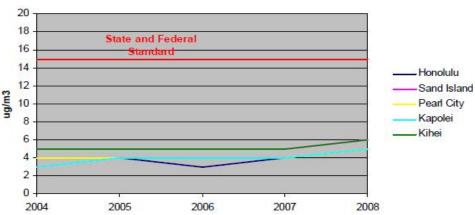


Figure 2 – PM_{2.5} Annual Average Monitored Levels in Hawaii (2004-2008)

6.0 Mobile Source Dispersion Modeling Analysis

Microscale air quality modeling was performed using EPA's mobile source emission factor model (MOBILE6.2) and EPA's CAL3QHC air quality dispersion model to estimate future No Build (without the proposed project) and future Build (with the proposed project) MSAT levels at selected locations in the project area.

Analysis Sites and Receptor Locations

Using a worst case screening approach, analysis locations were chosen based on overall volumes, level of service, and location of project impacts. Site selection is discussed in the EIS for this project and the data used for the site selection is shown in Appendix A. The sites analyzed are:

- 1. Routes 1 & 28
- 2. Routes 9 & AAFB
- 3. Route 1 & Route 8
- 4. Route 4 & 7A
- 5. Route 16 & 27
- 6. Route 5 and 2A
- 7. Routes 1 and 2A

In addition to these locations, an eighth analysis site was added at the location of Route 1 west of Route 30. This location was added because it demonstrated the highest peak hour traffic at a free-flow location. These eight areas have the highest traffic levels within the study area and are anticipated to be the areas with the highest potential of MSAT impact due to the project.

Receptors were conservatively placed on sidewalks as a worst case approach. This is conservative because, as previously mentioned, the risks from MSAT are based on lifetime exposure levels and it is highly unlikely that a sidewalk receptor is representative of a lifetime exposure level. Realistic (actual) receptor locations were placed at analysis sites 1 and 4 to illustrate the drop off of MSAT concentrations with distance from the affected roadways.

Emission Factors

Emission factors were obtained through the use of EPA's MOBILE6.2 Emission Factor program. To determine the emission factors for all of the air toxics examined, the additional hazardous air pollutant data supplied with MOBILE6.2 was utilized. As the exact fuel parameters that characterize the fuel used in Guam were not available,

national average information was applied, as recommended by EPA. These data can be found at EPA's website (<u>http://www.epa.gov/otaq/regs/fuels/rfg/properf/cg-params.htm</u>).

Dispersion Model

EPA's CAL3QHCR model was used to predict MSAT concentrations at the 8 analysis sites. Conservative worst case meteorology and traffic data were used in the analysis.

CAL3QHCR was run for each of the 20 individual MSAT compounds for the AM and PM peak periods for existing conditions and for future No Build and Build conditions (under each of the Build alternatives). The highest concentration for each air toxic compound at each location is reported.

7.0 Risk Characterization

The derived health risk values from the EPA Integrated Risk Information System (IRIS) (<u>http://www.epa.gov/iris/</u>) database were used in this analysis to determine the total risk posed by the release of multiple MSAT. MSAT were considered as both carcinogens and noncarcinogens. Carcinogenic MSAT were evaluated using unit risk factors (URF); non-carcinogenic MSAT were evaluated using the reference concentrations for inhalation exposure (RfC) and/or acute inhalation exposure (AIEC). RfC and AIEC were used to estimate non-carcinogenic health effects of substances that are also carcinogens. The health risk values used in this analysis are provided in Table 1. The incremental threshold values recommended by EPA for this project are 10 per million for cancer risk evaluation and one (1) for the total non-cancer (chronic and acute) hazard indexes.

Carcinogens

Individual lifetime cancer risk through direct inhalation of carcinogen (dCR) was estimated using the following equation (EPA's Human Health Risk Assessment Protocol [HHRAP]), Appendix C, Table C-2-1 2005):

Cancer Risk (dCR) = EC x URF and EC = Ca x EF x ED/AT x 365 days/year

Where:

EC = annual exposure concentrations of compound, $\mu g/m^3$

Ca = annual ambient air concentration of specific pollutant (estimated by the dispersion model), $\mu g/m^3$

URF = compound-specific inhalation unit risk factor in $(\mu g/m^3)$ -1

EF = exposure frequency, days/year (*EPA* recommends to use 350)

ED = exposure duration, *yr* (*EPA* recommends value of 30 for adult resident)

AT = averaging time, yr (assumed by EPA to be 70 years)

Ca values were determined using the equation from Table B-5-1 of HHRAP, compoundspecific emission rate, and Fv (fraction of compound air concentration in vapor phase) of 1. Annual concentrations were derived from CAL3QHCR-estimated 1-hour concentrations using a 0.1 conversion factor.

Once the individual risk of each compound was estimated, these values were summed together to estimate the total cancer risk of all carcinogens together. Incremental changes in cancer risk were estimated for each Build alternative compared to No Build conditions. If the projected change is less than or equal to the ten in one million, the total carcinogenic risk posed by the proposed action is considered to be acceptable.

Non-Carcinogens

Non-cancer chronic inhalation hazard quotients were estimated using the following equation (HHRAP, Appendix C, Table C-2-2):

Non-Cancer Hazard Index = EC x 0.001/RfC and EC = Ca x EF x ED/AT x 365 days/year

Where:

 $EC = exposure \ concentrations \ of \ compound, \ \mu g/m^3$

Ca = total ambient air concentration of specific pollutant (estimated by the dispersion model), $\mu g/m^3$

RfC = reference dose concentration, established by the EPA, mg/m^3

EF = exposure frequency, days/year (EPA recommends to use 350)

ED = exposure duration, yr (EPA recommends value of 30 for adult resident)

AT = averaging time, yr (EPA recommends value of 30 for non-carcinogens)

0.001 = units conversion factor, mg/µg

For the acute short-term inhalation exposure the following equation was used (HHRAP, Appendix C, Table C-2-3):

Acute Hazard Index = $C_{acute} \times 0.001/AIEC$

Where:

 $C_{acute} = 1$ -hour air concentration (estimated by the dispersion model), $\mu g/m3$

AIEC = 1-hour acute inhalation exposure guideline value, mg/m3

 $0.001 = units \ conversion \ factor, \ mg/\mu g$

The maximum estimated 1-hour concentration for each MSAT was estimated directly from the CAL3QHCR model. Once the chronic or acute hazard quotient of each

compound was estimated, these values were summed together to arrive with total chronic or acute Hazard Index. Potential non-cancer impacts of the proposed action were estimated by comparing the total hazard index of each Build alternative to No Build conditions. If the incremental change in the total hazard index is less than or equal to one, the potential non-carcinogenic chronic or acute risk impact associated with the proposed action is considered acceptable.

8.0 Receptor Sites

Two types of receptors were considered – sidewalk receptors and property line receptors (actual).

<u>Sidewalk Receptors</u> -- these are located at mid-sidewalk near each intersection, and were selected following EPA's *Guideline for Modeling Carbon Monoxide from Roadway Intersections*. The results obtained at these locations are considered to be very conservative for a chronic or lifetime exposure assessment because people are not exposed to the concentrations estimated at these locations for extended periods of time.

<u>Actual Receptors</u> – the following sensitive land uses were identified near two of the eight analysis sites:

- The Family Baptist Church, located approximately 150 feet from the edge of the roadways considered for Site 1; and
- The Academy of Our Lady of Guam, located approximately 25 feet from the edge of the roadways considered for Site 4.

The results obtained at these locations are considered to be more representative of the health risk associated with this project because people at these locations may be exposed to the estimated concentrations for extended periods of time.

9.0 Results

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Tables 4 and 5, which present the estimated cancer risk increases/decreases at sidewalk and actual receptors between No Build and Build conditions. The estimated non-cancer total chronic hazard index increases/decreases are presented in Tables 6 and 7, and the estimated non-cancer acute hazard index increases/decreases are presented in Tables 8 and 9. For more detailed results, estimated cancer risks under No Build and Build conditions at sidewalk and actual receptors are presented in Tables B-1 and B-2 in Appendix B. The estimated non-cancer total chronic hazard indexes are presented in Tables B-3 and B-4 in the Appendix, and the estimated non-cancer acute hazard indexes are presented in Tables B-5 and B-6.

The following are the results of the MSAT analysis:

- 1. Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSAT are considered acceptable; and
- 2. Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSAT are considered acceptable;

Based on these results, the proposed action is not anticipated to have adverse MSAT impacts. Additionally, as shown in the appendix:

- Future cancer and non-cancer risks, under both No Build and Build conditions, are less than existing risks in most cases; and
- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.

 Table 4

 Estimated Cancer Risk Increase/Decrease at Sidewalk Receptors (x10⁻⁶)

| Site No. | Optic | on 1/2 | Opt | ion 3 | Opti | on 8 | Cancer Risk |
|----------|-------|--------|-------|-------|-------|-------|-------------|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | Threshold |
| Site 1 | 1.60 | 1.00 | 2.36 | 0.89 | 2.50 | 0.32 | |
| Site 2 | 1.53 | 0.32 | 1.64 | 0.32 | 1.53 | 0.32 | |
| Site 3 | 1.55 | 0.56 | 3.34 | 0.51 | 3.57 | 0.81 | |
| Site 4 | 0.22 | 0.22 | 0.25 | 0.16 | -0.37 | 0.22 | 10 |
| Site 5 | 3.20 | 1.99 | 4.54 | 2.12 | 3.92 | 3.37 | |
| Site 6 | 0.35 | 0.27 | 0.28 | 0.19 | 0.39 | 0.28 | |
| Site 7 | -0.82 | -0.16 | -0.88 | -0.16 | -0.82 | -0.16 | |
| Site 8 | 0.26 | 0.06 | 0.24 | 0.04 | 0.29 | 0.05 | |

 Table 5

 Estimated Cancer Risk Increase/Decrease at Actual Receptors (x10⁻⁶)

| Site No. | Optio | n 1/2 | Opti | on 3 | Opti | Cancer Risk | |
|----------|-----------|-------|----------------|------|------|-------------|-----------|
| | 2014 2030 | | 2030 2014 2030 | | 2014 | 2030 | Threshold |
| Site 1 | 0.41 | 0.03 | 0.46 | 0.09 | 0.39 | 0.12 | 10 |
| Site 4 | -0.17 | 0.17 | 0.67 | 0.82 | 0.91 | 0.97 | |

Table 6 Estimated Non-Cancer Chronic Hazard Index Increase/Decrease at Sidewalk Receptors

| Site No. | Optic | on 1/2 | Opti | on 3 | Opt | ion 8 | EPA
Hazard Index |
|----------|-------|--------|-------|-------|-------|-------|---------------------|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | |
| Site 1 | 0.19 | 0.12 | 0.27 | 0.11 | 0.28 | 0.05 | |
| Site 2 | 0.20 | 0.04 | 0.21 | 0.04 | 0.20 | 0.04 | |
| Site 3 | 0.19 | 0.07 | 0.38 | 0.06 | 0.37 | 0.10 | |
| Site 4 | 0.03 | 0.03 | 0.03 | 0.02 | -0.04 | 0.03 | 1 |
| Site 5 | 0.33 | 0.20 | 0.46 | 0.22 | 0.43 | 0.29 | |
| Site 6 | 0.03 | 0.03 | 0.02 | 0.01 | 0.04 | 0.03 | |
| Site 7 | -0.09 | -0.02 | -0.09 | -0.02 | -0.09 | -0.02 | |
| Site 8 | 0.03 | 0.01 | 0.03 | 0.01 | 0.04 | 0.01 | |

| Table 7 |
|---|
| Estimated Non-Cancer Chronic Hazard Index Increase/Decrease at Actual |
| Receptors |

| Site No. | Optic | on 1/2 | /2 Option 3 | | | ion 8 | EPA
Hazard Index |
|----------|-------|--------|-------------|------|------|-------|---------------------|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | |
| Site 1 | 0.05 | 0.00 | 0.06 | 0.01 | 0.05 | 0.01 | 1 |
| Site 4 | -0.01 | 0.02 | 0.08 | 0.09 | 0.11 | 0.11 | |

| Site No. | Optic | on 1/2 | Opt | ion 3 | Opt | ion 8 | EPA
Hazard Index |
|----------|-------|--------|-------|-------|-------|-------|---------------------|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | Hazara maox |
| Site 1 | 0.19 | 0.12 | 0.27 | 0.11 | 0.28 | 0.05 | |
| Site 2 | 0.19 | 0.04 | 0.21 | 0.04 | 0.19 | 0.04 | |
| Site 3 | 0.19 | 0.07 | 0.37 | 0.06 | 0.36 | 0.10 | |
| Site 4 | 0.03 | 0.03 | 0.03 | 0.02 | -0.04 | 0.03 | 1 |
| Site 5 | 0.32 | 0.19 | 0.45 | 0.21 | 0.41 | 0.29 | |
| Site 6 | 0.03 | 0.02 | 0.02 | 0.01 | 0.04 | 0.03 | |
| Site 7 | -0.08 | -0.01 | -0.08 | -0.01 | -0.08 | -0.01 | |
| Site 8 | 0.03 | 0.01 | 0.03 | 0.00 | 0.04 | 0.01 | |

 Table 8

 Estimated Non-Cancer Acute Hazard Index Increase/Decrease at Sidewalk

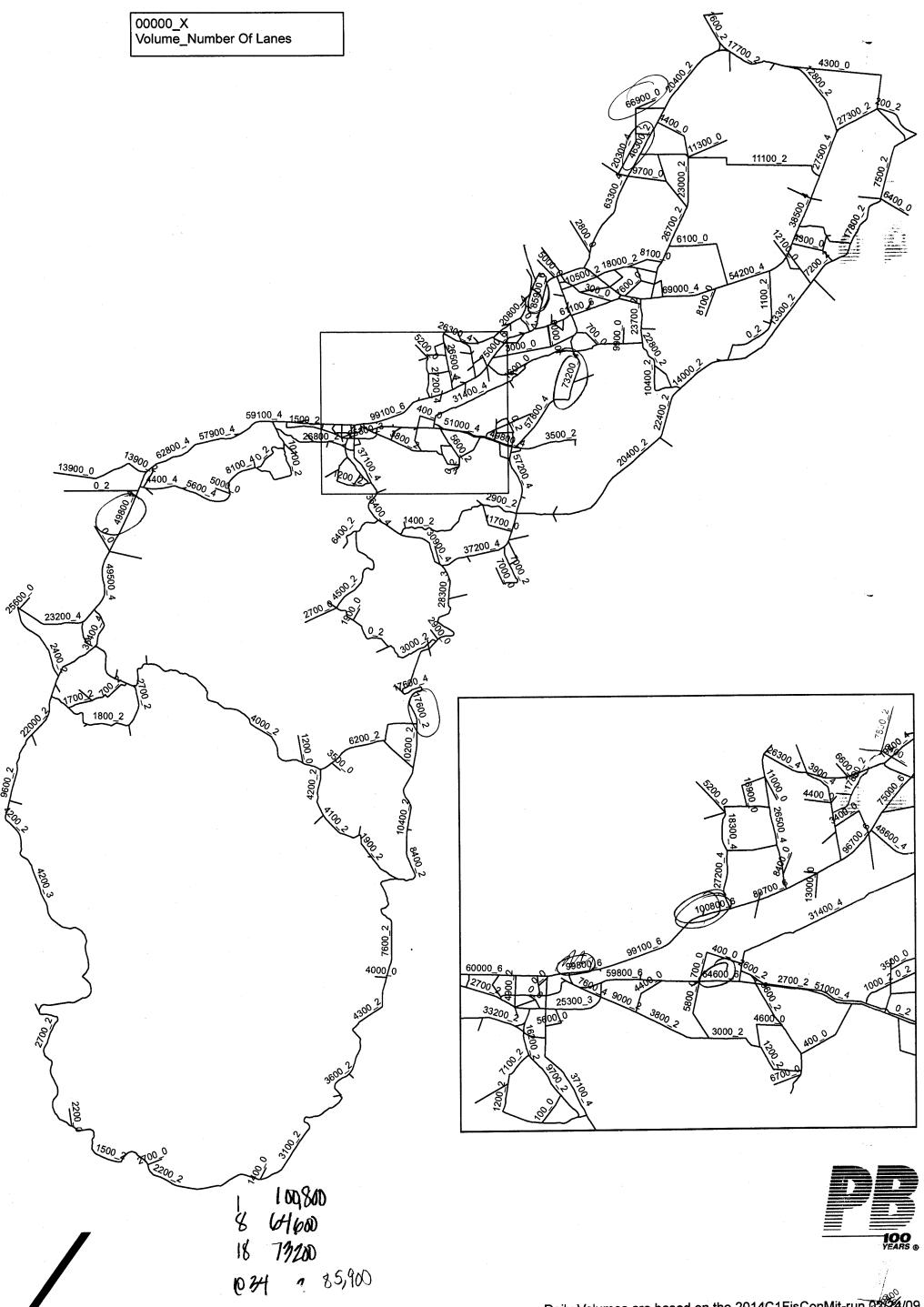
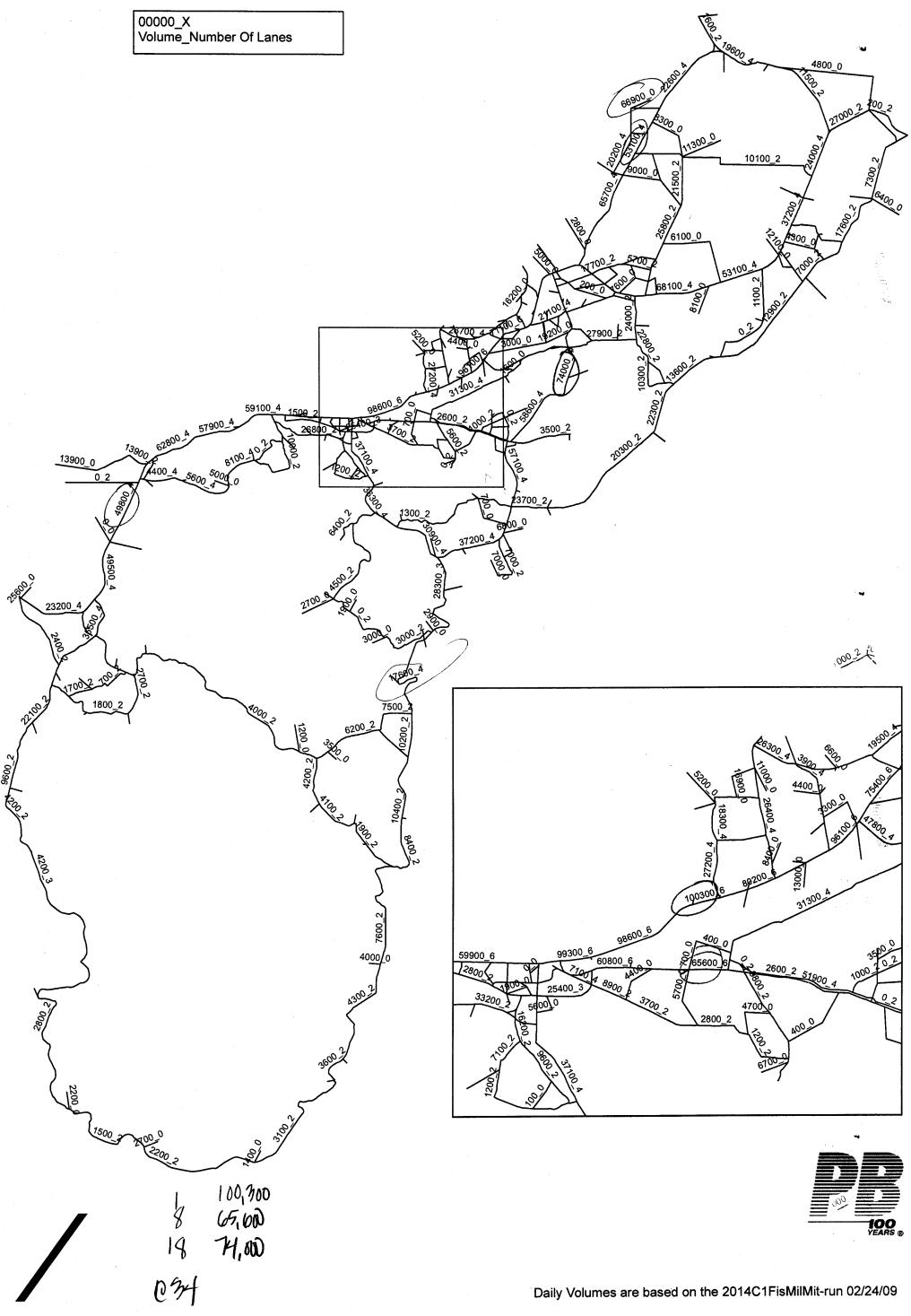
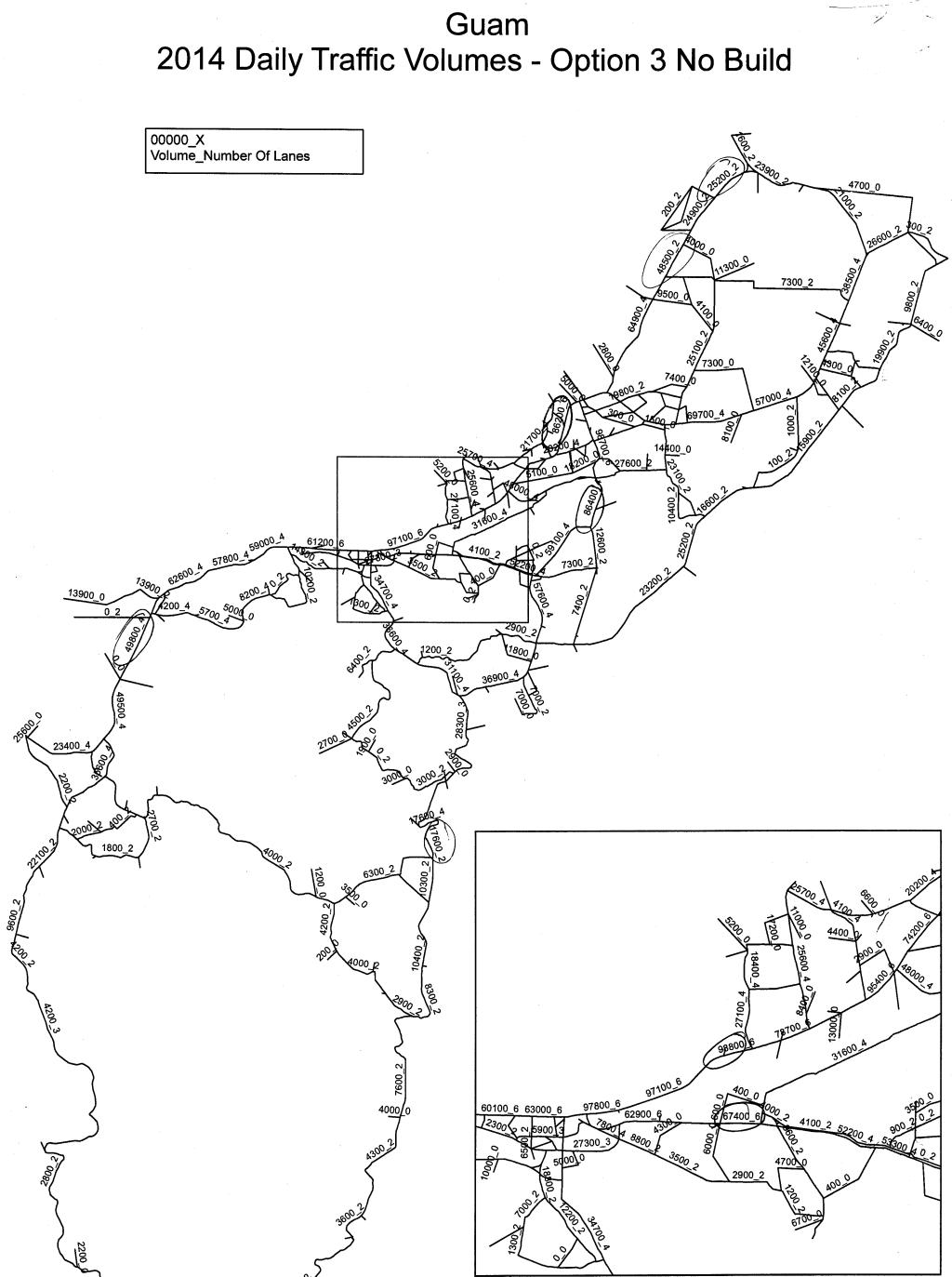

 Receptors

Table 9Estimated Non-Cancer Acute Hazard Index Increase/Decrease at Actual
Receptors

| Site No. | Optic | on 1/2 | Opti | ion 3 | Opti | on 8 | EPA
Hazard Index | |
|----------|-------|--------|------|-------|------|------|---------------------|--|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | | |
| Site 1 | 0.05 | 0.01 | 0.06 | 0.01 | 0.05 | 0.01 | 1 | |
| Site 4 | 0.00 | 0.02 | 0.08 | 0.09 | 0.11 | 0.11 | | |

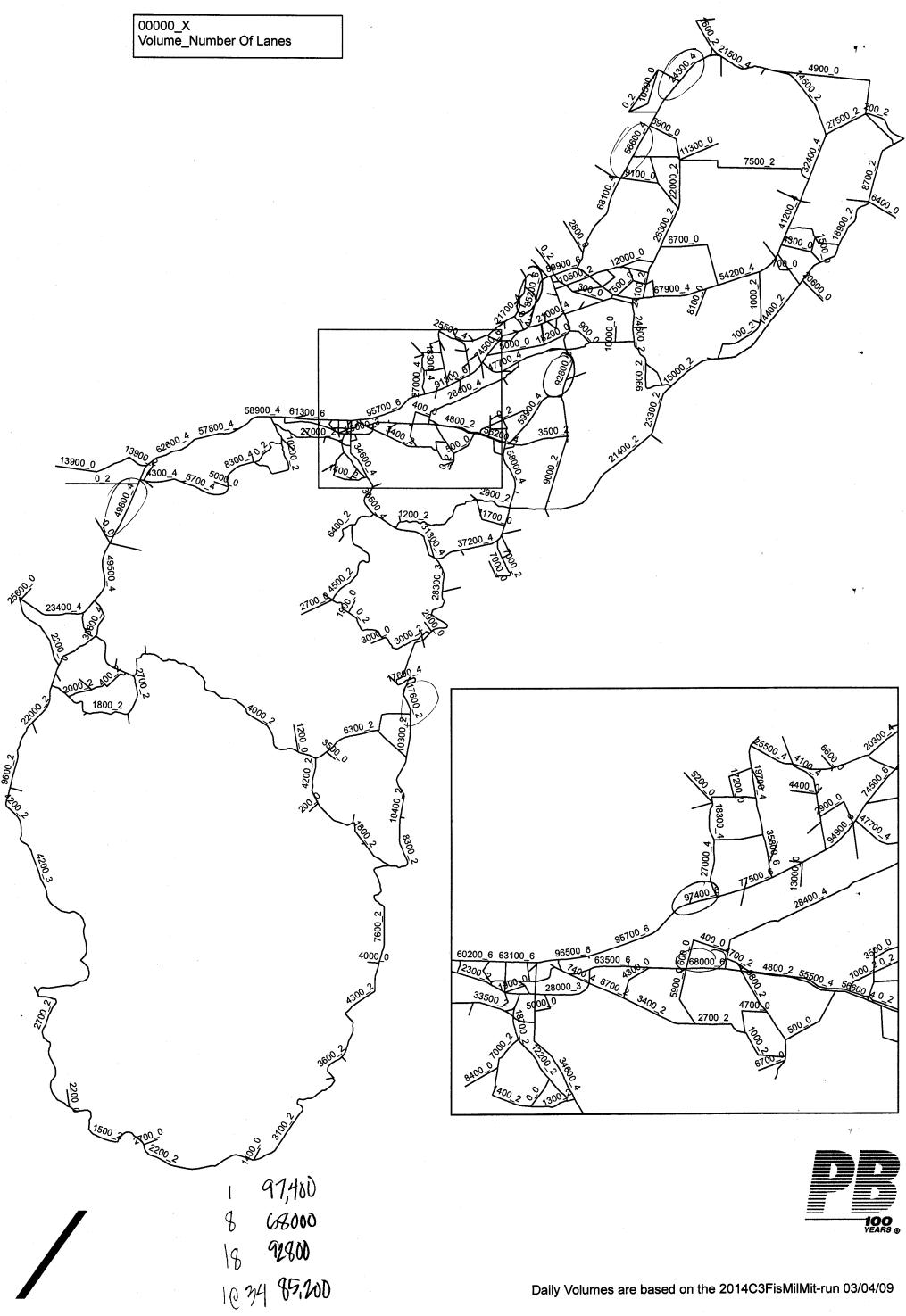
Appendix A Average Daily Traffic and Intersection Data



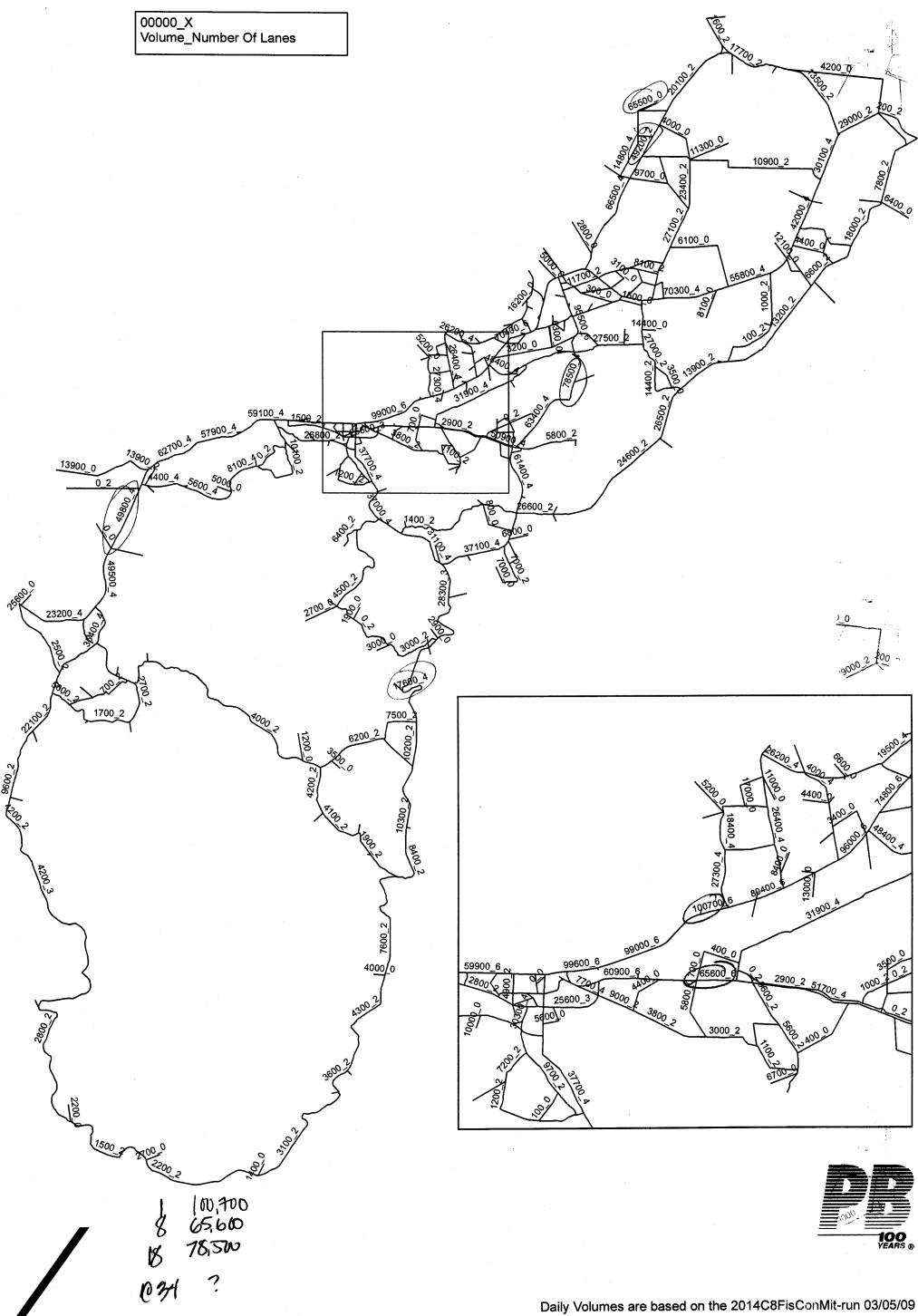


10/

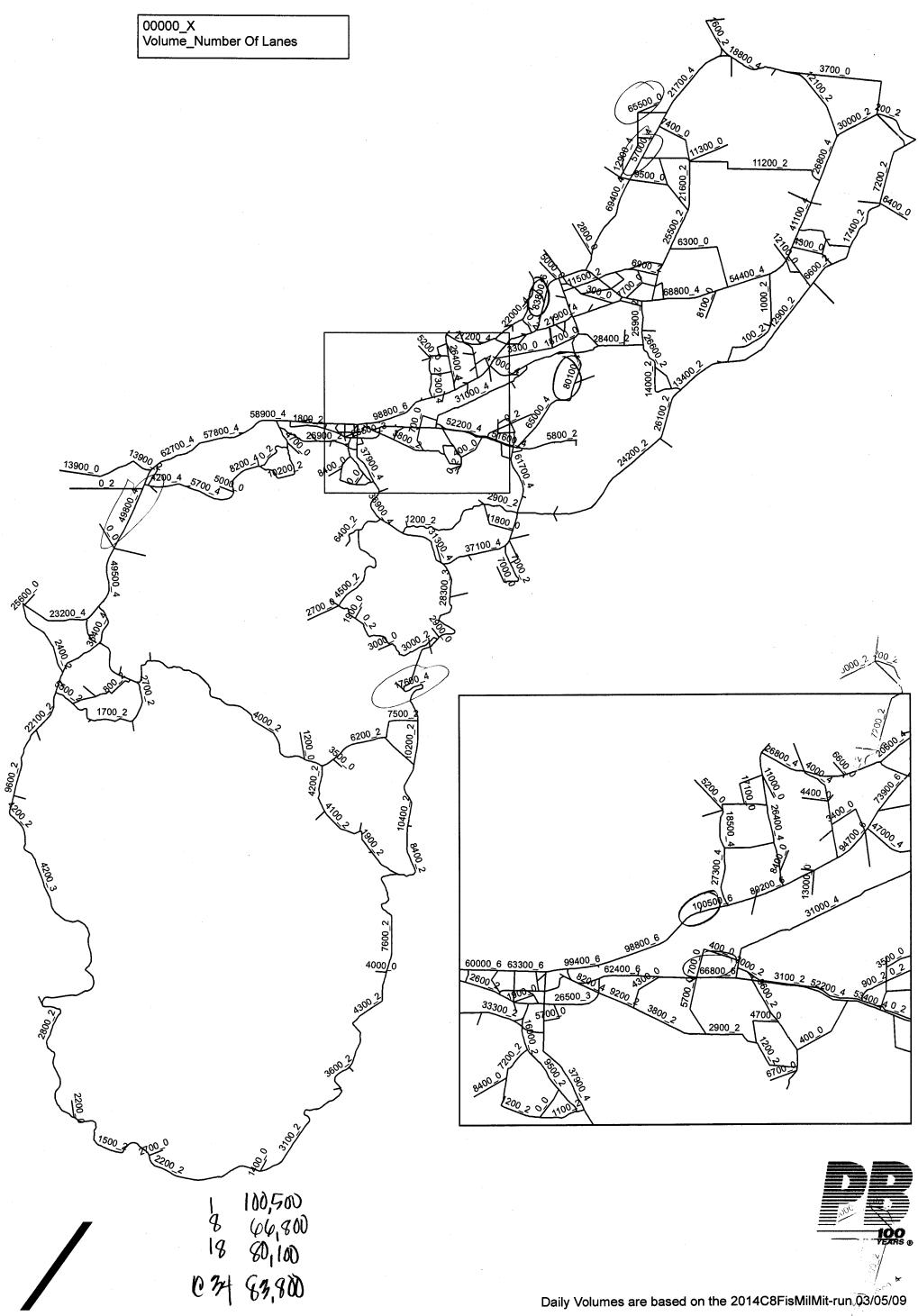
Daily Volumes are based on the 2014C1FisConMit-run 0224/09

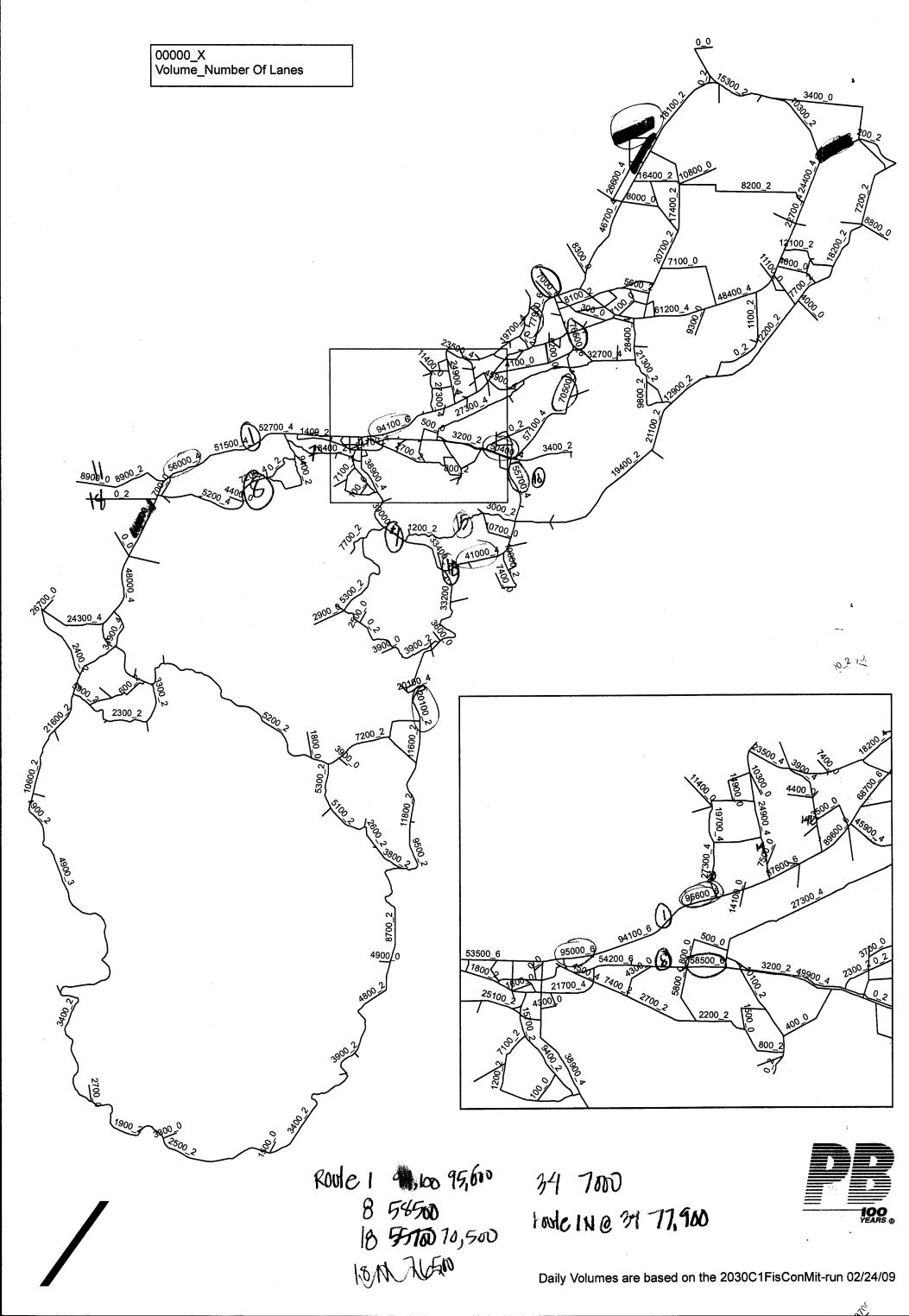


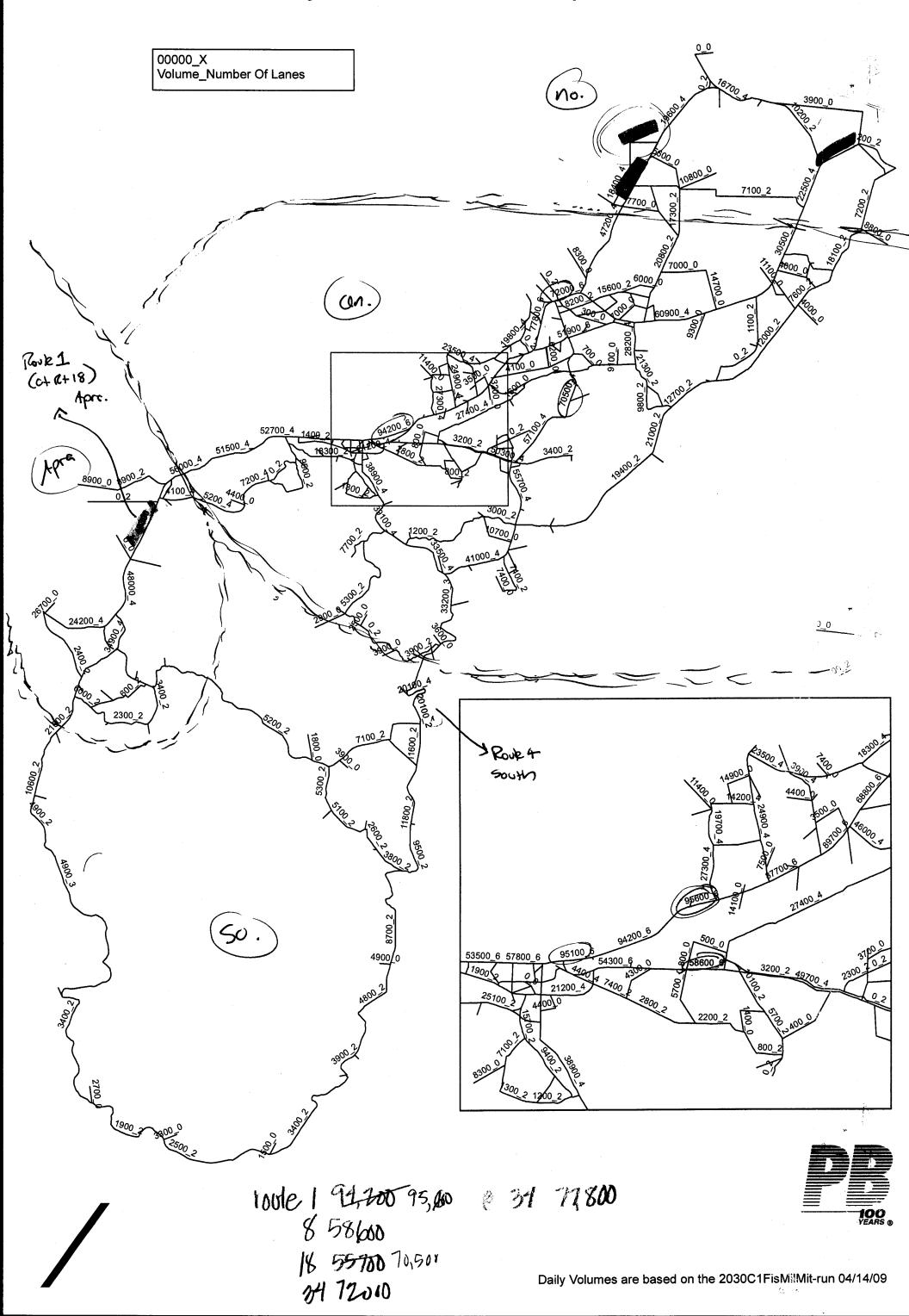
200_0 500 2₂₀₀ 1 98,800 8 67400 18 80700 10 34 86200

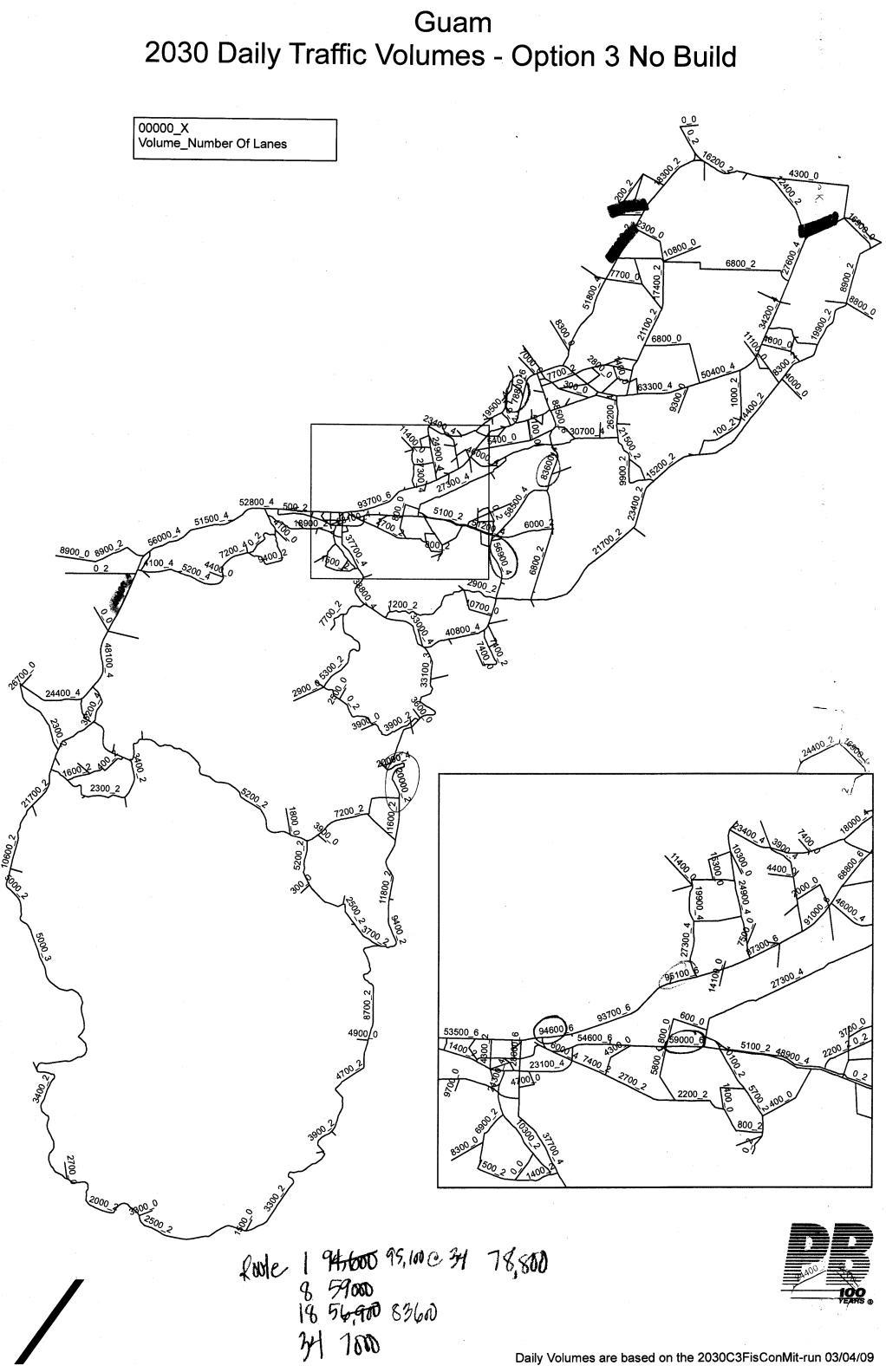


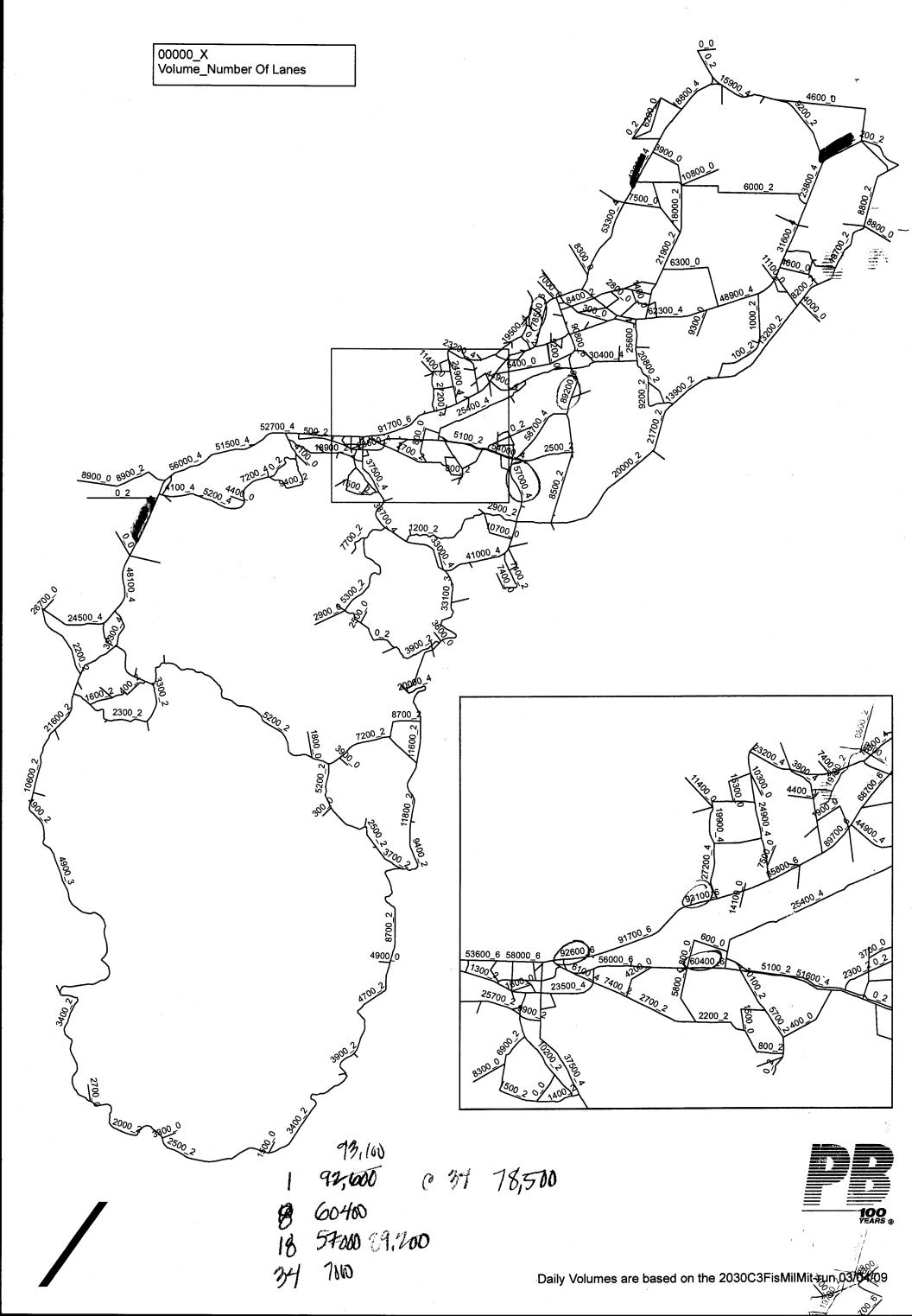
Daily Volumes are based on the 2014C3FisConMit-run 03/04/09

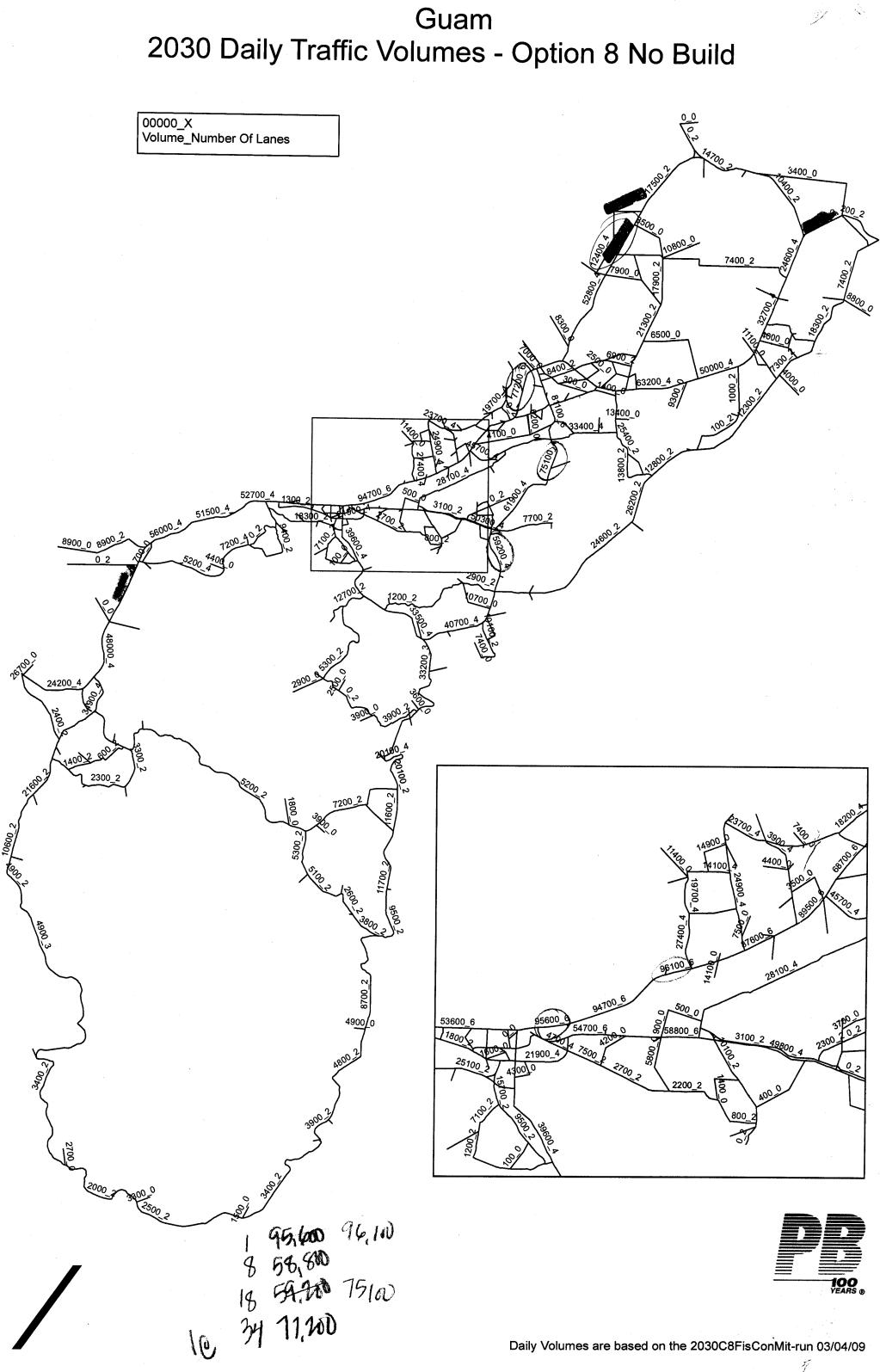


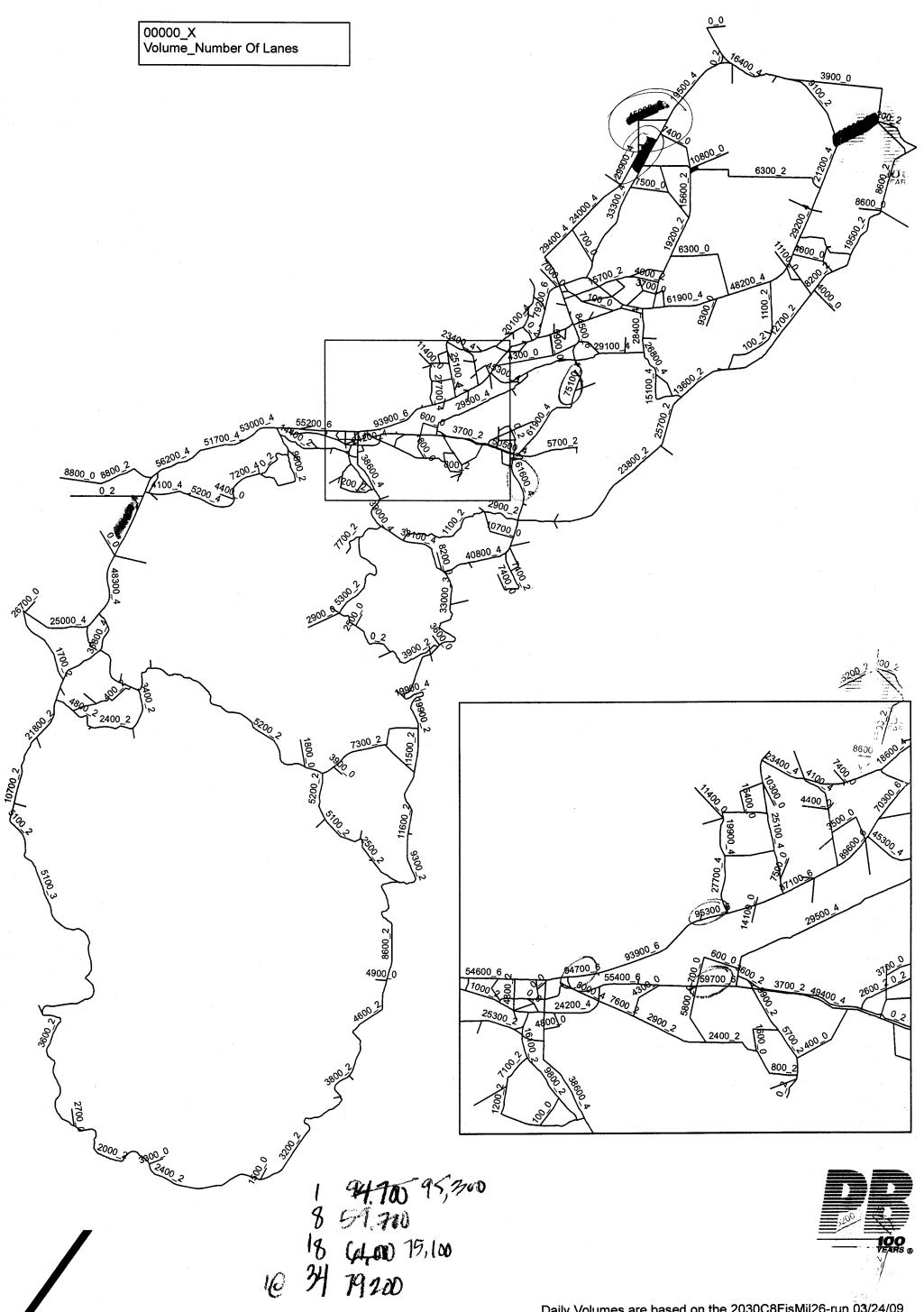



Guam 2014 Daily Traffic Volumes - Option 8 Build






Guam 2030 Daily Traffic Volumes - Option 1 Build



Daily Volumes are based on the 2030C8FisMil26-run 03/24/09

INTERSECTION SCREENING TABLES OPTIONS 1/2

Screening Analysis Locations – North Region, Options 1/2

| | | | No-A | ction | | | | ection LOS (seconds per vehicle) Intersection LOS (seconds per vehicle) | | | | | |
|--|---------------------------------|--------|---|---------------------------------|--------|---|---------------------------------|---|--------------------------|--------------|--------|--------------------------|--|
| | AM Pe | eak Ho | ur | PM Pe | eak Ho | our | AM Pe | eak Ho | our | PM Pe | eak Ho | ur | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per
vehicle) | Total
Intersection
Volume | LOS | Delay
(seconds
per | Intersection | LOS | Delay
(seconds
per | |
| Route 1/9 | 1,565 | В | 15.8 | 1,650 | В | 14.6 | 2,485 | С | 22.5 | 3,525 | D | 52.2 | |
| Route 1/29 | 3,675 | F | 87.6 | 2,970 | Е | 60.5 | 3,550 | Е | 65.5 | 3,400 | Е | 67.7 | |
| Route 1/28 | 5,700 | F | 226.2 | 6,050 | F | 157.7 | 6,600 | F | 216.8 | 7,050 | F | 104.5 | |
| Route 3/3A | 875 | А | 9.5* | 880 | В | 10.1* | 910 | В | 11.6* | 2,660 | F | 79.0* | |
| Route 3/28 | 1,904 | В | 17.8 | 2,070 | С | 21.4 | 3,990 | С | 26.0 | 4,210 | D | 36.9 | |
| Route 15/29 | 1,760 | F | **** | 1,575 | F | 683.5* | 1,860 | С | 27.7 | 1,830 | С | 25.4 | |
| Route 3/ North
(Commercial) Gate** | 1,010 | N/A | N/A | 970 | N/A | N/A | 2,455 | С | 29.7 | 2,855 | E | 60.4 | |
| Route 3/ South (Main)
Gate** | 1,260 | N/A | N/A | 1,200 | N/A | N/A | 3,555 | С | 27.9 | 4,295 | D | 43.8 | |
| Route 3/ Control Tree
Drive (Residential)
Gate | 1,300 | F | 122.3* | 2,745 | F | 74.2* | 4,085 | С | 32.6 | 4,510 | С | 20.9 | |
| Route 9/ Andersen
AFB North Gate** | 1,480 | Е | 39.5* | 1,385 | D | 35.1* | 2,035 | F | **** | 2,160 | F | **** | |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

| | | | No-A | ction | | | | | Bu | uild | | |
|---------------------------------------|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|
| | AM | Peak Ho | ur | PM | Peak Ho | ur | AM | Peak Ho | our | PM | Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 1/26 | 5,910 | Е | 75.8 | 6,060 | F | 229.8 | 6,865 | E | 75.8 | 7,295 | F | 156.6 |
| Route 1/27 | 5,950 | F | 157.2 | 5,875 | F | 533.7 | 6,860 | F | 137.4 | 7,605 | F | 374.3 |
| Route 1/ 27A | 3,195 | Е | 67.2 | 3,420 | F | 189.5 | 3,925 | D | 44.4 | 4,340 | Е | 75.7 |
| Route 1/3 | 5,055 | F | 158.4 | 5,400 | F | 306.9 | 4,970 | D | 48.5 | 5,845 | D | 50.6 |
| Route 1/16 | 5,905 | D | 52.2 | 6,410 | F | 305.5 | 6,950 | Е | 65.3 | 7,490 | F | 87.5 |
| Route 1/14
(Upper Tumon) | 5,455 | F | 82.8 | 6,165 | F | 361.2 | 5,900 | E | 68.0 | 6,535 | F | 82.0 |
| Route 1/ 14A
(Opposite K-
Mart) | 5,550 | F | 124.1 | 6,170 | F | 259.9 | 5,985 | F | 112.2 | 6,790 | F | 131.5 |
| Route 1/ 10A | 6,935 | F | 82.9 | 7,055 | F | 117.2 | 7,485 | F | 118.1 | 7,695 | F | 102.0 |
| Route 1/ 14B | 6,120 | E | 60.5 | 6,485 | F | 91.8 | 6,485 | F | 83.9 | 6,775 | E | 78.2 |
| Route 1/14 | 6,715 | F | 93.3 | 7,705 | F | 212.5 | 7,355 | F | 182.5 | 8,455 | F | 275.1 |
| Route 1/30 | 6,355 | F | 273.9 | 6,975 | F | 440.9 | 6,825 | F | 134.7 | 7,385 | F | 267.2 |
| Route 1/8 | 7,255 | F | 107.6 | 7,915 | F | 94.1 | 8,360 | F | 97.6 | 8,970 | F | 127.5 |
| Route 1/4 | 7,535 | D | 43.4 | 7,470 | D | 38.6 | 6,665 | С | 32.4 | 8,775 | F | 140.2 |

Screening Analysis Locations – Central Region, Options 1/2

| | | | | ction | | | Build | | | | | | | |
|-------------------------|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|--|--|
| | AM | Peak Ho | ur | PM | Peak Ho | ur | AM | Peak Ho | our | PM | Peak Ho | our | | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | | |
| Route 1/6
(Adelup) | 3,770 | С | 24.1 | 5,125 | F | 91.7 | 4,255 | D | 40.6 | 6,240 | Е | 61.8 | | |
| Route 1/6
(Westerly) | 3,080 | A | 7.8 | 3,430 | В | 15.6 | 3,510 | В | 18.4 | 3,905 | С | 22.0 | | |
| Route 4/7A | 5,040 | F | 298.8 | 4,855 | F | 196.9 | 4,765 | F | 607.3 | 5,515 | F | 534.1 | | |
| Route 4/10 | 4,305 | F | 95.5 | 4,365 | F | 115.9 | 4,665 | F | 199.5 | 4,705 | E | 65.1 | | |
| Route 4/17 | 1,775 | D | 46.6 | 1,700 | D | 48.2 | 1,810 | D | 39.6 | 1,790 | Е | 57.7 | | |
| Route 4/4A | 740 | D | 27.9* | 925 | С | 21.2* | 1,030 | E | 49.7* | 1,790 | F | 484.3* | | |
| Route 7/7A | 1,985 | F | 77.7* | 1,745 | E | 114.5* | 1,935 | D | 29.2* | 2,100 | F | 105.1* | | |
| Route 8/33 (East) | 3,655 | С | 31.2 | 4,680 | F | 147.3 | 4,315 | D | 54.6 | 4,910 | F | 81.7 | | |
| Route 8/10 | 6,410 | F | 122.0 | 6,295 | F | 116.5 | 6,435 | F | 96.9 | 7,010 | F | 172.7 | | |
| Route 10/ 15 | 5,550 | D | 49.7 | 5,585 | F | 101.1 | 6,245 | F | 196.9 | 6,270 | F | 152.3 | | |
| Route 16/ 27A | 2,770 | С | 24.3 | 3,130 | С | 26.4 | 3,050 | С | 27.4 | 3,680 | С | 34.2 | | |
| Route 16/ 27 | 6,590 | F | 275.1 | 6,970 | F | 486.4 | 7,665 | F | 345.0 | 7,790 | F | 288.7 | | |
| Route 16/ 10A | 6,178 | F | 874.2 | 4,880 | F | 208.7 | 5,035 | F | 123.1 | 5,725 | F | 123.5 | | |
| Route 17/ 4A | 720 | С | 17.0* | 760 | С | 17.9* | 700 | В | 13.6* | 790 | С | 18.7* | | |
| Route 26/ 25 | 3,180 | F | 270.1 | 3,495 | E | 71.7 | 3,415 | С | 31.2 | 3,930 | D | 41.0 | | |

Screening Analysis Locations – Central Region, Options 1/2

Guam Military Relocation - Guam Road Network MSAT Analysis

| | | | No-A | ction | | | | | Βι | ıild | | |
|---|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|
| | AM | Peak Ho | ur | PM | Peak Ho | ur | AM | Peak Ho | our | PM | Peak Ho | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 26/ 15 | 1,680 | F | 134.8* | 1,790 | F | 2494.6* | 2,015 | С | 27.9 | 2,115 | С | 32.1 |
| Route 28/ 27A | 2,920 | F | 353.1* | 2,565 | F | 437.8* | 2,735 | D | 35.6 | 2,640 | D | 36.6 |
| Route 1/ Turner
Street (Main
Gate) | 3,375 | В | 13.5* | 3,650 | F | 458.6* | 4,780 | С | 32.4 | 5,105 | Е | 79.1 |
| Route 15/ Road
1.16 M east of
Route 26
(Second Gate)** | 1,040 | N/A | N/A | 1,010 | N/A | N/A | 1,320 | С | 22.1* | 1,410 | С | 22.6* |
| Route 16/
Sabana
Barrigada | 4,535 | F | **** | 4,960 | F | **** | 4,765 | N/A | N/A | 5,150 | N/A | N/A |
| Route 15/ Fadian
Point Drive | 1,385 | Е | 50.0* | 1,625 | Е | 44.4* | 1,560 | N/A | N/A | 345 | N/A | N/A |

Screening Analysis Locations – Central Region, Options 1/2

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis , as detailed in the EIS.

| | | | No-A | ction | | | Build | | | | | | | |
|---------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|----------|--|--|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | Peak Hou | r | PM | Peak Hou | our | | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | | |
| Route 1/11 | 3,460 | В | 18.8 | 3,615 | С | 26.8 | 3,885 | С | 20.7 | 4,080 | D | 43.5 | | |
| Route 1/ Polaris
Point | 3,655 | A | 4.3 | 4,680 | A | 6.2 | 3,420 | A | 8.2 | 3,900 | A | 7.4 | | |
| Route 1/2a | 3,790 | E | 58.8 | 4,250 | Е | 55.5 | 4,275 | Е | 66.8 | 4,780 | Е | 57.2 | | |

Screening Analysis Locations – Apra Harbor, Options 1/2

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

No-Action Build AM Peak Hour PM Peak Hour AM Peak Hour PM Peak Hour Control Control Control Control Intersection Total Total Total Total Delav Delay Delav Delav LOS Intersection LOS Intersection LOS Intersection LOS Intersection (seconds (seconds (seconds (seconds Volume Volume Volume Volume per per per per vehicle) vehicle) vehicle) vehicle) Route 5/2A 3,335 2,885 D 53.0 3,115 С 22.7 3,280 F 96.3 С 26.2 Route 5/17 3,655 28.9* Ε F D 4,680 47.8* 1,035 56.8* 1,105 F 149.6* Route 2/12 F С 2.245 2,200 С 2,350 С 83.1 25.4 2,380 27.8 27.1 Route 5/ Harmon 347 А 9.7* 347 9.8* 385 А 9.5* 520 А 10.6* А Road

Screening Analysis Locations – South Region, Options 1/2

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

INTERSECTION SCREENING TABLES OPTION 3

Screening Analysis Locations – North Region Option 3

| | | | No- | Action | | | | | Bui | ld | | |
|--|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | AM | l Peak Ho | bur | PM | Peak Hou | ır | AM | Peak Hou | ır | PM | l Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 1/9 | 1,565 | В | 15.8 | 1,650 | В | 14.6 | 2,540 | С | 24.4 | 3,525 | D | 53.0 |
| Route 1/29 | 3,675 | F | 87.6 | 2,970 | Е | 60.5 | 4,025 | F | 85.3 | 3,895 | F | 90.5 |
| Route 1/28 | 5,700 | F | 226.2 | 6,050 | F | 157.7 | 6,885 | F | 198.5 | 7,390 | F | 139.5 |
| Route 3/3A | 875 | А | 9.5* | 880 | В | 10.1* | 2,225 | E | 47.2* | 2,340 | F | 100.7* |
| Route 3/28 | 1,904 | В | 17.8 | 2,070 | С | 21.4 | 5,680 | F | 90.2 | 6,025 | D | 53.9 |
| Route 15/ 29* | 1,760 | F | **** | 1,575 | F | 683.5* | 1,945 | F | 161.4 | 1,985 | С | 26.2 |
| Route 3/ North
(Commercial) Gate | 1,010 | N/A | N/A | 970 | N/A | N/A | 3,935 | D | 39.8 | 3,375 | D | 46.0 |
| Route 3/ South
(Main) Gate | 1,260 | N/A | N/A | 1,200 | N/A | N/A | 5,945 | D | 44.5 | 6,275 | F | 370.1 |
| Route 3/ Control
Tree Drive
(Residential) Gate | 1,300 | F | 122.3* | 2,745 | F | 74.2* | 5,525 | F | 113.3 | 5,680 | D | 46.3 |
| Route 9/
Andersen AFB
North Gate | 1,480 | E | 39.5* | 1,385 | D | 35.1* | 2,035 | F | 1031.0* | 2,160 | F | 9051.1* |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Guam Military Relocation - Guam Road Network MSAT Analysis

| | | | | Action | | | Build | | | | | | | |
|-----------------------------------|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|---------------------------------|-----------|--|--|--|
| | AN | 1 Peak Ho | ur | Pi | M Peak H | our | AM | l Peak Ho | ur | PN | 1 Peak Ho | ur | | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | | |
| Route 1/26 | 5,910 | Е | 75.8 | 6,060 | F | 229.8 | 7,120 | F | 89.4 | 7,615 | F | 209.1 | | |
| Route 1/27 | 5,950 | F | 157.2 | 5,875 | F | 533.7 | 6,705 | F | 151.1 | 7,625 | F | 399.6 | | |
| Route 1/ 27A | 3,195 | Е | 67.2 | 3,420 | F | 189.5 | 4,160 | F | 120.2 | 4,435 | F | 157.1 | | |
| Route 1/3 | 5,055 | F | 158.4 | 5,400 | F | 306.9 | 7,815 | F | 341.3 | 8,030 | F | 474.4 | | |
| Route 1/16 | 5,905 | D | 52.2 | 6,410 | F | 305.5 | 8,270 | F | 232.2 | 8,540 | F | 340.3 | | |
| Route 1/14 (Upper
Tumon) | 5,455 | F | 82.8 | 6,165 | F | 361.2 | 5,775 | E | 66.6 | 6,355 | E | 71.5 | | |
| Route 1/ 14A
(Opposite K-Mart) | 5,550 | F | 124.1 | 6,170 | F | 259.9 | 5,860 | E | 71.0 | 6,435 | F | 112.3 | | |
| Route 1/ 10A | 6,935 | F | 82.9 | 7,055 | F | 117.2 | 7,515 | F | 129.6 | 8,170 | F | 193.6 | | |
| Route 1/ 14B | 6,120 | Е | 60.5 | 6,485 | F | 91.8 | 6,480 | E | 79.8 | 6,965 | Е | 78.5 | | |
| Route 1/14 | 6,715 | F | 93.3 | 7,705 | F | 212.5 | 7,355 | F | 176.8 | 8,635 | F | 315.8 | | |
| Route 1/30 | 6,355 | F | 273.9 | 6,975 | F | 440.9 | 6,795 | F | 148.5 | 7,475 | F | 253.3 | | |
| Route 1/8 | 7,255 | F | 107.6 | 7,915 | F | 94.1 | 7,835 | F | 102.7 | 8,965 | F | 155.5 | | |
| Route 1/4 | 7,535 | D | 43.4 | 7,470 | D | 38.6 | 6,565 | С | 30.5 | 7,440 | F | 107.2 | | |
| Route 1/6 (Adelup) | 3,770 | С | 24.1 | 5,125 | F | 91.7 | 4,265 | С | 29.7 | 7,850 | F | 958.7 | | |

Screening Analysis Locations – Central Region, Option 3

| | | | | Action | | | Build | | | | | | | |
|-------------------------|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|--|--|
| | AN | / Peak Ho | ur | Pi | M Peak H | our | AM | Peak Ho | ur | PA | 1 Peak Ho | bur | | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | | |
| Route 1/6
(Westerly) | 3,080 | A | 7.8 | 3,430 | В | 15.6 | 3,945 | С | 27.4 | 3,910 | С | 23.0 | | |
| Route 4/7A | 5,040 | F | 298.8 | 4,855 | F | 196.9 | 4,830 | F | 586.7 | 5,240 | F | 339.2 | | |
| Route 4/10 | 4,305 | F | 95.5 | 4,365 | F | 115.9 | 4,705 | F | 199.7 | 4,700 | E | 65.9 | | |
| Route 4/17 | 1,775 | D | 46.6 | 1,700 | D | 48.2 | 1,785 | D | 39.6 | 1,785 | E | 55.9 | | |
| Route 4/ 4A* | 740 | D | 27.9* | 925 | С | 21.2* | 1,005 | Е | 44.3* | 960 | С | 21.9* | | |
| Route 7/ 7A* | 1,985 | F | 77.7* | 1,745 | D | 28.3* | 1,920 | D | 28.3* | 2,085 | F | 87.7* | | |
| Route 8/33 (East) | 3,655 | С | 31.2 | 4,680 | E | 64.3 | 4,335 | D | 52.9 | 2,250 | С | 29.1 | | |
| Route 8/10 | 6,410 | F | 122.0 | 6,295 | F | 265.3 | 6,495 | F | 137.9 | 7,090 | F | 171.9 | | |
| Route 10/ 15 | 5,550 | D | 49.7 | 5,585 | F | 197.9 | 6,230 | F | 197.9 | 6,245 | F | 147.2 | | |
| Route 16/ 27A | 2,770 | С | 24.3 | 3,130 | F | 99.9 | 4,905 | D | 44.9 | 5,405 | F | 80.6 | | |
| Route 16/ 27 | 6,590 | F | 275.1 | 6,970 | F | 587.3 | 9,380 | F | 455.3 | 9,825 | F | 470.0 | | |
| Route 16/ 10A | 6,178 | F | 874.2 | 4,880 | F | 459.9 | 5,570 | F | 210.3 | 7,710 | F | 524.0 | | |
| Route 17/ 4A* | 720 | С | 17.0* | 760 | С | 16.5* | 710 | С | 16.5* | 785 | С | 18.5* | | |
| Route 26/ 25* | 3,180 | F | 270.1 | 3,495 | F | 369.5 | 4,125 | F | 85.4 | 4,365 | E | 62.3 | | |
| Route 26/ 15 | 1,680 | F | 134.8* | 1,790 | F | 3450.7* | 2,235 | С | 30.2 | 2,375 | С | 25.4 | | |

Screening Analysis Locations – Central Region, Option 3

| | | | No-A | Action | | | | | В | uild | | |
|---|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | AN | 1 Peak Ho | our | P | M Peak H | our | AM | Peak Hou | ır | PN | 1 Peak Ho | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 28/ 27A | 2,920 | F | 353.1* | 2,565 | F | 528.0* | 3,075 | D | 41.4 | 3,390 | Е | 65.2 |
| Route 1/ Turner
Street (Main Gate) | 3,375 | В | 13.5* | 3,650 | С | 32.4 | 4,780 | С | 32.4 | 5,105 | E | 79.5 |
| Route 15/ Road
1.16 M east of
Route 26 (Second
Gate) | 1,040 | N/A | N/A | 1,010 | С | 22.1* | 1,320 | С | 22.1* | 1,410 | С | 21.1* |
| Route 16/ Sabana
Barrigada | 4,535 | F | **** | 4,960 | D | 48.1 | 7,230 | D | 48.1 | 7,740 | F | 94.2 |
| Route 15/ Fadian
Point Drive | 1,385 | Е | 50.0* | 1,625 | E | 44.4* | 1,795 | E | 73.5 | 2,125 | F | 209.1 |

Screening Analysis Locations – Central Region, Option 3

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Screening Analysis Locations – Apra Harbor Region, Option 3

| | | No-Action | | | | | | Build | | | | | | |
|---------------------|---------------------------------|-----------|--|---------------------------------|-----|--|---------------------------------|----------|--|---------------------------------|-----|--|--|--|
| | AM Peak Hour | | | PM Peak Hour | | | AM | Peak Hou | ır | PM Peak Hour | | | | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | | |
| Route 1/11 | 3,460 | В | 18.8 | 3,615 | С | 26.8 | 3,710 | В | 18.4 | 4,080 | D | 40.1 | | |
| Route 1/ Polaris Pt | 3,655 | А | 4.3 | 4,680 | А | 6.2 | 3,530 | А | 5.8 | 3,900 | А | 7.4 | | |
| Route 1/2A | 3,790 | Е | 58.8 | 4,250 | E | 55.5 | 4,270 | E | 67.5 | 4,755 | D | 54.1 | | |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Screening Analysis Locations – South Region, Option 3

| | | No-Action | | | | | | | Build | | | | | | | |
|-----------------------|--------------------|-----------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|--|--|--|--|
| | AM | Peak H | our | PM P | eak Hou | ır | AM P | eak Hou | r | PM P | eak Hou | ır | | | | |
| Intersection | Intersection LOS D | | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | | | | |
| Route 5/2A | 2,885 | D | 53.0 | 3,115 | С | 22.7 | 2,960 | E | 55.1 | 3,235 | С | 22.8 | | | | |
| Route 5/17* | 3,655 | D | 28.9* | 4,680 | Е | 47.8* | 1,045 | E | 42.5* | 1,080 | F | 128.5* | | | | |
| Route 2/12 | 2,245 | F | 83.1 | 2,200 | С | 25.4 | 2,385 | С | 30.6 | 2,355 | С | 24.9 | | | | |
| Route 5/ Harmon Road* | 347 | А | 9.7* | 347 | А | 9.8* | 385 | А | 9.5* | 520 | А | 10.6* | | | | |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Guam Military Relocation - Guam Road Network MSAT Analysis

INTERSECTION SCREENING TABLES **OPTION 8**

Screening Analysis Locations – North Region, Option 8

| | | | | Action | | | | | Buil | ld | | |
|--|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | A۸ | A Peak Ho | our | PM | Peak Hou | ır | AM | Peak Hou | ır | PN | / Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/9 | 1,565 | В | 15.8 | 1,650 | В | 14.6 | 2,540 | С | 24.4 | 3,525 | D | 53.0 |
| Route 1/29 | 3,675 | F | 87.6 | 2,970 | Е | 60.5 | 4,025 | F | 85.3 | 3,895 | F | 90.5 |
| Route 1/28 | 5,700 | F | 226.2 | 6,050 | F | 157.7 | 6,885 | F | 198.5 | 7,390 | F | 139.5 |
| Route 3/3A | 875 | А | 9.5* | 880 | В | 10.1* | 2,020 | D | 27.0* | 2,550 | F | 140.7* |
| Route 3/28 | 1,904 | В | 17.8 | 2,070 | С | 21.4 | 4,635 | С | 33.2 | 4,595 | D | 47.5 |
| Route 15/29* | 1,760 | F | **** | 1,575 | F | 683.5* | 1,915 | С | 32.9 | 1,880 | С | 30.0 |
| Route 3/ North
(Commercial) Gate | 1,010 | N/A | N/A | 970 | N/A | N/A | 3,310 | D | 38.2 | 3,090 | Е | 56.6 |
| Route 3/ South
(Main) Gate | 1,260 | N/A | N/A | 1,200 | N/A | N/A | 5,085 | D | 46.3 | 4,950 | F | 81.7 |
| Route 3/ Control
Tree Drive
(Residential) Gate | 1,300 | F | 122.3* | 2,745 | F | 74.2* | 4,525 | D | 39.7 | 4,750 | С | 22.6 |
| Route 9/
Andersen AFB
North Gate | 1,480 | E | 39.5* | 1,385 | D | 35.1* | 2,035 | С | 24.4 | 2,160 | F | **** |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

| | | | No-A | ction | | | | • | Bu | ild | | |
|--------------------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | ır | PM | Peak Hol | ır | AM | Peak Ho | ur | PM | l Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/26 | 5,910 | E | 75.8 | 6,060 | F | 229.8 | 7,845 | F | 145.9 | 8,010 | F | 250.6 |
| Route 1/27 | 5,950 | F | 157.2 | 5,875 | F | 533.7 | 7,640 | F | 178.8 | 7,540 | F | 329.4 |
| Route 1/27A | 3,195 | E | 67.2 | 3,420 | F | 189.5 | 4,775 | D | 53.9 | 4,900 | D | 51.2 |
| Route 1/3 | 5,055 | F | 158.4 | 5,400 | F | 306.9 | 5,455 | E | 70.5 | 6,335 | E | 64.7 |
| Route 1/16 | 5,905 | D | 52.2 | 6,410 | F | 305.5 | 7,070 | E | 57.0 | 7,785 | F | 103.9 |
| Route 1/14
(Upper
Tumon) | 5,455 | F | 82.8 | 6,165 | F | 361.2 | 5,855 | E | 69.6 | 6,465 | E | 77.6 |
| Route 1/ 14A
(Opposite
K-Mart) | 5,550 | F | 124.1 | 6,170 | F | 259.9 | 5,860 | E | 74.2 | 6,460 | F | 126.0 |
| Route 1/10A | 6,935 | F | 82.9 | 7,055 | F | 117.2 | 7,565 | F | 126.1 | 8,340 | F | 186.0 |
| Route 1/14B | 6,120 | E | 60.5 | 6,485 | F | 91.8 | 6,545 | F | 90.4 | 7,160 | E | 79.5 |
| Route 1/14 | 6,715 | F | 93.3 | 7,705 | F | 212.5 | 7,430 | F | 113.6 | 8,830 | F | 267.2 |
| Route 1/30 | 6,355 | F | 273.9 | 6,975 | F | 440.9 | 6,915 | F | 146.3 | 7,715 | F | 285.3 |
| Route 1/8 | 7,255 | F | 107.6 | 7,915 | F | 94.1 | 8,060 | E | 77.8 | 9,545 | F | 150.4 |
| Route 1/4 | 7,535 | D | 43.4 | 7,470 | D | 38.6 | 6,665 | С | 33.6 | 7,605 | D | 35.5 |

Screening Analysis Locations – Central Region, Option 8

| | | | No-A | ction | | | | - | Bu | ild | | |
|-------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | l Peak Ho | ur | PM | l Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/6
(Adelup) | 3,770 | С | 24.1 | 5,125 | F | 91.7 | 4,245 | D | 38.1 | 4,835 | D | 44.9 |
| Route 1/6
(Westerly) | 3,080 | A | 7.8 | 3,430 | В | 15.6 | 3,510 | В | 18.4 | 3,905 | С | 22.0 |
| Route 4/7A | 5,040 | F | 298.8 | 4,855 | F | 196.9 | 4,915 | F | 372.9 | 5,680 | F | 654.2 |
| Route 4/10 | 4,305 | F | 95.5 | 4,365 | F | 115.9 | 4,655 | F | 198.7 | 4,695 | Е | 71.0 |
| Route 4/17 | 1,775 | D | 46.6 | 1,700 | D | 48.2 | 1,790 | D | 40.1 | 1,775 | Е | 56.2 |
| Route 4/ 4A* | 740 | D | 27.9* | 925 | С | 21.2* | 1,020 | Е | 47.4* | 950 | С | 24.0* |
| Route 7/ 7A* | 1,985 | F | 77.7* | 1,745 | D | 28.3* | 2,325 | F | 174.7* | 2,520 | F | 300.8* |
| Route 8/33
(East) | 3,655 | С | 31.2 | 4,680 | E | 64.3 | 4,220 | D | 45.5 | 4,820 | E | 77.8 |
| Route 8/10 | 6,410 | F | 122.0 | 6,295 | F | 265.3 | 6,890 | F | 177.3 | 7,530 | F | 218.4 |
| Route 10/ 15 | 5,550 | D | 49.7 | 5,585 | F | 197.9 | 6,170 | F | 197.9 | 6,500 | F | 178.1 |
| Route 16/
27A | 2,770 | С | 24.3 | 3,130 | F | 99.9 | 3,490 | С | 31.4 | 4,120 | D | 35.5 |
| Route 16/ 27 | 6,590 | F | 275.1 | 6,970 | F | 587.3 | 8,105 | F | 361.1 | 8,470 | F | 336.6 |
| Route 16/
10A | 6,178 | F | 874.2 | 4,880 | F | 459.9 | 7,085 | F | 582.9 | 7,655 | F | 488.7 |
| Route 17/
4A* | 720 | С | 17.0* | 760 | С | 16.5* | 695 | С | 16.1* | 785 | С | 18.6* |

Screening Analysis Locations – Central Region, Option 8

| | | | No-A | ction | | | | - | Bu | ild | | |
|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | Peak Ho | ur | PM | l Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 26/ 25* | 3,180 | F | 270.1 | 3,495 | F | 369.5 | 5,045 | F | 113.1 | 5,045 | F | 119.3 |
| Route 26/ 15 | 1,680 | F | 134.8* | 1,790 | F | 3450.7* | 3,215 | F | 154.9 | 3,155 | F | 168.2 |
| Route 28/
27A | 2,920 | F | 353.1* | 2,565 | F | 528.0* | 2,765 | С | 31.3 | 3,010 | E | 59.6 |
| Route 1/
Turner Street
(Main Gate) | 3,375 | В | 13.5* | 3,650 | С | 32.4 | 4,780 | С | 32.4 | 5,105 | E | 78.8 |
| Route 15/
Road 1.16 M
east of Route
26 (Second
Gate) | 1,040 | N/A | N/A | 1,010 | С | 22.1* | 1,320 | С | 22.1* | 1,410 | С | 22.6* |
| Route 16/
Sabana
Barrigada | 4,535 | F | **** | 4,960 | D | 48.1 | 4,765 | N/A | N/A | 5,830 | N/A | N/A |
| Route 15/
Fadian Point
Drive | 1,385 | E | 50.0* | 1,625 | E | 44.4* | 1,560 | N/A | N/A | 2,350 | N/A | N/A |

Screening Analysis Locations – Central Region, Option 8

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Screening Analysis Locations – Apra Harbor Region, Option 8

| | | | No-A | ction | | | | · • | Bui | ld | | |
|------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | Peak Hou | ır | PN | / Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/11 | 3,460 | В | 18.8 | 3,615 | С | 26.8 | 3,695 | В | 14.3 | 4,165 | D | 43.3 |
| Route 1/
Polaris Pt | 3,655 | A | 4.3 | 4,680 | A | 6.2 | 3,605 | A | 6.8 | 3,910 | A | 7.5 |
| Route 1/2A | 3,790 | Е | 58.8 | 4,250 | Е | 55.5 | 4,285 | Е | 67.5 | 4,785 | Е | 57.5 |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Screening Analysis Locations – South Region, Option 8

| | | | No-A | ction | | | | | Βι | ıild | | |
|-----------------------|---------------------------------|-----------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|
| | AN | 1 Peak Ho | ur | PM | Peak Ho | our | AM | Peak Ho | bur | PM | Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 5/ 2A | 2,885 | D | 53.0 | 3,115 | С | 22.7 | 3,115 | E | 79.9 | 3,335 | С | 25.9 |
| Route 5/ 17* | 3,655 | D | 28.9* | 4,680 | E | 47.8* | 1,040 | В | 14.8* | 1,100 | Е | 42.4* |
| Route 2/12 | 2,245 | F | 83.1 | 2,200 | С | 25.4 | 2,380 | С | 30.7 | 2,355 | С | 27.0 |
| Route 5/ Harmon Road* | 347 | A | 9.7* | 347 | A | 9.8* | 385 | A | 9.5* | 520 | A | 10.6* |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Appendix B Detailed Results

| Site No. | Existing | No E | Build | Optic | on 1/2 | Opti | on 3 | Opti | on 8 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Sile No. | dCR | d | CR | d | CR | d | R | dC | R |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 1.07E-05 | 7.43E-06 | 5.42E-06 | 9.02E-06 | 6.42E-06 | 9.78E-06 | 6.31E-06 | 9.93E-06 | 5.74E-06 |
| Site 2 | 6.05E-07 | 2.17E-07 | 6.75E-07 | 1.74E-06 | 9.96E-07 | 1.86E-06 | 9.96E-07 | 1.74E-06 | 9.96E-07 |
| Site 3 | 8.68E-06 | 6.96E-06 | 5.54E-06 | 8.51E-06 | 6.11E-06 | 1.03E-05 | 6.05E-06 | 1.05E-05 | 6.35E-06 |
| Site 4 | 1.04E-05 | 5.95E-06 | 4.11E-06 | 6.17E-06 | 4.32E-06 | 6.20E-06 | 4.26E-06 | 5.58E-06 | 4.33E-06 |
| Site 5 | 1.41E-05 | 8.45E-06 | 6.71E-06 | 1.16E-05 | 8.69E-06 | 1.30E-05 | 8.83E-06 | 1.24E-05 | 1.01E-05 |
| Site 6 | 3.86E-06 | 3.19E-06 | 2.20E-06 | 3.54E-06 | 2.47E-06 | 3.47E-06 | 2.39E-06 | 3.58E-06 | 2.48E-06 |
| Site 7 | 5.73E-06 | 6.43E-06 | 3.49E-06 | 5.61E-06 | 3.32E-06 | 5.55E-06 | 3.32E-06 | 5.61E-06 | 3.33E-06 |
| Site 8 | 1.29E-06 | 1.22E-06 | 1.01E-06 | 1.48E-06 | 1.07E-06 | 1.46E-06 | 1.05E-06 | 1.50E-06 | 1.06E-06 |

Table B-1Estimated Cancer Risk at Sidewalk Receptors

Table B-2Estimated Cancer Risk at Actual Receptors

| Site No. | Existing | No E | Build | Optic | on 1/2 | Opti | on 3 | Opti | on 8 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Site NO. | dCR | dCR | | d | CR | dC | R | dC | CR |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 2.49E-06 | 1.97E-06 | 1.43E-06 | 2.37E-06 | 1.46E-06 | 2.43E-06 | 1.52E-06 | 2.35E-06 | 1.54E-06 |
| Site 4 | 5.34E-06 | 2.81E-06 | 1.48E-06 | 2.65E-06 | 1.65E-06 | 3.48E-06 | 2.30E-06 | 3.73E-06 | 2.45E-06 |

 Table B-3

 Estimated Non-Cancer Chronic Hazard Index at Sidewalk Receptors

| Site No. | Existing | No E | Build | Optic | on 1/2 | Opti | on 3 | Opti | on 8 |
|----------|----------|------|-------|-------|--------|------|------|------|------|
| Sile NO. | HQ | Н | Q | н | Q | H | Q | Н | Q |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 1.22 | 0.87 | 0.65 | 1.06 | 0.77 | 1.14 | 0.75 | 1.15 | 0.70 |
| Site 2 | 0.08 | 0.03 | 0.09 | 0.22 | 0.13 | 0.24 | 0.13 | 0.22 | 0.13 |
| Site 3 | 1.06 | 0.83 | 0.66 | 0.21 | 0.72 | 1.21 | 0.72 | 1.21 | 0.75 |
| Site 4 | 1.19 | 0.69 | 0.48 | 0.72 | 0.51 | 0.72 | 0.51 | 0.65 | 0.51 |
| Site 5 | 1.59 | 1.01 | 0.80 | 1.33 | 0.99 | 1.46 | 1.01 | 1.43 | 1.09 |
| Site 6 | 0.47 | 0.38 | 0.27 | 0.42 | 0.30 | 0.41 | 0.29 | 0.42 | 0.30 |
| Site 7 | 0.68 | 0.74 | 0.42 | 0.65 | 0.40 | 0.65 | 0.40 | 0.65 | 0.40 |
| Site 8 | 0.17 | 0.16 | 0.13 | 0.19 | 0.14 | 0.19 | 0.14 | 0.19 | 0.14 |

 Table B-4

 Estimated Non-Cancer Chronic Hazard Index at Actual Receptors

| Site No. | Existing | No E | Build | Optio | on 1/2 | Opti | ion 3 | Option 8 | | |
|----------|----------|------|-------|-------|-----------|------|-------|----------|------|--|
| Sile NO. | HQ | HQ | | Н | IQ | HQ | | HQ | | |
| | | 2014 | 2030 | 2014 | 2014 2030 | | 2030 | 2014 | 2030 | |
| Site 1 | 0.30 | 0.23 | 0.18 | 0.28 | 0.18 | 0.29 | 0.19 | 0.28 | 0.19 | |
| Site 4 | 0.63 | 0.34 | 0.19 | 0.33 | 0.21 | 0.42 | 0.28 | 0.45 | 0.30 | |

 Table B-5

 Estimated Non-Cancer Acute Hazard Index at Sidewalk Receptors

| Site No. | Existing | No E | Build | Optic | on 1/2 | Opti | on 3 | Opti | ion 8 |
|----------|----------|------|-------|-------|--------|------|------|------|-------|
| Sile NO. | HQ | Н | Q | Н | Q | Н | Q | Н | Q |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 1.20 | 0.85 | 0.64 | 1.04 | 0.76 | 1.12 | 0.74 | 1.13 | 0.69 |
| Site 2 | 0.08 | 0.03 | 0.09 | 0.22 | 0.13 | 0.24 | 0.13 | 0.22 | 0.13 |
| Site 3 | 1.04 | 0.82 | 0.65 | 1.01 | 0.72 | 1.19 | 0.71 | 1.19 | 0.74 |
| Site 4 | 1.16 | 0.68 | 0.48 | 0.71 | 0.51 | 0.71 | 0.50 | 0.64 | 0.51 |
| Site 5 | 1.56 | 0.99 | 0.79 | 1.31 | 0.98 | 1.44 | 1.00 | 1.41 | 1.08 |
| Site 6 | 0.46 | 0.38 | 0.27 | 0.41 | 0.29 | 0.40 | 0.28 | 0.41 | 0.29 |
| Site 7 | 0.67 | 0.72 | 0.41 | 0.64 | 0.40 | 0.64 | 0.40 | 0.64 | 0.40 |
| Site 8 | 0.17 | 0.16 | 0.13 | 0.19 | 0.14 | 0.19 | 0.14 | 0.19 | 0.14 |

 Table B-6

 Estimated Non-Cancer Acute Hazard Index at Actual Receptors

| Site No. | Existing | No E | Build | Optio | on 1/2 | Opt | ion 3 | Option 8 | | |
|----------|----------|------|-------|-------|--------|------|-------|----------|------|--|
| Sile NO. | HQ | Н | HQ | | HQ | | HQ | | Q | |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | |
| Site 1 | 0.29 | 0.23 | 0.17 | 0.28 | 0.18 | 0.29 | 0.19 | 0.28 | 0.19 | |
| Site 4 | 0.62 | 0.33 | 0.19 | 0.33 | 0.21 | 0.42 | 0.28 | 0.45 | 0.30 | |

This Page Intentionally Left Blank.

GUAM HAUL ROAD

FINAL

MOBILE SOURCE AIR TOXIC ANALYSIS

June 15, 2010

1.0 Introduction

The relocation of 8,000 Marines and their families from Okinawa to Guam by 2014 is expected to have a significant impact on the local roads on Guam. Project-related changes in roadway volumes as a result of the Guam Haul Road Project could affect local air quality conditions near the affected roadways. The result of the air quality analyses conducted for the Environmental Impact Statement (EIS) for this project is that the proposed project alternatives would not cause or exacerbate a violation of an air quality standard. In addition, while the EIS qualitatively addressed the potential affects of project-related changes on local mobile source air toxic (MSAT) concentrations (as per current FHWA guidance), the United States Environmental Protection Agency (EPA) and the Department of Defense (DOD) requested that a quantitative (screening-level) MSAT dispersion modeling analysis be conducted to determine whether these changes would be acceptable.

2.0 Air Toxics

Controlling air toxic emissions became a national priority with the passage of the Clean Air Act Amendments (CAAA) of 1990, whereby Congress mandated that the U.S. Environmental Protection Agency (EPA) regulate 188 air toxics, also known as hazardous air pollutants. The EPA has assessed this expansive list in their latest rule on the Control of Hazardous Air Pollutants from Mobile Sources (Federal Register, Vol. 72, No. 37, page 8430, February 26, 2007) and identified a group of 93 compounds emitted from mobile sources that are listed in their Integrated Risk Information System (IRIS) (http://www.epa.gov/ncea/iris/index.html). In addition, EPA identified seven compounds with significant contributions from mobile sources that are among the national and regional-scale cancer risk drivers from their 1999 National Air Toxics Assessment (NATA) (http://www.epa.gov/ttn/atw/nata1999/). These are acrolein, benzene, 1,3-butadiene, diesel particulate matter plus diesel exhaust organic gases (diesel PM), formaldehyde, naphthalene, and polycyclic organic matter. While FHWA considers these the priority mobile source air toxics, the list is subject to change and may be adjusted in consideration of future EPA rules.

As part of the National Environmental Policy Act (NEPA), EISs require review and evaluation of air toxics, as they could affect the quality of the human environment. For these analyses, the FHWA developed a tiered approach in their September 30, 2009 Interim Guidance Update on Mobile Source Air Toxic Analyses (MSAT) in NEPA documents, which includes the following three levels of analysis:

- 1. No analysis for projects with no potential for meaningful MSAT effects;
- 2. Qualitative analysis for projects with low potential MSAT effects; or
- 3. Quantitative analysis to differentiate alternatives for projects with higher potential MSAT effects.

Using this methodology, an initial MSAT analysis for this project indicated that it would have a low potential for MSAT effects. However, a quantitative MSAT analysis was requested for this project based on the methodology described in the research report entitled, "Analyzing, Documenting, and Communicating the Impacts of Mobile Source Air Toxic Emissions in the NEPA Process" (American Association of State Highway and Transportation Officials (AASHTO) 2007).

3.0 Approach

The analysis approach was developed based on available project information, potential community impact, and the public's level of concern. Not only were the impacts of the project on localized MSAT levels raised as a concern with this project, but several intersections in the project area under the Build alternatives are projected to have Annual Average Daily Traffic (AADTs) over the 40,000 threshold specified in the AASHTO report.

As a result, a screening-level MSAT dispersion modeling analysis was conducted based on the procedures provided in Appendix C of the AASHTO report to estimate whether the incremental health-related risk associated with the proposed project would exceed the following thresholds:

- A maximum total incremental carcinogenic risk from the exposure to all identified pollutants of 10 in a million (i.e., 10 x 10⁻⁶); and
- A maximum total incremental non-carcinogenic Hazard Index risk from the exposure to all identified pollutants of 1.

The analysis has focused on the potential impacts of operational emissions rather than construction phase emissions, because the health-related risks, if any, associated with this project would primarily be the result of long-term exposure. This is because the roadway construction phase of this project is temporary (i.e., less than 5 years) and will be occurring at any given location for a relatively short period of time. Therefore, this analysis has focused on the long-term operational impacts of the project.

The following tasks were conducted for the dispersion modeling analysis:

- Local microscale sites (congested intersections) were selected for analysis.
- MSAT emission factors were estimated using EPA's MOBILE6.2 model (Note: input parameters to accurately model MSAT were determined through consultation with FHWA and EPA).
- CAL3QHCR dispersion modeling was conducted using worst case meteorology to estimate 1-hour concentrations of each MSAT, which were used to estimate acute (short-term) impacts. These 1-hour values were then converted, using conservative traffic and meteorological persistence factors, to annual values in order to estimate annual impacts.

Diesel PM was not quantitatively considered in the screening-level dispersion modeling analysis because of the significant limitations of the MOBILE6.2 model noted by the USEPA in the 2006 Conformity Rule (71 FR 12498):

"We continue to believe that appropriate tools and guidance are necessary to ensure credible and meaningful PM2.5 and PM10 hot-spot analyses. Before such analyses can be performed, technical limitations in applying existing motor vehicle emission factor models must be addressed, and proper federal guidance for using dispersion models for PM hotspot analysis must be issued. With the release of MOBILE6.2, state and local transportation agencies now have an approved model for estimating regional PM2.5 and PM10 emission factors in SIP [State Implementation Plan] inventories and regional emissions analyses for transportation conformity. However, MOBILE6.2 has significant limitations that make it unsatisfactory for use in microscale analysis of PM2.5 and PM10 emissions as necessary for quantitative hot-spot analysis."

Federal guidance for using dispersion models for PM hotspot analyses has not been issued. As a result, a qualitative analysis of diesel PM was completed based on FHWA/USEPA's March 29, 2006 joint direction *Transportation Conformity Guidance for Qualitative Hot-spot Analyses in PM*_{2.5} and PM₁₀ Nonattainment and Maintenance Areas (EPA420-B-06-902).

4.0 MSAT Considered

The seven priority MSAT compounds considered were:

- Acrolein, benzene, 1,3-butadiene, formaldehyde, and naphthalene were analyzed quantitatively;
- Polycyclic organic matter (POM) was considered as being comprised of the following compounds, which were quantitatively analyzed on a pollutant-by pollutant basis:
 - acenaphthene acenaphylene anthracene benzo(g,h,i) perylene benzo[b]fluoranthene benzo[k]fluoranthene benz[a]anthracene benzo[a]pyrene
- chrysene debenz[a,h]anthracene fluoranthene fluorene ideno[1,2,3-cd]pyrene phenanthrene, and pyrene
- Diesel PM was analyzed qualitatively.

Table 1 presents each of the MSAT compounds considered, together with their applicable health guideline values. As shown, two of these compounds – acenaphthylene and benzo(g,h,i) perylene – have no health guideline values and, therefore, were not included in the screening-level dispersion modeling analysis.

| MSAT | CAS No. ⁽¹⁾ | Toxicity | AIEC ⁽²⁾
(1-hour
Values)
(ug/m ³) | RfC ⁽³⁾
(Lifetime
Exposure
Values)
(ug/m ³) | URF
(Unit Risk
Factors)
(ug/m ³) ⁻¹ |
|------------------------|------------------------|--------------------------------|---|--|---|
| Acrolein | 107-02-8 | non-carcinogen | 0.19 | 0.02 | |
| Benzene | 71-43-2 | carcinogen &
non-carcinogen | 1,300 | 30 | 7.8E-06 ⁽⁴⁾ |
| 1,3-Butadiene | 106-99-0 | carcinogen &
non-carcinogen | | 2.3 | 3.0E-05 |
| Diesel PM | - | carcinogen &
non-carcinogen | | 5.0 ⁽⁵⁾ | (6) |
| Formaldehyde | 50-00-0 | carcinogen & non-carcinogen | 94 | 9.8 | 1.3E-05 |
| Naphthalene | 91-20-3 | non-carcinogen | 75,000 | 3.0 | |
| | POM (Polyc | yclic Organic Matte | r) constituents: | | |
| Acenaphthylene | 208-24-2 | non-carcinogen | | | |
| Acenaphthene | 83-32-9 | non-carcinogen | 1300 | 210 | |
| Anthracene | 120-12-7 | non-carcinogen | 600 | 1,000 | |
| Benzo(g,h,i) perylene | 191-24-2 | non-carcinogen | | | |
| Benzo[b]fluoranthene | 205-99-2 | carcinogen | 600 | | 1.1E-04 |
| Benzo[k]fluoranthene | 207-08-9 | carcinogen | 600 | | 1.1E-04 |
| Benz[a]anthracene | 56-55-3 | carcinogen | 300 | | 1.1E-04 |
| Benzo[a]pyrene | 50-32-8 | carcinogen | 600 | | 1.1E-03 |
| Chrysene | 218-01-9 | carcinogen | 600 | | 1.1E-05 |
| Dibenzo[a,h]anthracene | 53-70-3 | carcinogen | 30,000 | | 1.2E-03 |
| Fluoranthene | 206-44-0 | non-carcinogen | 15 | 140 | |
| Fluorene | 86-73-7 | non-carcinogen | 11,560 | 140 | |
| Ideno[1,2,3-cd]pyrene | 193-39-5 | carcinogen | 500 | | 1.1E-04 |
| Phenanthrene | 85-01-8 | non-carcinogen | 1.000 | | |
| Pyrene
Notes: | 129-00-0 | non-carcinogen | 15,000 | 110 | |

Table 1 – Mobile Source Air Toxics

Notes:

1. CAS Number = unique numerical identifiers for each chemical, elements, compounds, etc.

AIEC = Acute Inhalation Exposure Concentration (as provided by EPA)
 RfC= Reference Concentration (which is a daily exposure during a lifetime).

RfC= Reference Concentration (which is a daily exposure during a lifetime).
 RfC= Reference Concentration (which is a daily exposure during a lifetime).
 The most conservative unit risk factor for benzene (from the range of 2.2E-06 to 7.8E-06) was used.
 In addition, as stated in the USEPA's "Regulatory Impacts Analysis, Control of Hazardous Air Pollutants from Mobile Sources" (EPA420-R-07-002, February 2007): "The Diesel HAD [Health Assessment Document] also briefly summarizes health effects associated with ambient PM and discusses the EPA's annual National Ambient Air Quality Standard (NAAQS) of 15 ug/m³. There is a much more extensive body of human data showing a wide spectrum of adverse health effects associated with exposure to ambient PM, of which diesel exhaust is an important component. The PM2.5 NAAQS is designed to provide protection from the noncancer and premature mortality effects of PM_{2.5} as a whole, of which diesel PM is a constituent".
 According to the USEPA's "Health Assessment Document for Diesel Engine Exhaust" (EPA/60/8-90/057F, May 202, pp 8-16, <u>http://www.epa.gov/isk/basicinformation.htmtp</u>): "an exploratory risk analysis shows that environmental cancer risks possibly range from 10° to nearly 10°, while a consideration of numerous uncertainties and assumptions also indicates that lower risk is possible and zero risk cannot be ruled out. These risk findings are only general indicators of the potential significance of the lung cancer hazard and should not be viewed as a definitive quantitative characterization of risk or be used to estimate an exposure-specific population impact, i.e., estimating numbers of cancer deaths".

5.0 Qualitative Diesel PM Analysis

Absent the appropriate tools and guidance necessary to ensure credible and meaningful quantitative PM hot-spot analyses, a qualitative analysis of diesel PM was conducted. The objective of the analysis is to determine if the proposed project could produce levels in excess of the annual $PM_{2.5}$ NAAQS, which is designed to provide protection from the noncancer and premature mortality effects of $PM_{2.5}$ as a whole, of which diesel PM is a constituent. The 2-step approach was adopted based on the March 10, 2006 Final Rule issued by the USEPA regarding the localized or "hot-spot" analysis of $PM_{2.5}$ (40 CFR Part 93): 1) apply criteria to determine if the project would involve a significant number or significant increase in the number of diesel vehicles and 2) comparing air monitoring values from an area representative of project conditions. As previously discussed, the study area is classified as attainment for $PM_{2.5}$ NAAQS.

The criteria to determine if the project would involve a significant number or significant increase in the number of diesel vehicles were applied and evaluated as follows:

(i) New or expanded highway projects that have a significant number of or significant increase in diesel vehicles.

The average daily traffic (ADT) on the highest volume roadways under all Build options is provided in Tables 2 and 3. Additional ADT information can be found in Appendix A. As detailed in the traffic analysis for the project, truck percentages on all roadways have been estimated to be approximately 10 percent for both the No Build and Build options.

As shown in Table 2, the largest increase in 2014 ADT for the roadways presented is predicted to occur under Options 1, 2 and 2 Constrained on Route 3 at the North Commercial Gate. By applying a 10 percent truck percentage, the largest daily increase of 66,900 vehicles would result in a daily increase of 6,690 trucks. As shown in Table 3, the largest increase in 2030 ADT for the roadways presented is predicted to occur under Option 1, 2 and 2 Constrained on Route 3 at the North Commercial Gate. By applying a 10 percent truck percentage, the largest daily increase of 45,900 vehicles would result in a daily increase of 45,900 vehicles would result in a daily increase of 45,900 vehicles would result in a daily increase of 4,590 trucks. Both of these levels are substantially below the USEPA example for a new or expanded highway project of 125,000 AADT with 8 percent trucks, which would translate to an increase of 10,000 trucks. Thus, the project is not considered to be an expanded highway with a significant number of or significant increase in diesel vehicles.

| Analysis | Desta | | Option 1
Const | | Opt | tion 3 | Option 8 | | |
|----------------|--|-------------|-------------------|-------------|--------|-------------|----------|-------------|--|
| Region | Roadway | No
Build | Build | %
Change | Build | %
Change | Build | %
Change | |
| North | Route 3 and
North
Commercial
Gate | 0 | 66,900 | NA | 24,300 | NA | 65,500 | NA | |
| | Route 3
South of
Route 28 | 11,499 | 53,100 | 362% | 56,600 | 392% | 57,000 | 396% | |
| | Route 1 | 79,337 | 100,300 | 26% | 97,400 | 23% | 100,500 | 27% | |
| Central | Route 8 | 48,221 | 65,600 | 36 % | 68,000 | 41% | 66,800 | 39% | |
| | Route 18 | 49,196 | 74,000 | 50% | 92,800 | 89% | 80,100 | 63% | |
| Apra
Harbor | Route 1 near
Route 18 | 46,407 | 49,800 | 7% | 49,800 | 7% | 49,800 | 7% | |
| South | Route 4 | 15,833 | 17,600 | 11% | 17,600 | 11% | 17,600 | 11% | |

Table 2 – 2014 Average Daily Traffic for Major Roadways

 Table 3 – 2030 Average Daily Traffic for Major Roadways

| Analysis | Deeduuru | | Option 1
Const | - | Opt | tion 3 | Option 8 | | |
|----------------|--|-------------|-------------------|-------------|--------|-------------|----------|-------------|--|
| Region | Roadway | No
Build | Build | %
Change | Build | %
Change | Build | %
Change | |
| North | Route 3 and
North
Commercial
Gate | 0 | 45,900 | NA | 18,800 | NA | 45,200 | NA | |
| | Route 3
South of
Route 28 | 12,070 | 34,000 | 182% | 43,000 | 256% | 25,000 | 396% | |
| | Route 1 | 84,935 | 95,600 | 12% | 93,100 | 10% | 95,300 | 27% | |
| Central | Route 8 | 53,248 | 58,600 | 10 % | 60,400 | 13% | 59,700 | 39% | |
| | Route 18 | 59,980 | 70,500 | 18% | 89,200 | 49% | 75,100 | 63% | |
| Apra
Harbor | Route 1 near
Route 18 | 41,142 | 48,300 | 17% | 48,400 | 18% | 48,600 | 18% | |
| South | Route 4 | 21,504 | 20,100 | -7% | 20,000 | -7% | 19,900 | -7% | |

(ii) Projects affecting intersections that are at LOS D, E, or F with a significant number of diesel vehicles, or those that will change to LOS D, E, or F because of increased traffic volumes from a significant number of diesel vehicles related to the project.

The proposed project is expected to affect intersections with a LOS of D, E or F. However, the effect on LOS due to the project options is due to an overall increase in volumes rather than a significant increase in diesel vehicles. The LOS for intersections throughout the study area is detailed in Appendix A of this report.

(iii) New bus and rail terminals and transfer points that have a significant number of diesel vehicles congregating at a single location.

The project does not involve bus and rail terminals.

(iv) Expanded bus and rail terminals and transfer points that significantly increase the number of diesel vehicles congregating at a single location.

The project does not involve bus and rail terminals.

(v) Projects in or affecting locations, areas, or categories of sites which are identified in the PM_{2.5} applicable implementation plan or implementation plan submission, as appropriate, as sites of violation or possible violation.

The area is classified as attainment of the PM2.5 NAAQS. There is no applicable implementation plan or implementation plan submission.

Based on the above analysis, it is determined that the project will not involve a significant number or significant increase in the number of diesel vehicles and is not a project of air quality concern with respect to $PM_{2.5}$.

Guam does not currently have any ambient air quality monitoring locations for $PM_{2.5}$. The closest representative monitor to the study area, based on meteorological conditions, is located in Hawaii. As shown in Figure 1, Hawaii has not had a violation of the applicable $PM_{2.5}$ standard in the last three years of certified data (2006-2008). The values in Hawaii can be used as a general indicator of the range of values expected in Guam, although there are some notable differences between the locations – the population is greater in Hawaii than in Guam, roadway VMTs are approximately 3 times higher in Hawaii than in Guam, and high sulfur fuel is not used in the power plants of Hawaii while it is in Guam. The monitored $PM_{2.5}$ values in Hawaii are approximately 50% lower than the applicable standard. Using these values as a conservative estimate of $PM_{2.5}$ levels within the study area under Build conditions, it indicates that the mobile source impacts of the project are not expected to cause a violation of the applicable $PM_{2.5}$ standard, designed in part to provide protection from the noncancer and premature mortality effects of diesel PM.

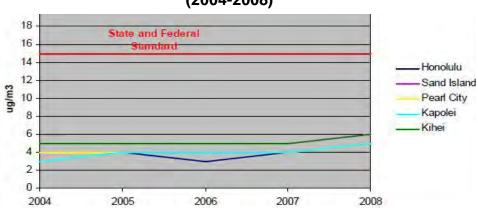


Figure 2 – PM_{2.5} Annual Average Monitored Levels in Hawaii (2004-2008)

6.0 Mobile Source Dispersion Modeling Analysis

Microscale air quality modeling was performed using EPA's mobile source emission factor model (MOBILE6.2) and EPA's CAL3QHC air quality dispersion model to estimate future No Build (without the proposed project) and future Build (with the proposed project) MSAT levels at selected locations in the project area.

Analysis Sites and Receptor Locations

Using a worst case screening approach, analysis locations were chosen based on overall volumes, level of service, and location of project impacts. Site selection is discussed in the EIS for this project and the data used for the site selection is shown in Appendix A. The sites analyzed are:

- 1. Routes 1 & 28
- 2. Routes 9 & AAFB
- 3. Route 1 & Route 8
- 4. Route 4 & 7A
- 5. Route 16 & 27
- 6. Route 5 and 2A
- 7. Routes 1 and 2A

In addition to these locations, an eighth analysis site was added at the location of Route 1 west of Route 30. This location was added because it demonstrated the highest peak hour traffic at a free-flow location. These eight areas have the highest traffic levels within the study area and are anticipated to be the areas with the highest potential of MSAT impact due to the project.

Receptors were conservatively placed on sidewalks as a worst case approach. This is conservative because, as previously mentioned, the risks from MSAT are based on lifetime exposure levels and it is highly unlikely that a sidewalk receptor is representative of a lifetime exposure level. Realistic (actual) receptor locations were placed at analysis sites 1 and 4 to illustrate the drop off of MSAT concentrations with distance from the affected roadways.

Emission Factors

Emission factors were obtained through the use of EPA's MOBILE6.2 Emission Factor program. To determine the emission factors for all of the air toxics examined, the additional hazardous air pollutant data supplied with MOBILE6.2 was utilized. As the exact fuel parameters that characterize the fuel used in Guam were not available,

national average information was applied, as recommended by EPA. These data can be found at EPA's website (<u>http://www.epa.gov/otaq/regs/fuels/rfg/properf/cg-params.htm</u>).

Dispersion Model

EPA's CAL3QHCR model was used to predict MSAT concentrations at the 8 analysis sites. Conservative worst case meteorology and traffic data were used in the analysis.

CAL3QHCR was run for each of the 20 individual MSAT compounds for the AM and PM peak periods for existing conditions and for future No Build and Build conditions (under each of the Build alternatives). The highest concentration for each air toxic compound at each location is reported.

7.0 Risk Characterization

The derived health risk values from the EPA Integrated Risk Information System (IRIS) (<u>http://www.epa.gov/iris/</u>) database were used in this analysis to determine the total risk posed by the release of multiple MSAT. MSAT were considered as both carcinogens and noncarcinogens. Carcinogenic MSAT were evaluated using unit risk factors (URF); non-carcinogenic MSAT were evaluated using the reference concentrations for inhalation exposure (RfC) and/or acute inhalation exposure (AIEC). RfC and AIEC were used to estimate non-carcinogenic health effects of substances that are also carcinogens. The health risk values used in this analysis are provided in Table 1. The incremental threshold values recommended by EPA for this project are 10 per million for cancer risk evaluation and one (1) for the total non-cancer (chronic and acute) hazard indexes.

Carcinogens

Individual lifetime cancer risk through direct inhalation of carcinogen (dCR) was estimated using the following equation (EPA's Human Health Risk Assessment Protocol [HHRAP]), Appendix C, Table C-2-1 2005):

Cancer Risk (dCR) = EC x URF and EC = Ca x EF x ED/AT x 365 days/year

Where:

EC = annual exposure concentrations of compound, $\mu g/m^3$

Ca = annual ambient air concentration of specific pollutant (estimated by the dispersion model), $\mu g/m^3$

URF = compound-specific inhalation unit risk factor in $(\mu g/m^3)$ -1

EF = exposure frequency, days/year (*EPA* recommends to use 350)

ED = exposure duration, *yr* (*EPA* recommends value of 30 for adult resident)

AT = averaging time, yr (assumed by EPA to be 70 years)

Ca values were determined using the equation from Table B-5-1 of HHRAP, compoundspecific emission rate, and Fv (fraction of compound air concentration in vapor phase) of 1. Annual concentrations were derived from CAL3QHCR-estimated 1-hour concentrations using a 0.1 conversion factor.

Once the individual risk of each compound was estimated, these values were summed together to estimate the total cancer risk of all carcinogens together. Incremental changes in cancer risk were estimated for each Build alternative compared to No Build conditions. If the projected change is less than or equal to the ten in one million, the total carcinogenic risk posed by the proposed action is considered to be acceptable.

Non-Carcinogens

Non-cancer chronic inhalation hazard quotients were estimated using the following equation (HHRAP, Appendix C, Table C-2-2):

Non-Cancer Hazard Index = EC x 0.001/RfC and EC = Ca x EF x ED/AT x 365 days/year

Where:

 $EC = exposure \ concentrations \ of \ compound, \ \mu g/m^3$

Ca = total ambient air concentration of specific pollutant (estimated by the dispersion model), $\mu g/m^3$

RfC = reference dose concentration, established by the EPA, mg/m^3

EF = exposure frequency, days/year (*EPA* recommends to use 350)

ED = exposure duration, yr (EPA recommends value of 30 for adult resident)

AT = averaging time, yr (EPA recommends value of 30 for non-carcinogens)

0.001 = units conversion factor, mg/µg

For the acute short-term inhalation exposure the following equation was used (HHRAP, Appendix C, Table C-2-3):

Acute Hazard Index = $C_{acute} \times 0.001/AIEC$

Where:

 $C_{acute} = 1$ -hour air concentration (estimated by the dispersion model), $\mu g/m3$

AIEC = 1-hour acute inhalation exposure guideline value, mg/m3

 $0.001 = units \ conversion \ factor, \ mg/\mu g$

The maximum estimated 1-hour concentration for each MSAT was estimated directly from the CAL3QHCR model. Once the chronic or acute hazard quotient of each

compound was estimated, these values were summed together to arrive with total chronic or acute Hazard Index. Potential non-cancer impacts of the proposed action were estimated by comparing the total hazard index of each Build alternative to No Build conditions. If the incremental change in the total hazard index is less than or equal to one, the potential non-carcinogenic chronic or acute risk impact associated with the proposed action is considered acceptable.

8.0 Receptor Sites

Two types of receptors were considered – sidewalk receptors and property line receptors (actual).

<u>Sidewalk Receptors</u> -- these are located at mid-sidewalk near each intersection, and were selected following EPA's *Guideline for Modeling Carbon Monoxide from Roadway Intersections*. The results obtained at these locations are considered to be very conservative for a chronic or lifetime exposure assessment because people are not exposed to the concentrations estimated at these locations for extended periods of time.

<u>Actual Receptors</u> – the following sensitive land uses were identified near two of the eight analysis sites:

- The Family Baptist Church, located approximately 150 feet from the edge of the roadways considered for Site 1; and
- The Academy of Our Lady of Guam, located approximately 25 feet from the edge of the roadways considered for Site 4.

Analysis sites and receptor locations are shown in Appendix B. The results obtained at these locations are considered to be more representative of the health risk associated with this project because people at these locations may be exposed to the estimated concentrations for extended periods of time.

9.0 Results

The screening-level MSAT dispersion modeling analysis was conducted using both sidewalk and actual receptors. The results of this analysis are shown in Tables 4 and 5, which present the estimated cancer risk increases/decreases at sidewalk and actual receptors between No Build and Build conditions. The estimated non-cancer total chronic hazard index increases/decreases are presented in Tables 6 and 7, and the estimated non-cancer acute hazard index increases/decreases are presented in Tables 8 and 9. For more detailed results, estimated cancer risks under No Build and Build conditions at sidewalk and actual receptors are presented in Tables C-1 and C-2 in Appendix C. The estimated non-cancer total chronic hazard indexes are presented in Tables C-3 and C-4 in the Appendix, and the estimated non-cancer acute hazard indexes are presented in Tables C-5 and C-6. Sample input and output CAL3QHCR files are also included in Appendix C.

The following are the results of the MSAT analysis:

- 1. Maximum estimated increases in cancer risk at any of the receptors due to the project are all less than threshold criteria of 10 in a million. Therefore, the project impacts of all carcinogenic MSAT are considered acceptable; and
- 2. Maximum estimated increases in the total chronic hazard index at any of the receptors due to the project are all less than the threshold limit of 1. Therefore, the project impacts of all non-carcinogenic MSAT are considered acceptable;

Based on these results, the proposed action is not anticipated to have adverse MSAT impacts. Additionally, as shown in the appendix:

- Future cancer and non-cancer risks, under both No Build and Build conditions, are less than existing risks in most cases; and
- Cancer and non-cancer risks at the actual receptors are substantially lower than the values estimated at the sidewalk receptors.

| Site No. | Optic | Option 1/2 | | Option 3 | | on 8 | | on 2
rained | Cancer Risk
Threshold | |
|----------|-------|------------|-------|----------|-------|-------|-------|----------------|--------------------------|--|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | mesnou | |
| Site 1 | 1.60 | 1.00 | 2.36 | 0.89 | 2.50 | 0.32 | 1.14 | 0.51 | | |
| Site 2 | 0.97 | 0.26 | 0.97 | 0.26 | 0.96 | 0.26 | 0.99 | 0.26 | | |
| Site 3 | 1.64 | 0.78 | 3.54 | 1.01 | 3.56 | 1.31 | 2.60 | 1.21 | | |
| Site 4 | 1.22 | -0.09 | 1.24 | -0.15 | 0.63 | -0.08 | 1.56 | 0.45 | 10 | |
| Site 5 | 2.97 | 1.99 | 4.31 | 2.12 | 3.70 | 3.37 | 1.58 | 0.69 | | |
| Site 6 | 0.46 | 0.08 | 0.39 | 0.00 | 0.50 | 0.09 | 0.46 | 0.08 | | |
| Site 7 | -0.82 | -0.06 | -0.88 | -0.06 | -0.82 | -0.06 | -0.82 | -0.06 | | |
| Site 8 | 0.26 | 0.06 | 0.24 | 0.04 | 0.29 | 0.05 | 0.26 | 0.06 | | |

 Table 4

 Estimated Cancer Risk Increase/Decrease at Sidewalk Receptors (x10⁻⁶)

 Table 5

 Estimated Cancer Risk Increase/Decrease at Actual Receptors (x10⁻⁶)

| Site No. | Option 1/2 | | Option 3 | | Opti | on 8 | Opti
Const | Cancer Risk
Threshold | |
|----------|------------|-------|----------|------|------|------|---------------|--------------------------|-----------|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | Intodioid |
| Site 1 | 0.41 | 0.03 | 0.46 | 0.09 | 0.39 | 0.11 | 0.29 | 0.14 | 10 |
| Site 4 | 0.66 | -0.01 | 1.49 | 0.64 | 1.74 | 0.80 | 0.81 | 0.27 | 10 |

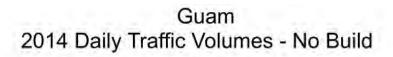
EPA Option 1/2 Option 3 Option 8 **Option 2 Constrained** Site No. Hazard Index 2014 2030 2014 2030 2014 2030 2014 2030 Site 1 0.19 0.12 0.27 0.11 0.28 0.05 0.15 0.07 Site 2 0.18 0.07 0.18 0.07 0.17 0.07 0.23 0.23 0.38 0.31 0.27 Site 3 0.19 0.10 0.09 0.13 0.11 0.62 0.55 0.00 0.00 0.62 -0.01 0.66 0.01 Site 4 1 Site 5 0.32 0.20 0.46 0.22 0.42 0.29 0.20 0.09 Site 6 0.05 0.01 0.05 0.00 0.06 0.01 0.05 0.01 Site 7 -0.09 0.00 -0.09 0.00 -0.09 0.00 -0.09 0.00 Site 8 0.03 0.01 0.03 0.01 0.04 0.01 0.03 0.01

Table 6 Estimated Non-Cancer Chronic Hazard Index Increase/Decrease at Sidewalk Receptors

 Table 7

 Estimated Non-Cancer Chronic Hazard Index Increase/Decrease at Actual Receptors

| Site No. | Option 1/2 | | Option 3 | | Opti | on 8 | Option 2 C | EPA
Hazard Index | |
|----------|------------|------|----------|------|------|------|------------|---------------------|---|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | |
| Site 1 | 0.05 | 0.00 | 0.06 | 0.01 | 0.05 | 0.01 | 0.04 | 0.02 | 1 |
| Site 4 | 0.08 | 0.00 | 0.17 | 0.07 | 0.20 | 0.09 | 0.10 | 0.01 | |


| Site No. | Optic | Option 1/2 | | on 3 | Opti | on 8 | Option 2 C | Option 2 Constrained | | |
|----------|-----------|------------|-----------|-------|-----------|------|------------|----------------------|---|--|
| | 2014 2030 | | 2014 2030 | | 2014 2030 | | 2014 | 2014 2030 | | |
| Site 1 | 0.19 | 0.12 | 0.27 | 0.11 | 0.28 | 0.05 | 0.82 | 0.58 | | |
| Site 2 | 0.18 | 0.08 | 0.18 | 0.08 | 0.18 | 0.08 | 0.24 | 0.24 | | |
| Site 3 | 0.19 | 0.10 | 0.37 | 0.09 | 0.36 | 0.13 | 0.26 | 0.11 | | |
| Site 4 | 0.66 | 0.00 | 0.67 | -0.01 | 0.60 | 0.00 | 0.70 | 0.01 | 1 | |
| Site 5 | 0.32 | 0.19 | 0.44 | 0.21 | 0.41 | 0.29 | 0.20 | 0.09 | | |
| Site 6 | 0.05 | 0.01 | 0.05 | 0.00 | 0.06 | 0.01 | 0.36 | 0.28 | | |
| Site 7 | -0.08 | 0.00 | -0.09 | 0.00 | -0.08 | 0.00 | -0.08 | 0.00 | | |
| Site 8 | 0.03 | 0.01 | 0.03 | 0.00 | 0.04 | 0.01 | 0.03 | 0.01 | | |

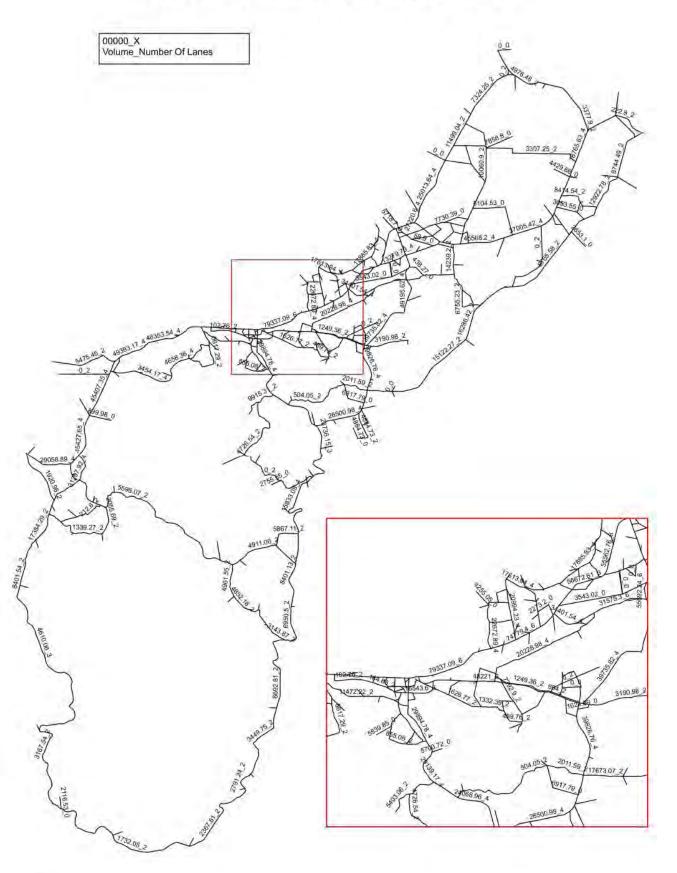
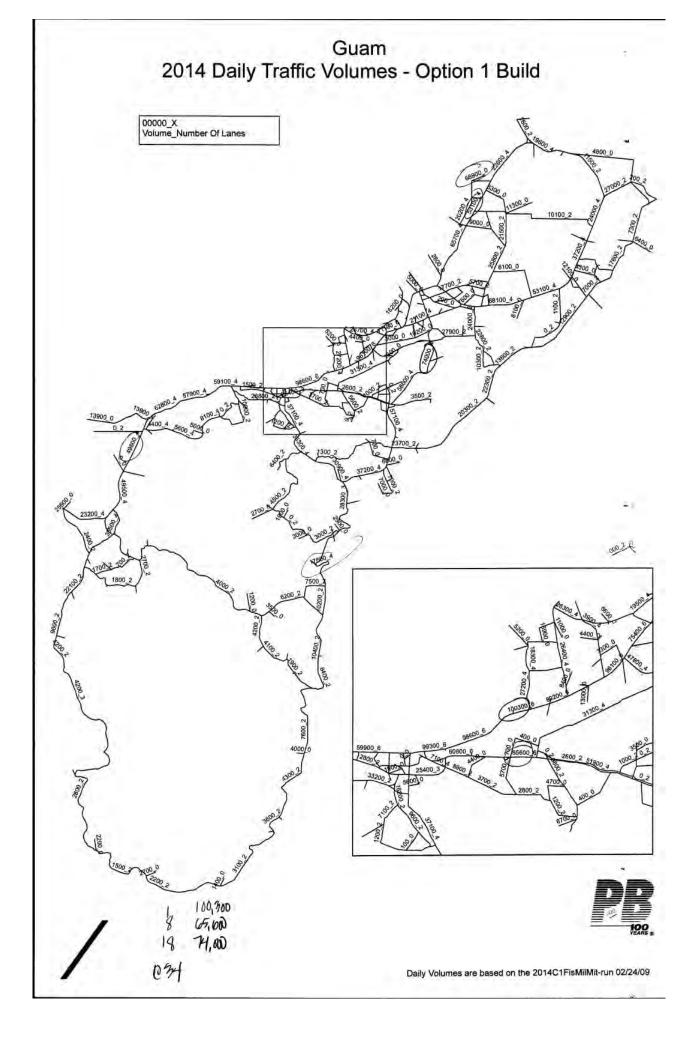
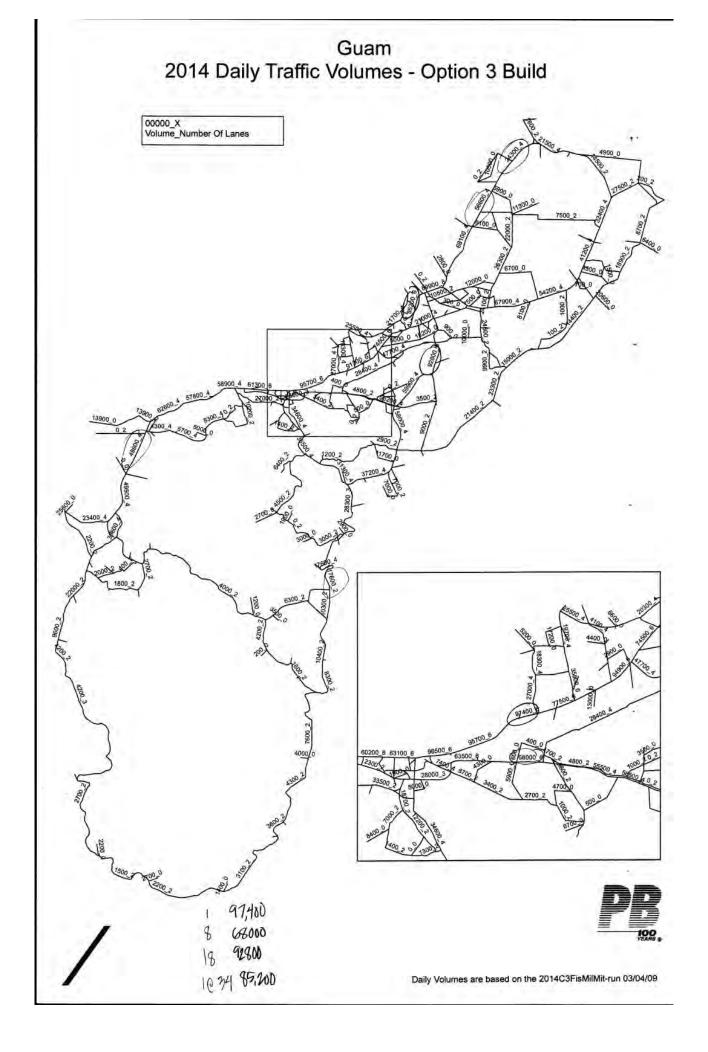
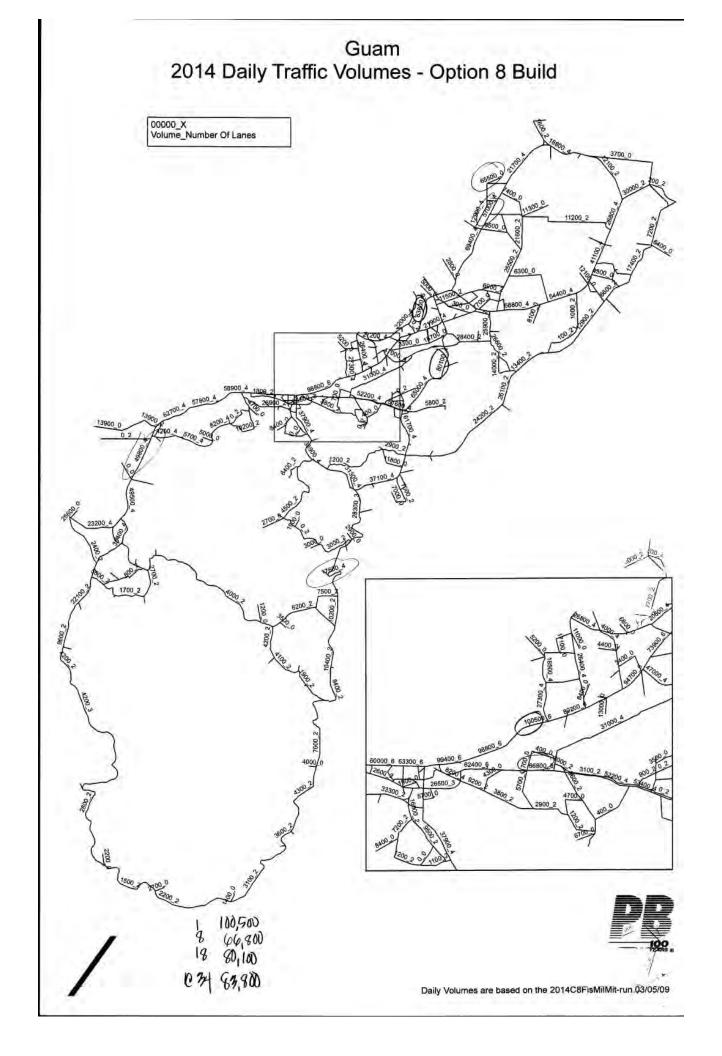
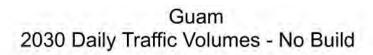

Table 8 Estimated Non-Cancer Acute Hazard Index Increase/Decrease at Sidewalk Receptors

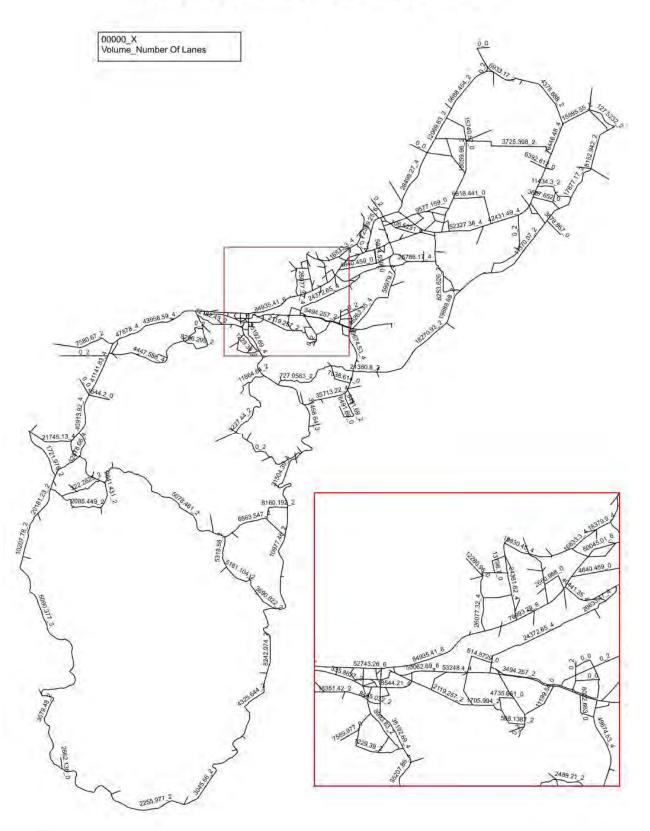
Table 9Estimated Non-Cancer Acute Hazard Index Increase/Decrease at Actual
Receptors

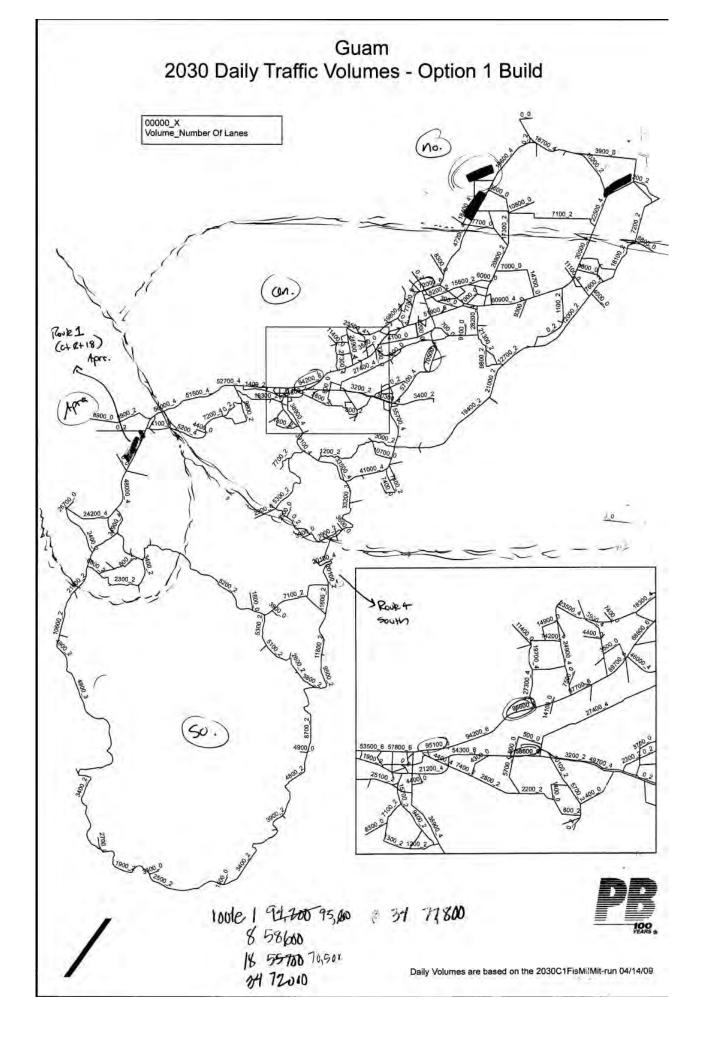

| Site No. | Option 1/2 | | Option 3 | | Opti | ion 8 | Option 2 C | EPA
Hazard Index | |
|----------|------------|------|----------|------|------|-------|------------|---------------------|---|
| | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | |
| Site 1 | 0.05 | 0.01 | 0.06 | 0.01 | 0.05 | 0.01 | 0.04 | 0.01 | 1 |
| Site 4 | 0.08 | 0.00 | 0.17 | 0.07 | 0.20 | 0.09 | 0.10 | 0.01 | |

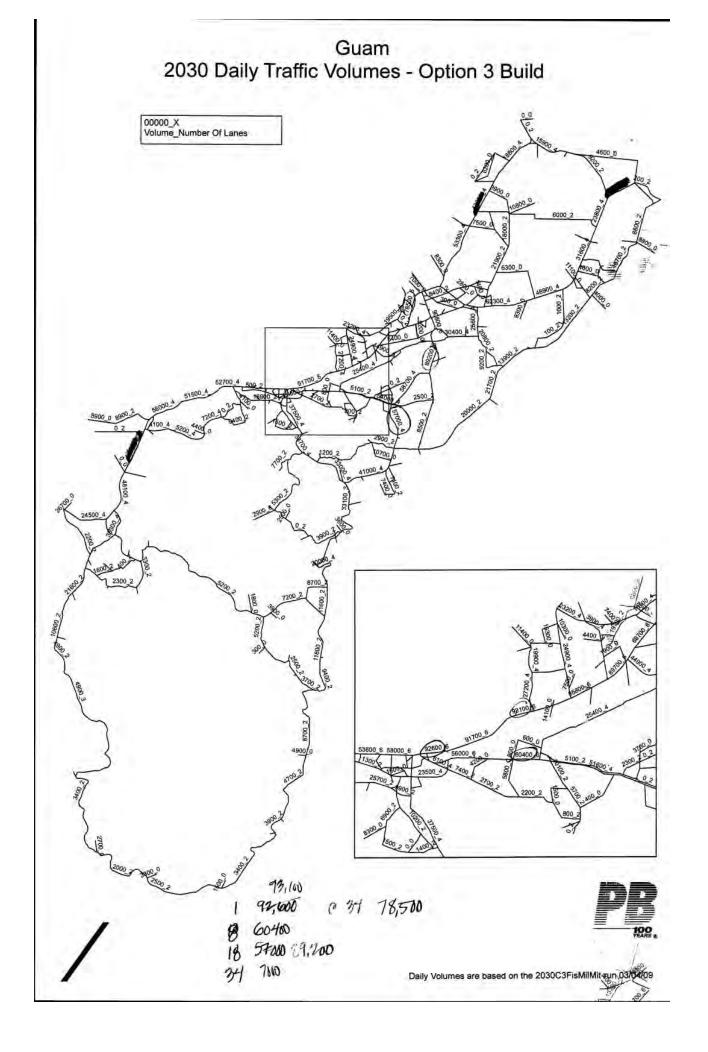

Appendix A Average Daily Traffic and Intersection Data

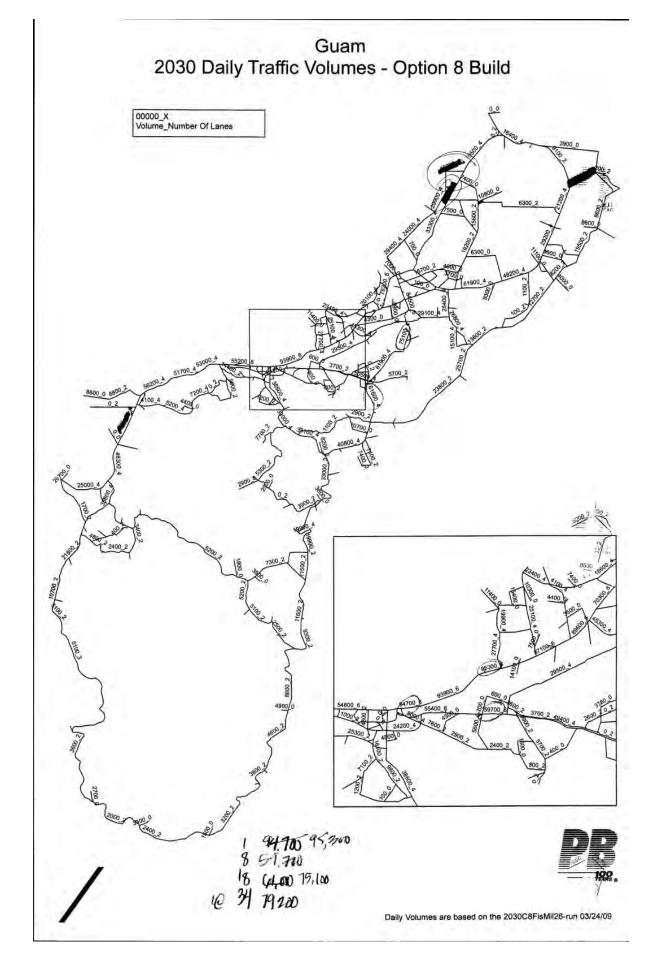












INTERSECTION SCREENING TABLES OPTIONS 1/2

Screening Analysis Locations – North Region, Options 1/2

| | | | No-A | ction | | | | | Βι | ıild | | |
|--|---------------------------------|--------|---|---------------------------------|--------|---|---------------------------------|--------|---|---------------------------------|--------|---|
| | AM Pe | eak Ho | ur | PM Pe | eak Ho | our | AM Pe | eak Ho | our | PM Pe | eak Ho | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per
vehicle) |
| Route 1/9 | 1,565 | В | 15.8 | 1,650 | В | 14.6 | 2,485 | С | 22.5 | 3,525 | D | 52.2 |
| Route 1/29 | 3,675 | F | 87.6 | 2,970 | E | 60.5 | 3,550 | E | 65.5 | 3,400 | E | 67.7 |
| Route 1/28 | 5,700 | F | 226.2 | 6,050 | F | 157.7 | 6,600 | F | 216.8 | 7,050 | F | 104.5 |
| Route 3/3A | 875 | А | 9.5* | 880 | В | 10.1* | 910 | В | 11.6* | 2,660 | F | 79.0* |
| Route 3/28 | 1,904 | В | 17.8 | 2,070 | С | 21.4 | 3,990 | С | 26.0 | 4,210 | D | 36.9 |
| Route 15/29 | 1,760 | F | **** | 1,575 | F | 683.5* | 1,860 | С | 27.7 | 1,830 | С | 25.4 |
| Route 3/ North
(Commercial) Gate** | 1,010 | N/A | N/A | 970 | N/A | N/A | 2,455 | С | 29.7 | 2,855 | E | 60.4 |
| Route 3/ South (Main)
Gate** | 1,260 | N/A | N/A | 1,200 | N/A | N/A | 3,555 | С | 27.9 | 4,295 | D | 43.8 |
| Route 3/ Control Tree
Drive (Residential)
Gate | 1,300 | F | 122.3* | 2,745 | F | 74.2* | 4,085 | С | 32.6 | 4,510 | С | 20.9 |
| Route 9/ Andersen
AFB North Gate** | 1,480 | Е | 39.5* | 1,385 | D | 35.1* | 2,035 | F | **** | 2,160 | F | **** |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

| | | | No-A | ction | | | Build | | | | | | |
|---------------------------------------|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|--|
| | AM | Peak Hou | ır | PM | Peak Ho | ur | AM | Peak Ho | bur | PM | Peak Ho | our | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | |
| Route 1/26 | 5,910 | Е | 75.8 | 6,060 | F | 229.8 | 6,865 | Е | 75.8 | 7,295 | F | 156.6 | |
| Route 1/27 | 5,950 | F | 157.2 | 5,875 | F | 533.7 | 6,860 | F | 137.4 | 7,605 | F | 374.3 | |
| Route 1/ 27A | 3,195 | Е | 67.2 | 3,420 | F | 189.5 | 3,925 | D | 44.4 | 4,340 | Е | 75.7 | |
| Route 1/3 | 5,055 | F | 158.4 | 5,400 | F | 306.9 | 4,970 | D | 48.5 | 5,845 | D | 50.6 | |
| Route 1/16 | 5,905 | D | 52.2 | 6,410 | F | 305.5 | 6,950 | Е | 65.3 | 7,490 | F | 87.5 | |
| Route 1/14
(Upper Tumon) | 5,455 | F | 82.8 | 6,165 | F | 361.2 | 5,900 | E | 68.0 | 6,535 | F | 82.0 | |
| Route 1/ 14A
(Opposite K-
Mart) | 5,550 | F | 124.1 | 6,170 | F | 259.9 | 5,985 | F | 112.2 | 6,790 | F | 131.5 | |
| Route 1/ 10A | 6,935 | F | 82.9 | 7,055 | F | 117.2 | 7,485 | F | 118.1 | 7,695 | F | 102.0 | |
| Route 1/ 14B | 6,120 | Е | 60.5 | 6,485 | F | 91.8 | 6,485 | F | 83.9 | 6,775 | Е | 78.2 | |
| Route 1/14 | 6,715 | F | 93.3 | 7,705 | F | 212.5 | 7,355 | F | 182.5 | 8,455 | F | 275.1 | |
| Route 1/30 | 6,355 | F | 273.9 | 6,975 | F | 440.9 | 6,825 | F | 134.7 | 7,385 | F | 267.2 | |
| Route 1/8 | 7,255 | F | 107.6 | 7,915 | F | 94.1 | 8,360 | F | 97.6 | 8,970 | F | 127.5 | |
| Route 1/4 | 7,535 | D | 43.4 | 7,470 | D | 38.6 | 6,665 | С | 32.4 | 8,775 | F | 140.2 | |

| | | | Screening | g Analysis Lo | ocations | s – Centra | l Region, Op | otions 1 | /2 | | | |
|-------------------------|---------------------------------|---------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|---------|--|
| | | | No-A | ction | | | | | Βι | uild | | |
| | AM | Peak Ho | ur | PM | Peak Ho | ur | AM | Peak Ho | bur | PM | Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 1/6
(Adelup) | 3,770 | С | 24.1 | 5,125 | F | 91.7 | 4,255 | D | 40.6 | 6,240 | Е | 61.8 |
| Route 1/6
(Westerly) | 3,080 | A | 7.8 | 3,430 | В | 15.6 | 3,510 | В | 18.4 | 3,905 | С | 22.0 |
| Route 4/7A | 5,040 | F | 298.8 | 4,855 | F | 196.9 | 4,765 | F | 607.3 | 5,515 | F | 534.1 |
| Route 4/10 | 4,305 | F | 95.5 | 4,365 | F | 115.9 | 4,665 | F | 199.5 | 4,705 | Е | 65.1 |
| Route 4/17 | 1,775 | D | 46.6 | 1,700 | D | 48.2 | 1,810 | D | 39.6 | 1,790 | Е | 57.7 |
| Route 4/4A | 740 | D | 27.9* | 925 | С | 21.2* | 1,030 | Е | 49.7* | 1,790 | F | 484.3* |
| Route 7/7A | 1,985 | F | 77.7* | 1,745 | E | 114.5* | 1,935 | D | 29.2* | 2,100 | F | 105.1* |
| Route 8/33 (East) | 3,655 | С | 31.2 | 4,680 | F | 147.3 | 4,315 | D | 54.6 | 4,910 | F | 81.7 |
| Route 8/10 | 6,410 | F | 122.0 | 6,295 | F | 116.5 | 6,435 | F | 96.9 | 7,010 | F | 172.7 |
| Route 10/ 15 | 5,550 | D | 49.7 | 5,585 | F | 101.1 | 6,245 | F | 196.9 | 6,270 | F | 152.3 |
| Route 16/ 27A | 2,770 | С | 24.3 | 3,130 | С | 26.4 | 3,050 | С | 27.4 | 3,680 | С | 34.2 |
| Route 16/ 27 | 6,590 | F | 275.1 | 6,970 | F | 486.4 | 7,665 | F | 345.0 | 7,790 | F | 288.7 |
| Route 16/ 10A | 6,178 | F | 874.2 | 4,880 | F | 208.7 | 5,035 | F | 123.1 | 5,725 | F | 123.5 |
| Route 17/ 4A | 720 | С | 17.0* | 760 | С | 17.9* | 700 | В | 13.6* | 790 | С | 18.7* |
| Route 26/ 25 | 3,180 | F | 270.1 | 3,495 | E | 71.7 | 3,415 | С | 31.2 | 3,930 | D | 41.0 |

| | | | No-A | ction | | | | | Βι | uild | | |
|---|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|
| | AM | Peak Ho | ur | PM | Peak Ho | ur | AM | Peak Ho | our | PM | Peak Ho | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 26/ 15 | 1,680 | F | 134.8* | 1,790 | F | 2494.6* | 2,015 | С | 27.9 | 2,115 | С | 32.1 |
| Route 28/ 27A | 2,920 | F | 353.1* | 2,565 | F | 437.8* | 2,735 | D | 35.6 | 2,640 | D | 36.6 |
| Route 1/ Turner
Street (Main
Gate) | 3,375 | В | 13.5* | 3,650 | F | 458.6* | 4,780 | С | 32.4 | 5,105 | E | 79.1 |
| Route 15/ Road
1.16 M east of
Route 26
(Second Gate)** | 1,040 | N/A | N/A | 1,010 | N/A | N/A | 1,320 | С | 22.1* | 1,410 | С | 22.6* |
| Route 16/
Sabana
Barrigada | 4,535 | F | **** | 4,960 | F | **** | 4,765 | N/A | N/A | 5,150 | N/A | N/A |
| Route 15/ Fadian
Point Drive | 1,385 | Е | 50.0* | 1,625 | E | 44.4* | 1,560 | N/A | N/A | 345 | N/A | N/A |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

| | | | No-A | ction | | • | Build | | | | | | |
|---------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | Peak Hou | r | PM | l Peak Ho | our | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | n LOS | Control
Delay
(seconds
per vehicle) | |
| Route 1/11 | 3,460 | В | 18.8 | 3,615 | С | 26.8 | 3,885 | С | 20.7 | 4,080 | D | 43.5 | |
| Route 1/ Polaris
Point | 3,655 | А | 4.3 | 4,680 | А | 6.2 | 3,420 | A | 8.2 | 3,900 | A | 7.4 | |
| Route 1/2a | 3,790 | E | 58.8 | 4,250 | E | 55.5 | 4,275 | E | 66.8 | 4,780 | Е | 57.2 | |

Screening Analysis Locations – Apra Harbor, Options 1/2

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

| | | 00100 | | | | oouii | nogieni, ep | | 1/ = | | | |
|-------------------------|---------------------------------|--------|---|---------------------------------|--------|---|---------------------------------|--------|---|---------------------------------|--------|---|
| | | | No-A | ction | | | | | Βι | ıild | | |
| | AM Pe | eak Ho | our | PM Pe | eak Ho | our | AM Pe | eak Ho | our | PM Pe | eak Ho | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per
vehicle) |
| Route 5/ 2A | 2,885 | D | 53.0 | 3,115 | С | 22.7 | 3,280 | F | 96.3 | 3,335 | С | 26.2 |
| Route 5/17 | 3,655 | D | 28.9* | 4,680 | Е | 47.8* | 1,035 | F | 56.8* | 1,105 | F | 149.6* |
| Route 2/12 | 2,245 | F | 83.1 | 2,200 | С | 25.4 | 2,380 | С | 27.8 | 2,350 | С | 27.1 |
| Route 5/ Harmon
Road | 347 | А | 9.7* | 347 | А | 9.8* | 385 | А | 9.5* | 520 | А | 10.6* |

Screening Analysis Locations – South Region, Options 1/2

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

INTERSECTION SCREENING TABLES OPTION 2 CONSTRAINED

| | | | | 2030 No | Action | | | | 2030 A | Iternative 2 | 2 (DAR, Fe | b 2010) | |
|------|--|------------------|--------------------|---------|------------------|--------------------|--------|------------------|--------------------|--------------|------------------|--------------------|--------|
| S.NO | INTERSECTION | Α | M Peak Ho | our | Р | M Peak Ho | our | Α | M Peak Ho | our | Р | M Peak Ho | our |
| | | LOS ¹ | Delay ² | Volume | LOS ¹ | Delay ² | Volume | LOS ¹ | Delay ² | Volume | LOS ¹ | Delay ² | Volume |
| 1 | ROUTE 1 AND ROUTE 9 | В | 15.8 | 1565 | В | 14.6 | 1650.0 | С | 22.5 | 0 | D | 52.2 | 0 |
| 2 | ROUTE 1 AND ROUTE 29 | F | 87.6 | 3675 | Е | 60.5 | 2970.0 | Е | 65.5 | 0 | Е | 67.7 | 0 |
| 3 | ROUTE 1 AND ROUTE 28 | F | 226.2 | 5700 | F | 157.7 | 6050.0 | F | 244.9 | 6600 | F | 206.3 | 7050 |
| 4 | ROUTE 1 AND ROUTE 26 | E | 75.8 | 5910 | F | 229.8 | 880.0 | E | 61.9 | 6770 | F | 251.5 | 7045 |
| 5 | ROUTE 1 AND ROUTE 27 | F | 157.2 | 5950 | F | 533.7 | 2070.0 | F | 304.6 | 7130 | F | 1091.6 | 7135 |
| 6 | ROUTE 1 AND ROUTE 27A | E | 67.2 | 3195 | F | 189.5 | 1575.0 | D | 42.7 | 3885 | F | 211.4 | 4265 |
| 7 | ROUTE 1 AND ROUTE 3 | F | 158.4 | 5055 | F | 306.9 | 970.0 | F | 145.6 | 6575 | F | 157.2 | 7080 |
| 8 | ROUTE 1 AND ROUTE 16 | D | 52.2 | 5905 | F | 305.5 | 1200.0 | F | 98.6 | 6870 | F | 407.5 | 7225 |
| 9 | ROUTE 1 AND ROUTE 14 (North San Vitoris) | F | 82.8 | 5455 | F | 361.2 | 2745.0 | F | 113.3 | 5900 | F | 476.1 | 6535 |
| 10 | ROUTE 1 AND ROUTE 14A | F | 124.1 | 5550 | F | 259.9 | 1385.0 | F | 151.5 | 6025 | F | 298.8 | 6790 |
| 11 | ROUTE 1 AND ROUTE 10A | F | 82.9 | 6935 | F | 117.2 | 6060.0 | F | 101.7 | 7475 | F | 149.4 | 7695 |
| 12 | ROUTE 1 AND ROUTE 14B | E | 60.5 | 6120 | F | 91.8 | 5875.0 | E | 79.0 | 6485 | F | 119.9 | 6775 |
| 13 | ROUTE 1 AND ROUTE 14 (ITC) | F | 93.3 | 6715 | F | 212.5 | 3420.0 | F | 187.0 | 0 | F | 275.1 | 0 |
| 14 | ROUTE 1 AND ROUTE 30 | F | 273.9 | 6355 | F | 440.9 | 5400.0 | F | 270.1 | 6825 | F | 489.8 | 7385 |
| 15 | ROUTE 1 AND ROUTE 8 | F | 107.6 | 7255 | F | 94.1 | 6410.0 | F | 97.6 | 0 | F | 123.8 | 0 |
| 16 | ROUTE 1 AND ROUTE 4 | D | 43.4 | 7535 | D | 38.6 | 6165.0 | С | 32.4 | 0 | F | 140.2 | 0 |
| 17 | ROUTE 1 AND ROUTE 6 (Adelup) | С | 24.1 | 3770 | F | 91.7 | 6170.0 | D | 41.5 | 0 | F | 125.3 | 0 |
| 18 | ROUTE 1 AND ROUTE 11 | В | 18.8 | 3460 | С | 26.8 | 7055.0 | С | 20.7 | 0 | С | 25.3 | 0 |
| 19 | ROUTE 1 AND ROUTE 6 (Westerly) | А | 7.8 | 3080 | в | 15.6 | 6485.0 | в | 18.4 | 0 | С | 22.0 | 0 |
| 20 | ROUTE 1 AND POLARIS POINT | А | 4.3 | 3655 | Α | 6.2 | 7705.0 | Α | 7.1 | 0 | Α | 7.4 | 0 |
| 21 | ROUTE 1 AND ROUTE 2A | E | 58.8 | 3790 | Е | 55.5 | 6975.0 | Е | 69.5 | 4275 | F | 84.0 | 4780 |
| 22 | ROUTE 5 AND ROUTE 2A | D | 53.0 | 2885 | С | 22.7 | 7915.0 | F | 96.3 | 0 | С | 26.2 | 0 |
| 23 | ROUTE 5 AND ROUTE 17 | D | 28.9* | 3655 | Е | 47.8* | 7470.0 | Е | 46.6* | 0 | F | 149.6* | 0 |
| 24 | ROUTE 2 AND ROUTE 12 | F | 83.1 | 2245 | С | 25.4 | 5125.0 | F | 114.2 | 2380 | С | 33.6 | 2350 |

INTERSECTION SCREENING TABLES OPTION 2 CONSTRAINED

| | | | | 2030 No | Action | | | | 2030 A | Iternative 2 | 2 (DAR, Fe | eb 2010) | |
|------------|---|------------------|--------------------|---------|------------------|--------------------|--------|------------------|--------------------|--------------|------------------|--------------------|--------|
| S.NO | INTERSECTION | A | M Peak Ho | our | Р | M Peak Ho | our | А | M Peak Ho | our | Р | M Peak Ho | our |
| | | LOS ¹ | Delay ² | Volume | LOS ¹ | Delay ² | Volume | LOS ¹ | Delay ² | Volume | LOS ¹ | Delay ² | Volume |
| 25 | ROUTE 3 AND ROUTE 3A | Α | 9.5* | #N/A | в | 10.1* | 3430.0 | в | 11.6* | 0 | F | 79.0* | 0 |
| 26 | ROUTE 3 AND ROUTE 28 | в | 17.8 | #N/A | С | 21.4 | 4855.0 | С | 33.9 | 3675 | F | 226.5 | 3860 |
| 27 | ROUTE 4 AND ROUTE 7A | F | 298.8 | 5040 | F | 196.9 | 4365.0 | F | 244.4 | 0 | F | 286.4 | 0 |
| 28 | ROUTE 4 AND ROUTE 10 | F | 95.5 | 4305 | F | 115.9 | 1700.0 | F | 199.6 | 0 | F | 103.5 | 0 |
| 29 | ROUTE 4 AND ROUTE 17 | D | 46.6 | 1775 | D | 48.2 | 925.0 | D | 39.6 | 0 | E | 61.9 | 0 |
| 30 | ROUTE 4 AND ROUTE 4A | D | 27.9* | 740 | С | 21.2* | 1745.0 | D | 34.4* | 0 | С | 19.4* | 0 |
| 31 | ROUTE 7 AND ROUTE 7A | F | 77.7* | 1985 | E | 114.5* | 4680.0 | D | 29.2* | 0 | F | 105.1* | 0 |
| 32 | ROUTE 8 AND ROUTE 33 | С | 31.2 | 3655 | F | 147.3 | 6295.0 | D | 48.3 | 4315 | F | 162.0 | 4910 |
| 33 | ROUTE 8 AND ROUTE 10 | F | 122.0 | 6410 | F | 116.5 | 5585.0 | F | 96.9 | 0 | F | 172.7 | 0 |
| 34 | ROUTE 10 AND ROUTE 15 | D | 49.7 | 5550 | F | 101.1 | 3130.0 | F | 196.9 | 0 | F | 152.3 | 0 |
| 35 | ROUTE 15 AND ROUTE 29 | F | Error | 2770 | F | 683.5* | 6970.0 | F | Error* | 1860 | F | Error* | 1830 |
| 36 | ROUTE 16 AND ROUTE 27A | с | 24.3 | 6590 | С | 26.4 | 4880.0 | С | 27.4 | 0 | С | 34.2 | 0 |
| 37 | ROUTE 16 AND ROUTE 27 | F | 275.1 | 6178 | F | 486.4 | 760.0 | F | 442.7 | 8495 | F | 764.2 | 8530 |
| 38 | ROUTE 16 AND ROUTE 10A | F | 874.2 | 720 | F | 208.7 | 3495.0 | F | 469.1 | 0 | F | 123.5 | 0 |
| 39 | ROUTE 17 AND ROUTE 4A | с | 17.0* | 3180 | С | 17.9* | 1790.0 | в | 13.6* | 0 | С | 18.7* | 0 |
| 40 | ROUTE 26 AND ROUTE 25 | F | 270.1 | 1680 | Е | 71.7 | 2565.0 | E | 75.3 | 2720 | D | 53.0 | 3065 |
| 41 | ROUTE 26 AND ROUTE 15 | F | 134.8* | 2920 | F | 2494.6* | 3650.0 | F | 2757.5* | 2015 | F | 3327.3* | 2115 |
| 42 | ROUTE 28 AND ROUTE 27A | F | 353.1* | 1040.0 | F | 437.8* | 1010.0 | F | 320.4* | 2735 | F | 441.4* | 2915 |
| | | | | 4535.0 | | | 4960.0 | | | 0 | | | 0 |
| | Access Points - NCTS Finegayan | | | 1385.0 | | | 1625.0 | | | 0 | | | 0 |
| 1 | ROUTE 3 AND NORTH (COMMERCIAL) GATE** | N/A | N/A | 3460.0 | N/A | N/A | 3615.0 | в | 29.7 | 0 | E | 60.2 | 0 |
| 2 | ROUTE 3 AND SOUTH (MAIN) GATE** | N/A | N/A | 3655.0 | N/A | N/A | 4680.0 | с | 23.1 | 0 | Е | 67.2 | 0 |
| | | | | 3790.0 | | | 4250.0 | | | 0 | | | 0 |
| | Access Points - South Finegayan | | | 2885.0 | | | 3115.0 | | | 0 | | | 0 |
| 3 | ROUTE 3/CONTROL TREE DRIVE (RESIDENTIAL) GATE | F | 122.3* | 3655.0 | F | 74.2* | 4680.0 | С | 32.7 | 0 | С | 26.5 | 0 |
| | | | | 2245.0 | | | 2200.0 | | | 0 | | | 0 |
| | Access Points - AAFB | | | 347.0 | | | 347.0 | | | 0 | | | 0 |
| | | | | | | | | | | 0 | | | 0 |
| 5 | ROUTE 9/AAFB NORTH GATE** | Е | 39.5* | | D | 35.1* | | F | 1029.7* | 0 | F | 9999.0* | 0 |
| | | | | | | | | | | 0 | | | 0 |
| | Access Points - South Anderson | | | | | | | | | 0 | | | 0 |
| 6 | ROUTE 1/TURNER STREET (MAIN GATE) | в | 13.5* | | F | 458.6* | | С | 32.4 | 0 | E | 78.8 | 0 |
| 7 | ROUTE 15/ ROAD 1.16 m e/o ROUTE 26 (SECOND GATE)** | N/A | N/A | | N/A | N/A | | с | 22.1* | 0 | с | 22.6* | 0 |
| | | | | | | | | | | 0 | | | 0 |
| | Navy Barrigada | | | | | | | | | 0 | | | 0 |
| 8 | ROUTE 16 AND SABANA BARRIGADA | F | Error* | | F | Error* | | N/A | N/A | 0 | N/A | N/A | 0 |
| 9 | ROUTE 8A/BARRIGADA CONNECTOR** | N/A | N/A | | N/A | N/A | | N/A | N/A | 0 | N/A | N/A | 0 |
| | | | | | | | | | | 0 | | | 0 |
| | Barrigada AF | | | | | | | | | 0 | | | 0 |
| 10 | ROUTE 15 AND CHADA STREET | E | 50.0* | | Е | 44.4* | | N/A | N/A | 0 | N/A | N/A | 0 |
| | | | | | | | | | | 0 | | | 0 |
| | Naval Ordinance Annex | | | | | | | | | 0 | | | 0 |
| 11 | ROUTE 5 AND HARMON ROAD | Α | 9.7* | | Α | 9.8* | | Α | 9.6* | 0 | Α | 10.6* | 0 |
| | | | | | | | | | | 0 | | | 0 |
| Level of S | Service ² Control Delay in Seconds Per Vehicle | | | | | | | | | | | | |
| | | | | | | | | | | | | | |
| NOTES: | Signalized Intersection LOS based on average delay for the over | | | | | | | | | | | | |
| | *Unsignalized intersection LOS based on approach delay on ST | OP-controlle | ed approach | ı | | | | | | | | | |
| | **The intersections have not built in existing condition | | | | | | | | | | | | |
| | Error = Delay excedeed maximum calculated value | | | | | | | | | | | | |
| Source: P | arsons Brinckerhoff | | | | | | | | | | | | |

INTERSECTION SCREENING TABLES OPTION 3

Screening Analysis Locations – North Region Option 3

| | | | No- | Action | | | | | Bui | ild | | |
|--|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | AM | l Peak Ho | bur | PM | Peak Hou | ır | AM | Peak Hou | ır | PM | l Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 1/9 | 1,565 | В | 15.8 | 1,650 | В | 14.6 | 2,540 | С | 24.4 | 3,525 | D | 53.0 |
| Route 1/29 | 3,675 | F | 87.6 | 2,970 | E | 60.5 | 4,025 | F | 85.3 | 3,895 | F | 90.5 |
| Route 1/28 | 5,700 | F | 226.2 | 6,050 | F | 157.7 | 6,885 | F | 198.5 | 7,390 | F | 139.5 |
| Route 3/3A | 875 | А | 9.5* | 880 | В | 10.1* | 2,225 | E | 47.2* | 2,340 | F | 100.7* |
| Route 3/28 | 1,904 | В | 17.8 | 2,070 | С | 21.4 | 5,680 | F | 90.2 | 6,025 | D | 53.9 |
| Route 15/ 29* | 1,760 | F | **** | 1,575 | F | 683.5* | 1,945 | F | 161.4 | 1,985 | С | 26.2 |
| Route 3/ North
(Commercial) Gate | 1,010 | N/A | N/A | 970 | N/A | N/A | 3,935 | D | 39.8 | 3,375 | D | 46.0 |
| Route 3/ South
(Main) Gate | 1,260 | N/A | N/A | 1,200 | N/A | N/A | 5,945 | D | 44.5 | 6,275 | F | 370.1 |
| Route 3/ Control
Tree Drive
(Residential) Gate | 1,300 | F | 122.3* | 2,745 | F | 74.2* | 5,525 | F | 113.3 | 5,680 | D | 46.3 |
| Route 9/
Andersen AFB
North Gate | 1,480 | E | 39.5* | 1,385 | D | 35.1* | 2,035 | F | 1031.0* | 2,160 | F | 9051.1* |

| | | | No- | Action | | | | | Bui | ld | | |
|--------------|---------------------------------|--------------|--|---------------------------------|--------------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | AM | AM Peak Hour | | | PM Peak Hour | | | Peak Hou | r | PM | l Peak Ho | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

| | | | | Action | <u> </u> | | Build | | | | | | |
|-----------------------------------|---------------------------------|-----------|--|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|--|
| | AN | 1 Peak Ho | | 1 | M Peak He | our | AM | Peak Hou | | | 1 Peak Ho | bur | |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | |
| Route 1/26 | 5,910 | Е | 75.8 | 6,060 | F | 229.8 | 7,120 | F | 89.4 | 7,615 | F | 209.1 | |
| Route 1/27 | 5,950 | F | 157.2 | 5,875 | F | 533.7 | 6,705 | F | 151.1 | 7,625 | F | 399.6 | |
| Route 1/ 27A | 3,195 | Е | 67.2 | 3,420 | F | 189.5 | 4,160 | F | 120.2 | 4,435 | F | 157.1 | |
| Route 1/3 | 5,055 | F | 158.4 | 5,400 | F | 306.9 | 7,815 | F | 341.3 | 8,030 | F | 474.4 | |
| Route 1/16 | 5,905 | D | 52.2 | 6,410 | F | 305.5 | 8,270 | F | 232.2 | 8,540 | F | 340.3 | |
| Route 1/14 (Upper
Tumon) | 5,455 | F | 82.8 | 6,165 | F | 361.2 | 5,775 | Е | 66.6 | 6,355 | Е | 71.5 | |
| Route 1/ 14A
(Opposite K-Mart) | 5,550 | F | 124.1 | 6,170 | F | 259.9 | 5,860 | Е | 71.0 | 6,435 | F | 112.3 | |
| Route 1/ 10A | 6,935 | F | 82.9 | 7,055 | F | 117.2 | 7,515 | F | 129.6 | 8,170 | F | 193.6 | |

Screening Analysis Locations – Central Region, Option 3

| | | | | Action | | | | | В | uild | | |
|-------------------------|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AN | 1 Peak Ho | our | P | M Peak H | our | AM | Peak Ho | ur | PN | 1 Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/ 14B | 6,120 | Е | 60.5 | 6,485 | F | 91.8 | 6,480 | Е | 79.8 | 6,965 | Е | 78.5 |
| Route 1/14 | 6,715 | F | 93.3 | 7,705 | F | 212.5 | 7,355 | F | 176.8 | 8,635 | F | 315.8 |
| Route 1/30 | 6,355 | F | 273.9 | 6,975 | F | 440.9 | 6,795 | F | 148.5 | 7,475 | F | 253.3 |
| Route 1/8 | 7,255 | F | 107.6 | 7,915 | F | 94.1 | 7,835 | F | 102.7 | 8,965 | F | 155.5 |
| Route 1/4 | 7,535 | D | 43.4 | 7,470 | D | 38.6 | 6,565 | С | 30.5 | 7,440 | F | 107.2 |
| Route 1/6 (Adelup) | 3,770 | С | 24.1 | 5,125 | F | 91.7 | 4,265 | С | 29.7 | 7,850 | F | 958.7 |
| Route 1/6
(Westerly) | 3,080 | A | 7.8 | 3,430 | В | 15.6 | 3,945 | С | 27.4 | 3,910 | С | 23.0 |
| Route 4/7A | 5,040 | F | 298.8 | 4,855 | F | 196.9 | 4,830 | F | 586.7 | 5,240 | F | 339.2 |
| Route 4/10 | 4,305 | F | 95.5 | 4,365 | F | 115.9 | 4,705 | F | 199.7 | 4,700 | Е | 65.9 |
| Route 4/17 | 1,775 | D | 46.6 | 1,700 | D | 48.2 | 1,785 | D | 39.6 | 1,785 | E | 55.9 |
| Route 4/ 4A* | 740 | D | 27.9* | 925 | С | 21.2* | 1,005 | E | 44.3* | 960 | С | 21.9* |
| Route 7/ 7A* | 1,985 | F | 77.7* | 1,745 | D | 28.3* | 1,920 | D | 28.3* | 2,085 | F | 87.7* |
| Route 8/33 (East) | 3,655 | С | 31.2 | 4,680 | E | 64.3 | 4,335 | D | 52.9 | 2,250 | С | 29.1 |
| Route 8/10 | 6,410 | F | 122.0 | 6,295 | F | 265.3 | 6,495 | F | 137.9 | 7,090 | F | 171.9 |
| Route 10/ 15 | 5,550 | D | 49.7 | 5,585 | F | 197.9 | 6,230 | F | 197.9 | 6,245 | F | 147.2 |
| Route 16/ 27A | 2,770 | С | 24.3 | 3,130 | F | 99.9 | 4,905 | D | 44.9 | 5,405 | F | 80.6 |

| | | | No-, | Action | | | | | В | uild | | |
|---|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AN | 1 Peak Ho | our | Pi | M Peak H | our | AM | Peak Ho | ur | PN | 1 Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 16/ 27 | 6,590 | F | 275.1 | 6,970 | F | 587.3 | 9,380 | F | 455.3 | 9,825 | F | 470.0 |
| Route 16/ 10A | 6,178 | F | 874.2 | 4,880 | F | 459.9 | 5,570 | F | 210.3 | 7,710 | F | 524.0 |
| Route 17/ 4A* | 720 | С | 17.0* | 760 | С | 16.5* | 710 | С | 16.5* | 785 | С | 18.5* |
| Route 26/ 25* | 3,180 | F | 270.1 | 3,495 | F | 369.5 | 4,125 | F | 85.4 | 4,365 | Е | 62.3 |
| Route 26/ 15 | 1,680 | F | 134.8* | 1,790 | F | 3450.7* | 2,235 | С | 30.2 | 2,375 | С | 25.4 |
| Route 28/ 27A | 2,920 | F | 353.1* | 2,565 | F | 528.0* | 3,075 | D | 41.4 | 3,390 | Е | 65.2 |
| Route 1/ Turner
Street (Main Gate) | 3,375 | В | 13.5* | 3,650 | С | 32.4 | 4,780 | С | 32.4 | 5,105 | Е | 79.5 |
| Route 15/ Road
1.16 M east of
Route 26 (Second
Gate) | 1,040 | N/A | N/A | 1,010 | С | 22.1* | 1,320 | С | 22.1* | 1,410 | С | 21.1* |
| Route 16/ Sabana
Barrigada | 4,535 | F | **** | 4,960 | D | 48.1 | 7,230 | D | 48.1 | 7,740 | F | 94.2 |
| Route 15/ Fadian
Point Drive | 1,385 | E | 50.0* | 1,625 | E | 44.4* | 1,795 | Е | 73.5 | 2,125 | F | 209.1 |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Screening Analysis Locations – Apra Harbor Region, Option 3

| | | | No-A | Action | | | | | Bu | iild | | |
|---------------------|---------------------------------|-----------|--|---------------------------------|---------|--|---------------------------------|----------|--|---------------------------------|-----|--|
| | AN | 1 Peak Ho | ur | PM | Peak Ho | ur | AM | Peak Hou | ır | PM | D | ur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/11 | 3,460 | В | 18.8 | 3,615 | С | 26.8 | 3,710 | В | 18.4 | 4,080 | D | 40.1 |
| Route 1/ Polaris Pt | 3,655 | А | 4.3 | 4,680 | А | 6.2 | 3,530 | А | 5.8 | 3,900 | А | 7.4 |
| Route 1/2A | 3,790 | Е | 58.8 | 4,250 | E | 55.5 | 4,270 | E | 67.5 | 4,755 | D | 54.1 |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

Screening Analysis Locations – South Region, Option 3

| | | | No | -Action | | | | | Βι | Delay
Delay
seconds
or vehicle)Total
Intersection
VolumeLOS55.13,235C | | |
|-----------------------|---------------------------------|--------|--|---------------------------------|---------|--|---------------------------------|---------|--|--|---------|--|
| | AM | Peak H | our | PM P | eak Hou | ır | AM P | eak Hou | r | PM P | eak Hou | ır |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Intersection | LOS | Control
Delay
(seconds
per vehicle) |
| Route 5/2A | 2,885 | D | 53.0 | 3,115 | С | 22.7 | 2,960 | Е | 55.1 | 3,235 | С | 22.8 |
| Route 5/17* | 3,655 | D | 28.9* | 4,680 | E | 47.8* | 1,045 | E | 42.5* | 1,080 | F | 128.5* |
| Route 2/12 | 2,245 | F | 83.1 | 2,200 | С | 25.4 | 2,385 | С | 30.6 | 2,355 | С | 24.9 |
| Route 5/ Harmon Road* | 347 | А | 9.7* | 347 | A | 9.8* | 385 | A | 9.5* | 520 | A | 10.6* |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

INTERSECTION SCREENING TABLES **OPTION 8**

Screening Analysis Locations – North Region, Option 8

| | | | | Action | | | | | Buil | ld | | |
|--|---------------------------------|-----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | A۸ | A Peak Ho | our | PM | Peak Hou | ır | AM | Peak Hou | r | PI | / Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/9 | 1,565 | В | 15.8 | 1,650 | В | 14.6 | 2,540 | С | 24.4 | 3,525 | D | 53.0 |
| Route 1/29 | 3,675 | F | 87.6 | 2,970 | E | 60.5 | 4,025 | F | 85.3 | 3,895 | F | 90.5 |
| Route 1/28 | 5,700 | F | 226.2 | 6,050 | F | 157.7 | 6,885 | F | 198.5 | 7,390 | F | 139.5 |
| Route 3/3A | 875 | А | 9.5* | 880 | В | 10.1* | 2,020 | D | 27.0* | 2,550 | F | 140.7* |
| Route 3/28 | 1,904 | В | 17.8 | 2,070 | С | 21.4 | 4,635 | С | 33.2 | 4,595 | D | 47.5 |
| Route 15/29* | 1,760 | F | **** | 1,575 | F | 683.5* | 1,915 | С | 32.9 | 1,880 | С | 30.0 |
| Route 3/ North
(Commercial) Gate | 1,010 | N/A | N/A | 970 | N/A | N/A | 3,310 | D | 38.2 | 3,090 | Е | 56.6 |
| Route 3/ South
(Main) Gate | 1,260 | N/A | N/A | 1,200 | N/A | N/A | 5,085 | D | 46.3 | 4,950 | F | 81.7 |
| Route 3/ Control
Tree Drive
(Residential) Gate | 1,300 | F | 122.3* | 2,745 | F | 74.2* | 4,525 | D | 39.7 | 4,750 | С | 22.6 |
| Route 9/
Andersen AFB
North Gate | 1,480 | E | 39.5* | 1,385 | D | 35.1* | 2,035 | С | 24.4 | 2,160 | F | **** |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

| | | | No-A | ction | | | U , | • | Bu | ild | | |
|--------------------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | r | PM | Peak Hou | ır | AM | Peak Ho | ur | PM | l Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/26 | 5,910 | Е | 75.8 | 6,060 | F | 229.8 | 7,845 | F | 145.9 | 8,010 | F | 250.6 |
| Route 1/27 | 5,950 | F | 157.2 | 5,875 | F | 533.7 | 7,640 | F | 178.8 | 7,540 | F | 329.4 |
| Route 1/ 27A | 3,195 | E | 67.2 | 3,420 | F | 189.5 | 4,775 | D | 53.9 | 4,900 | D | 51.2 |
| Route 1/3 | 5,055 | F | 158.4 | 5,400 | F | 306.9 | 5,455 | E | 70.5 | 6,335 | Е | 64.7 |
| Route 1/16 | 5,905 | D | 52.2 | 6,410 | F | 305.5 | 7,070 | E | 57.0 | 7,785 | F | 103.9 |
| Route 1/14
(Upper
Tumon) | 5,455 | F | 82.8 | 6,165 | F | 361.2 | 5,855 | E | 69.6 | 6,465 | E | 77.6 |
| Route 1/ 14A
(Opposite
K-Mart) | 5,550 | F | 124.1 | 6,170 | F | 259.9 | 5,860 | E | 74.2 | 6,460 | F | 126.0 |
| Route 1/10A | 6,935 | F | 82.9 | 7,055 | F | 117.2 | 7,565 | F | 126.1 | 8,340 | F | 186.0 |
| Route 1/14B | 6,120 | E | 60.5 | 6,485 | F | 91.8 | 6,545 | F | 90.4 | 7,160 | Е | 79.5 |
| Route 1/14 | 6,715 | F | 93.3 | 7,705 | F | 212.5 | 7,430 | F | 113.6 | 8,830 | F | 267.2 |
| Route 1/30 | 6,355 | F | 273.9 | 6,975 | F | 440.9 | 6,915 | F | 146.3 | 7,715 | F | 285.3 |
| Route 1/8 | 7,255 | F | 107.6 | 7,915 | F | 94.1 | 8,060 | E | 77.8 | 9,545 | F | 150.4 |
| Route 1/4 | 7,535 | D | 43.4 | 7,470 | D | 38.6 | 6,665 | С | 33.6 | 7,605 | D | 35.5 |

| | | | No-A | ction | | | U / | • | Bu | ild | | |
|-------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | Peak Ho | ur | PM | l Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/6
(Adelup) | 3,770 | С | 24.1 | 5,125 | F | 91.7 | 4,245 | D | 38.1 | 4,835 | D | 44.9 |
| Route 1/6
(Westerly) | 3,080 | А | 7.8 | 3,430 | В | 15.6 | 3,510 | В | 18.4 | 3,905 | С | 22.0 |
| Route 4/7A | 5,040 | F | 298.8 | 4,855 | F | 196.9 | 4,915 | F | 372.9 | 5,680 | F | 654.2 |
| Route 4/10 | 4,305 | F | 95.5 | 4,365 | F | 115.9 | 4,655 | F | 198.7 | 4,695 | Е | 71.0 |
| Route 4/17 | 1,775 | D | 46.6 | 1,700 | D | 48.2 | 1,790 | D | 40.1 | 1,775 | E | 56.2 |
| Route 4/ 4A* | 740 | D | 27.9* | 925 | С | 21.2* | 1,020 | E | 47.4* | 950 | С | 24.0* |
| Route 7/ 7A* | 1,985 | F | 77.7* | 1,745 | D | 28.3* | 2,325 | F | 174.7* | 2,520 | F | 300.8* |
| Route 8/33
(East) | 3,655 | С | 31.2 | 4,680 | E | 64.3 | 4,220 | D | 45.5 | 4,820 | E | 77.8 |
| Route 8/10 | 6,410 | F | 122.0 | 6,295 | F | 265.3 | 6,890 | F | 177.3 | 7,530 | F | 218.4 |
| Route 10/ 15 | 5,550 | D | 49.7 | 5,585 | F | 197.9 | 6,170 | F | 197.9 | 6,500 | F | 178.1 |
| Route 16/
27A | 2,770 | С | 24.3 | 3,130 | F | 99.9 | 3,490 | С | 31.4 | 4,120 | D | 35.5 |
| Route 16/ 27 | 6,590 | F | 275.1 | 6,970 | F | 587.3 | 8,105 | F | 361.1 | 8,470 | F | 336.6 |
| Route 16/
10A | 6,178 | F | 874.2 | 4,880 | F | 459.9 | 7,085 | F | 582.9 | 7,655 | F | 488.7 |
| Route 17/
4A* | 720 | С | 17.0* | 760 | С | 16.5* | 695 | С | 16.1* | 785 | С | 18.6* |

| | | | No-A | ction | | | | | Bu | ild | | |
|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|---------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | ır | PM | Peak Hou | ır | AM | Peak Ho | ur | PN | l Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 26/ 25* | 3,180 | F | 270.1 | 3,495 | F | 369.5 | 5,045 | F | 113.1 | 5,045 | F | 119.3 |
| Route 26/ 15 | 1,680 | F | 134.8* | 1,790 | F | 3450.7* | 3,215 | F | 154.9 | 3,155 | F | 168.2 |
| Route 28/
27A | 2,920 | F | 353.1* | 2,565 | F | 528.0* | 2,765 | С | 31.3 | 3,010 | E | 59.6 |
| Route 1/
Turner Street
(Main Gate) | 3,375 | В | 13.5* | 3,650 | С | 32.4 | 4,780 | С | 32.4 | 5,105 | E | 78.8 |
| Route 15/
Road 1.16 M
east of Route
26 (Second
Gate) | 1,040 | N/A | N/A | 1,010 | С | 22.1* | 1,320 | С | 22.1* | 1,410 | С | 22.6* |
| Route 16/
Sabana
Barrigada | 4,535 | F | *** | 4,960 | D | 48.1 | 4,765 | N/A | N/A | 5,830 | N/A | N/A |
| Route 15/
Fadian Point
Drive | 1,385 | E | 50.0* | 1,625 | E | 44.4* | 1,560 | N/A | N/A | 2,350 | N/A | N/A |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Screening Analysis Locations – Apra Harbor Region, Option 8

| | | | No-A | ction | | | | · • | Bui | ld | | |
|------------------------|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|----------|--|---------------------------------|-----------|--|
| | AM | Peak Hou | r | PM | Peak Hou | ır | AM | Peak Hou | ır | PN | / Peak Ho | bur |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds per
vehicle) |
| Route 1/11 | 3,460 | В | 18.8 | 3,615 | С | 26.8 | 3,695 | В | 14.3 | 4,165 | D | 43.3 |
| Route 1/
Polaris Pt | 3,655 | A | 4.3 | 4,680 | A | 6.2 | 3,605 | A | 6.8 | 3,910 | A | 7.5 |
| Route 1/2A | 3,790 | Е | 58.8 | 4,250 | Е | 55.5 | 4,285 | Е | 67.5 | 4,785 | Е | 57.5 |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value

Indicates sites that failed the screening evaluation.

Indicates site chosen for detailed CO microscale analysis, as detailed in the EIS.

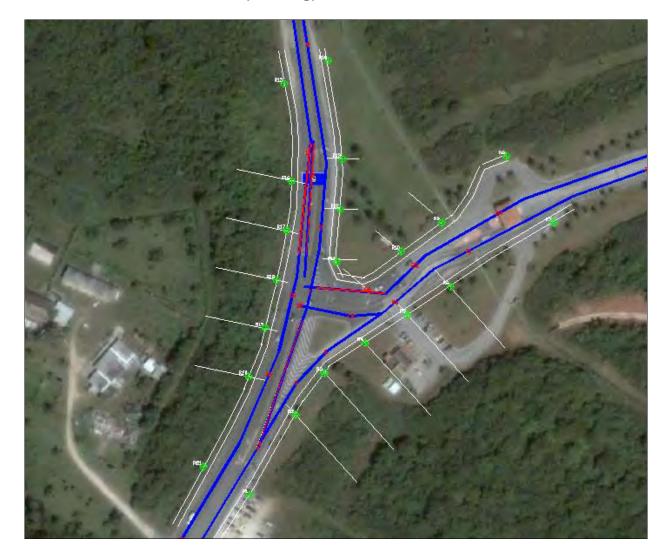
Screening Analysis Locations – South Region, Option 8

| | | | No-A | ction | | | | | Βι | ıild | | |
|-----------------------|---------------------------------|-----------|--|---------------------------------|---------|--|---------------------------------|---------|--|---------------------------------|---------|--|
| | AN | 1 Peak Ho | ur | PM | Peak Ho | our | AM | Peak Ho | bur | PM | Peak Ho | our |
| Intersection | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) | Total
Intersection
Volume | LOS | Control
Delay
(seconds
per vehicle) |
| Route 5/ 2A | 2,885 | D | 53.0 | 3,115 | С | 22.7 | 3,115 | E | 79.9 | 3,335 | С | 25.9 |
| Route 5/ 17* | 3,655 | D | 28.9* | 4,680 | E | 47.8* | 1,040 | В | 14.8* | 1,100 | Е | 42.4* |
| Route 2/12 | 2,245 | F | 83.1 | 2,200 | С | 25.4 | 2,380 | С | 30.7 | 2,355 | С | 27.0 |
| Route 5/ Harmon Road* | 347 | A | 9.7* | 347 | A | 9.8* | 385 | A | 9.5* | 520 | А | 10.6* |

Notes: * Unsignalized intersection; UA = Unavailable at time of analysis; **** = Delay exceeded maximum calculated value Indicates sites that failed the screening evaluation.

Appendix B Analysis Sites and Receptor Locations

GUAM ANALYSIS SITES

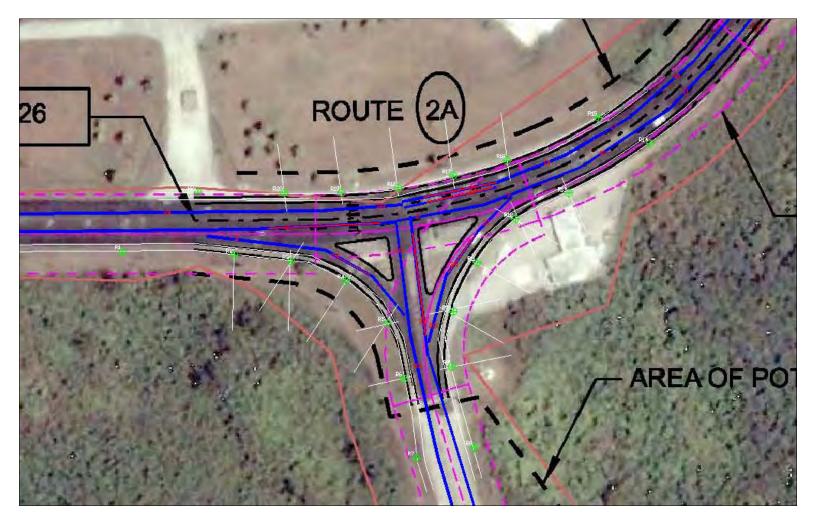

(receptors are green circles)

Site 1 (Existing) – Route 1 and Route 28

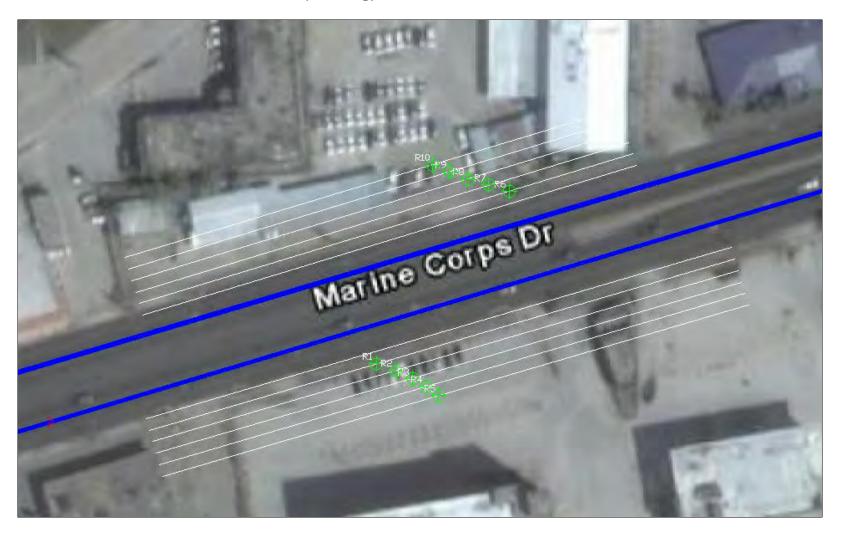


Family Baptist Church

Site 2 (Existing) – Route 9 and AAFB



Site 4 (Existing) – Route 4 and Route 7A


Site 5 (Existing) – Route 16 and Route 27

Site 7 (Existing) – Route 1 and Route 2A

Site 8 (Existing) – Route 1 west of Route 30

Appendix C Detailed Results and Sample Data Runs

| | Existing | No E | Build | Optic | on 1/2 | Opti | on 3 | Opti | on 8 | Option 2 Co | onstrained |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|-------------|------------|
| Site No. | dCR | d | CR | d | CR | d | CR | d | CR | d | CR |
| | uon | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 1.07E-05 | 7.43E-06 | 5.42E-06 | 9.02E-06 | 6.42E-06 | 9.78E-06 | 6.31E-06 | 9.93E-06 | 5.74E-06 | 8.57E-06 | 5.92E-06 |
| Site 2 | 6.05E-07 | 1.36E-06 | 1.33E-06 | 2.33E-06 | 1.58E-06 | 2.33E-06 | 1.59E-06 | 2.32E-06 | 1.59E-06 | 2.35E-06 | 1.58E-06 |
| Site 3 | 8.68E-06 | 6.97E-06 | 5.04E-06 | 8.61E-06 | 5.82E-06 | 1.05E-05 | 6.05E-06 | 1.05E-05 | 6.35E-06 | 9.56E-06 | 6.25E-06 |
| Site 4 | 1.04E-05 | 4.95E-06 | 4.41E-06 | 6.17E-06 | 4.32E-06 | 6.20E-06 | 4.26E-06 | 5.58E-06 | 4.33E-06 | 6.52E-06 | 4.86E-06 |
| Site 5 | 1.41E-05 | 8.68E-06 | 6.71E-06 | 1.16E-05 | 8.69E-06 | 1.30E-05 | 8.83E-06 | 1.24E-05 | 1.01E-05 | 1.03E-05 | 7.40E-06 |
| Site 6 | 3.86E-06 | 3.08E-06 | 2.39E-06 | 3.54E-06 | 2.47E-06 | 3.47E-06 | 2.39E-06 | 3.58E-06 | 2.48E-06 | 3.54E-06 | 2.47E-06 |
| Site 7 | 5.73E-06 | 6.43E-06 | 3.38E-06 | 5.61E-06 | 3.32E-06 | 5.55E-06 | 3.32E-06 | 5.61E-06 | 3.33E-06 | 5.61E-06 | 3.32E-06 |
| Site 8 | 1.29E-06 | 1.22E-06 | 1.01E-06 | 1.48E-06 | 1.07E-06 | 1.46E-06 | 1.05E-06 | 1.50E-06 | 1.06E-06 | 1.48E-06 | 1.07E-06 |

Table C-1Estimated Cancer Risk at Sidewalk Receptors

Table C-2Estimated Cancer Risk at Actual Receptors

| | Existing | No E | Build | Optic | on 1/2 | Opti | ion 3 | Opti | on 8 | Option 2 C | onstrained |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|------------|
| Site No. | dCR | d | CR | d | CR | d | CR | d | CR | d | CR |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 2.49E-06 | 1.97E-06 | 1.43E-06 | 2.37E-06 | 1.46E-06 | 2.43E-06 | 1.52E-06 | 2.35E-06 | 1.54E-06 | 2.26E-06 | 1.56E-06 |
| Site 4 | 5.34E-06 | 1.99E-06 | 1.65E-06 | 2.65E-06 | 1.65E-06 | 3.48E-06 | 2.30E-06 | 3.73E-06 | 2.45E-06 | 2.79E-06 | 1.92E-06 |

 Table C-3

 Estimated Non-Cancer Chronic Hazard Index at Sidewalk Receptors

| | Existing | No E | Build | Opti | on 1/2 | Opt | ion 3 | Opti | on 8 | Option 2 C | onstrained |
|----------|----------|------|-------|------|--------|------|-------|------|------|------------|------------|
| Site No. | HQ | Н | Q | ŀ | iQ. | ŀ | łQ | н | Q | H | Q |
| | пч | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 1.22 | 0.87 | 0.65 | 1.06 | 0.77 | 1.14 | 0.75 | 1.15 | 0.70 | 1.02 | 0.71 |
| Site 2 | 0.08 | 0.23 | 0.23 | 0.40 | 0.30 | 0.40 | 0.30 | 0.40 | 0.30 | 0.40 | 0.30 |
| Site 3 | 1.06 | 0.83 | 0.62 | 1.02 | 0.72 | 1.21 | 0.72 | 1.21 | 0.75 | 1.10 | 0.74 |
| Site 4 | 1.19 | 0.10 | 0.52 | 0.72 | 0.51 | 0.72 | 0.51 | 0.65 | 0.51 | 0.75 | 0.52 |
| Site 5 | 1.59 | 1.01 | 0.80 | 1.33 | 0.99 | 1.46 | 1.01 | 1.43 | 1.09 | 1.21 | 0.89 |
| Site 6 | 0.47 | 0.36 | 0.28 | 0.42 | 0.30 | 0.41 | 0.29 | 0.42 | 0.30 | 0.42 | 0.30 |
| Site 7 | 0.68 | 0.74 | 0.40 | 0.65 | 0.40 | 0.65 | 0.40 | 0.65 | 0.40 | 0.65 | 0.40 |
| Site 8 | 0.17 | 0.16 | 0.13 | 0.19 | 0.14 | 0.19 | 0.14 | 0.19 | 0.14 | 0.19 | 0.14 |

 Table C-4

 Estimated Non-Cancer Chronic Hazard Index at Actual Receptors

| Site No. | Existing | No Build | | Option 1/2 | | Option 3 | | Option 8 | | Option 2 Constrained | |
|----------|----------|----------|------|------------|------|----------|------|----------|------|----------------------|------|
| | HQ | HQ | | HQ | | HQ | | HQ | | HQ | |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 0.30 | 0.23 | 0.18 | 0.28 | 0.18 | 0.29 | 0.19 | 0.28 | 0.19 | 0.27 | 0.19 |
| Site 4 | 0.63 | 0.25 | 0.21 | 0.33 | 0.21 | 0.42 | 0.28 | 0.45 | 0.30 | 0.35 | 0.22 |

 Table C-5

 Estimated Non-Cancer Acute Hazard Index at Sidewalk Receptors

| Site No. | Existing | No Build
HQ | | Option 1/2
HQ | | Option 3
HQ | | Option 8
HQ | | Option 2 Constrained
HQ | |
|----------|----------|----------------|------|------------------|------|----------------|------|----------------|------|----------------------------|------|
| | HQ | | | | | | | | | | |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 1.20 | 0.85 | 0.64 | 1.04 | 0.76 | 1.12 | 0.74 | 1.13 | 0.69 | 1.01 | 0.70 |
| Site 2 | 0.08 | 0.24 | 0.24 | 0.42 | 0.31 | 0.42 | 0.31 | 0.42 | 0.31 | 0.42 | 0.31 |
| Site 3 | 1.04 | 0.82 | 0.62 | 1.01 | 0.71 | 1.19 | 0.71 | 1.19 | 0.74 | 1.08 | 0.73 |
| Site 4 | 1.16 | 0.04 | 0.51 | 0.71 | 0.51 | 0.71 | 0.50 | 0.64 | 0.51 | 0.74 | 0.51 |
| Site 5 | 1.56 | 0.99 | 0.79 | 1.31 | 0.98 | 1.44 | 1.00 | 1.41 | 1.08 | 1.20 | 0.88 |
| Site 6 | 0.46 | 0.36 | 0.28 | 0.41 | 0.29 | 0.40 | 0.28 | 0.41 | 0.29 | 0.41 | 0.29 |
| Site 7 | 0.67 | 0.72 | 0.40 | 0.64 | 0.40 | 0.64 | 0.40 | 0.64 | 0.40 | 0.64 | 0.40 |
| Site 8 | 0.17 | 0.16 | 0.13 | 0.19 | 0.14 | 0.19 | 0.14 | 0.19 | 0.14 | 0.19 | 0.14 |

 Table C-6

 Estimated Non-Cancer Acute Hazard Index at Actual Receptors

| Site No. | Existing | No Build | | Option 1/2 | | Option 3 | | Option 8 | | Option 2 Constrained | |
|----------|----------|----------|------|------------|------|----------|------|----------|------|----------------------|------|
| | HQ | HQ | | HQ | | HQ | | HQ | | HQ | |
| | | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 | 2014 | 2030 |
| Site 1 | 0.29 | 0.23 | 0.17 | 0.28 | 0.18 | 0.29 | 0.19 | 0.28 | 0.19 | 0.27 | 0.19 |
| Site 4 | 0.62 | 0.25 | 0.21 | 0.33 | 0.21 | 0.42 | 0.28 | 0.45 | 0.30 | 0.35 | 0.21 |

Sample Run – Site 1

Build Option 1 – 2014 AM

'Site 1 Opt 1/2 2014 1B1A1401.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'ACROLEIN' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 0.350 2 1606 0.350 3 120 57 2.0 1606 3.250 1679 1 3 4 527 0.350 5 120 107 2.0 527 3.250 1700 1 3 6 1830 0.350 7 1830 0.350 8 1830 0.350 9 3568 0.350 10 3568 0.350 11 3548 0.350 12 120 65 2.0 3548 3.250 1665 1 3 13 20 0.350 14 20 0.350 15 120 115 2.0 20 3.250 1752 1 3 16 4130 0.350 17 4130 0.350 18 958 0.350 19 958 0.350 20 958 0.350 21 120 94 2.0 958 3.250 1523 1 3 22 45 0.350 23 85 0.350 24 120 109 2.0 85 3.250 1694 1 3 25 739 0.350 26 739 0.350 27 739 0.350

1B1A1401.OUT CAL3OHCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 1 TIME : 19:14:40 JOB: Site 1 Opt 1/2 2014 1B1A1401.DA3 RUN: ACROLEIN ------General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 01248.0 * 378. 263. AG 0.0 44.0 10. SB Rt1 aprch * 109.0 1248.0 1057.0 1231.0 * 338. 267. AG 0.0 36.0 3 13. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 138. 262. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 2 TIME : 19: 14:40 JOB: Si te 1 0pt 1/2 2014 1B1A1401.DA3 RUN: ACROLEIN LINK DESCRIPTION * LINK COORDINATES (ET) * LENCTH BRG TYPE H W NI ANES LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDU MATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1172.0 1597.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (16 -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1401.OUT 1B1A1401.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 3 TIME : 19:14:40 JOB: Site 1 Opt 1/2 2014 1B1A1401.DA3 RUN: ACROLEIN Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) (MI CROGRAMS/M**3) REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 * MAX * 166.1 177.8 163.7 111.8 104.7 101.2 114.7 120.8 125.6 136.7 WIND DI R* 255 255 250 250 240 230 220 165 150 105 JULIAN * 1 1 1 1 1 1 3 3 HOUR * 15 15 14 14 12 10 8 21 18 9 * REC21 REC22 REC23 REC24 REC25 MAX+BKG * 115. 0 141. 4 140. 9 154. 1 47. 6 - BKG * 0. 0 0. 0 0. 0 0. 0 0. 0 0. 0 MAX * 115.0 141.4 140.9 154.1 47.6 WIND DI R* 95 250 250 100 105 JULIAN * 3 1 1 3 3 HOUR * 7 14 14 8 9 THE: 19:14:41 DOE: Site 19:14:41 DUE: 10:14:41 D Output Section

19 66.083 (3.24) C 0 22 44.274 (3.24) C 0 23 44.274 (3.24) C 0 24 50.275 (3.24) C 0 25 20.297 (3.24) C 0 27 133 79 (3.24) C 0 27 133 77 (3.24) C 0 27 133 79 (3.24) C 0 27 133 70 (3.24) C 0 27 13 29 (3.24) C 0 28 20 (3.24) C 0 29 20 20 (3.24) C 0 20 20 20 (3.24) C 0 20 20 20 (3.24) C 0 20 20 20 20 (3.24) C 0

Li nks 10+ 1.37 3.45 0.00 0.00 0.19 1.25 10.25 0.15 0.17 0.41 Li nks 20+ 3.29 0.00 0.02 0.15 0.27 0.12 0.11 0.00 0.00 0.00 SECOND HI GHEST 24-HOUR AVERAGED LI NK CONTRI BUTI ONS IN MICROGRAMS/M*3 LINKS 2U+ 8.88 U. 06 U. 12 U. 88 5.35 0.00 0.00 0.00 0. CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 10 TIME : 19:14:41 JOB: Site 1 Opt 1/2 2014 1B1A1401. DA3 RUN: ACROLEIN LINK CONTRIBUTION TABLES SECOND HIGHEST 24-HOUR AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 INCLUDING AMBLENT RACKGROUND CONCENTRATIONS CAL3QHCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 11 TIME : 19:14:41

4 5.210 (3.71 3.39 0.00 20.47 5.29 3.80 0.20 0.72 13 1.09 Links 10+ 3.71 3.39 0.00 20.47 5.29 3.80 0.20 0.73 1.09 Links 20+ 3.58 0.33 0.49 5.82 0.69 0.09 0.14 0.00 0.00 0.00 Page 5 181A1401.0UT 5 29.113 (3,24) 0.00 29.11 0.42 2.99 2.38 0.65 4.09 1.49 0.24 0.11 0.30 0.53 Links 10+ 2.22 2.86 0.00 0.01 0.33 1.99 2.91 0.17 0.09 0.47 Links 20+ 2.37 0.32 0.47 1.18 0.33 0.07 0.12 0.00 0.00 0.00 6 28.172 (3,24) 0.00 28.17 0.37 2.40 1.63 0.53 3.25 2.12 0.28 0.12 0.34 0.62 Links 10+ 2.75 3.38 0.00 0.01 0.43 1.78 2.36 0.17 0.10 0.47 Links 20+ 2.41 0.19 0.62 1.28 0.37 8.99 2.25 1.08 4.06 5.99 0.30 0.12 0.35 0.70 Links 10+ 2.75 3.38 0.00 0.01 0.43 1.78 2.36 0.17 0.10 0.47 Links 20+ 2.41 0.19 0.62 1.28 0.37 8.99 2.25 1.08 4.06 5.99 0.30 0.12 0.35 0.70 Links 10+ 5.61 4.47 0.00 0.03 0.78 3.80 2.77 0.20 0.14 0.99 Links 20+ 3.67 0.18 0.57 7.03 0.90 0.10 0.15 0.00 0.00 0.00 8 49.376 (3,24) 0.00 49.38 0.31 2.01 1.10 0.48 2.61 14.25 0.40 0.15 0.42 0.97 Links 10+ 7.70 7.11 0.01 0.03 1.77 1.93 1.95 0.21 0.13 0.66 Links 20+ 3.36 0.04 0.10 0.73 0.66 0.10 0.15 0.00 0.00 0.00 9 48.608 (3,24) 0.00 48.61 0.25 1.02 0.66 0.28 1.90 14.96 0.58 0.18 0.52 1.48 Links 20+ 2.85 0.02 0.04 0.28 0.41 0.10 0.15 0.00 0.00 0.00 10 47.562 (3,24) 0.00 47.56 0.21 0.59 0.42 0.17 1.40 15.49 1.10 0.24 0.71 2.99 Links 10+ 8.16 9.61 0.02 0.13 3.024 0.08 0.14 0.00 0.00 0.00 11 72.329 (3,24) 0.00 7.54 0.21 0.59 0.42 0.77 1.40 15.49 1.10 0.24 0.71 2.99 Links 10+ 2.26 0.01 0.02 0.13 0.24 0.08 0.14 0.00 0.00 0.00 11 72.329 (3,24) 0.00 79.68 0.22 0.60 0.43 0.18 1.47 4.48 0.85 0.23 0.69 3.46 Links 20+ 2.28 0.00 0.01 0.07 0.17 0.09 0.07 0.01 0.00 0.00 12 79.678 (3,24) 0.00 79.68 0.22 0.60 0.43 0.18 1.47 4.48 0.85 0.23 0.69 3.46 Links 10+ 28.53 30.58 0.06 0.01 0.88 0.72 1.17 0.27 0.16 0.37 Links 10+ 28.82 7.89 0.03 0.04 2.52 1.97 0.00 0.00 0.00 13 80.515 (3,24) 0.00 80.52 0.25 0.89 0.61 0.26 1.87 4.41 0.54 0.18 0.54 1.69 Links 20+ 4.77 0.01 0.03 0.20 2.71 0.19 0.21 0.00 0.00 0.00 13 80.515 (5,27.49 0.00 7.52 1.17 0.19 0.21 0.00 0.00 0.00 13 80.515 (5,27.49 0.00 80.

'Site 1 Opt 1/2 2014 1B1A1402.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BENZENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 26.24 2 1606 26.24 3 120 57 2.0 1606 347.4 1679 1 3 4 527 26.24 5 120 107 2.0 527 347.4 1700 1 3 6 1830 26.24 7 1830 26.24 8 1830 26.24 9 3568 26.24 10 3568 26.24 11 3548 26.24 12 120 65 2.0 3548 347.4 1665 1 3 13 20 26.24 14 20 26.24 15 120 115 2.0 20 347.4 1752 1 3 16 4130 26.24 17 4130 26.24 18 958 26.24 19 958 26.24 20 958 26.24 21 120 94 2.0 958 347.4 1523 1 3 22 45 26.24 23 85 26.24 24 120 109 2.0 85 347.4 1694 1 3 25 739 26.24 26 739 26.24 27 739 26.24

1B1A1402.OUT CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 1 TIME : 19:21:17 JOB: Site 1 Opt 1/2 2014 1B1A1402.DA3 RUN: BENZENE ------General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1172.0 1597.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 . REC W (164 W) * 1072.0 1597.0 5.0 . REC W (164 W) * 1072.0 1597.0 5.0 . REC W (164 W) * 1072.0 1597.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) * 1042.0 1354.0 5.0 . REC W (164 W) -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1402. OUT 1B1A1402.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 3 TIME : 19:21:17 JOB: Site 1 Opt 1/2 2014 1B1A1402.DA3 RUN: BENZENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) (MI CROGRAMS/M**3) REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 11982.6 14816.9 14382.3 13397.8 6783.7 6370.3 13700.5 9625.4 9204.0 8636.3 WI ND DI R* 70 40 20 285 10 0 275 275 340 285 JULIAN * 3 2 2 1 2 2 1 1 2 1 HOUR * 2 20 16 21 14 12 19 19 8 21 * REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 MAX+BKG * 10057.6 11817. 2 11757. 8 12974. 4 4229. 9 - BKG * 0.0 0.0 0.0 0.0 0.0 MAX * 10057.6 11817.2 11757.8 12974.4 4229.9 WI ND DI R* 95 250 250 100 100 JULI AN * 3 1 1 3 3 HOUR * 7 14 14 8 8 Output Section Output Section MOTES PERTAINING TO THE REPORT 1. THE HIGHEST AVERAGE IN EACH OF THE FIRST TWO COLUMNS OF EACH TABLE BELOW ARE SUFFIXED BY AN ASTERISK (*). FOR PM OUTPUT, THERE IS ONLY ONE COLUMN AND ASTERISK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE. 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBER OF CALM HOURS USED IN PRODUCING EACH AVERAGE ARE PREFIXED BY A C. PRIMARY AND SECONDARY AVERAGES. FIVE HIGHEST 24-HOUR END-TO-END AVERAGE CONCENTRATIONS IN MICROGRAMS/M**3 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. Highest Second Highest Third Highest Fourth Highest Fifth Highest Reptr Ending Ending Ending Ending No. Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm 17994.863 (2, 24) C 03592.884 (3, 24) C 03024.821 (1, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 2******** (2, 24) C 04519.029 (1, 24) C 03024.821 (1, 24) C 0 0.000 (1, 0) C 0.000 (1, 0) C 0 4******* (2, 24) C 04519.029 (1, 24) C 03024.821 (3, 24) C 0 0.000 (1, 0) C 0.000 (1, 0) C 0 55306.800 (2, 24) C 01525.842 (1, 24) C 0986.271 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 55306.800 (2, 24) C 01525.842 (1, 24) C 02118.796 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 64946.633 (2, 24) C 015499.412 (1, 24) C 02118.796 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 67183.967 (2, 24) C 03378.400 (1, 24) C 02118.796 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 Page 2 Blal4402.0UT Bisol. Biol. (2), 24) C 0152. 632 (1, 24) C 0 700. 211 (3, 24) C 64946. 633 (2, 24) C 05599. 412 (1, 24) C 02118. 796 (3, 24) C B7183. 967 (2, 24) C 03599. 412 (1, 24) C 0218. 796 (3, 24) C Page 2 BFA1402. OUT 97490. 234 (2, 24) C 03023. 996 (1, 24) C 02088. 592 (3, 24) C 106960. 900 (2, 24) C 03198. 188 (1, 24) C 02088. 525 (3, 24) C 119522. 470 (3, 24) C 03198. 188 (1, 24) C 02088. 525 (3, 24) C 119522. 470 (3, 24) C 03198. 188 (1, 24) C 0589. 592 (2, 24) C 119522. 470 (3, 24) C 03496. 625 (1, 24) C 0589. 592 (2, 24) C 13******* (1, 24) C 05946. 072 (1, 24) C 01563. 921 (2, 24) C 145336. 070 (3, 24) C 05946. 072 (1, 24) C 02798. 779 (2, 24) C 146536. 070 (3, 24) C 03548. 667 (2, 24) C 01563. 921 (2, 24) C 166861. 141 (1, 24) C 03670. 434 (2, 24) C 02208. 471 (3, 24) C 178453. 121 (1, 24) C 03670. 434 (2, 24) C 02260. 304 (1, 24) C 189944. 278 (3, 24) C 053710. 679 (2, 24) C 01562. 388 (3, 24) C 189944. 278 (3, 24) C 05130. 979 (2, 24) C 02266. 104 (1, 24) C 20******* (3, 24) C 05130. 479 (2, 24) C 03553. 521 (2, 24) C 216617. 687 (3, 24) C 05130. 479 (2, 24) C 03553. 521 (2, 24) C 229275. 833 (3, 24) C 06130. 413 (1, 24) C 03553. 521 (2, 24) C 239719. 454 (3, 24) C 07613. 428 (1, 24) C 0 1550. 512 (2, 24) C 249251. 179 (3, 24) C 07613. 428 (1, 24) C 0 815. 333 (2, 24) C 1 4693. 188 (3, 24) C 07613. 428 (1, 24) C 0 815. 333 (2, 24) C 252276. 300 (3, 24) C 02004. 804 (1, 24) C 0 207. 883 (2, 24) C 252276. 300 (3, 24) C 02004. 804 (1, 24) C 0 207. 883 (2, 24) C 252276. 300 (3, 24) C 02004. 804 (1, 24) C 0 207. 883 (2, 24) C 1 4693. 188 (3, 24) C 0 1 4693. 188 (3, 24) C 0 5 2606. 304 (3, 24) C 0 5 2606. 304 (3, 24) C 0 5 2606. 304 (3, 24) C 0 1 45237. 27 (3, 24) C 0 1 4523. 255 (3, 24) C 0 1 4523. 256 (3, 24) C 0 1 4523. 256 (3, 24) C 0 1 4523. 530 (3, 24) C 0 1 4523. 896 (3, 24) C 0 1 5 4236. 632 (3, 24) C 0 1 6 4236. 6 $\begin{array}{cccc} C & 0 & 0 & 000 \\ \end{array}$ 0 0.000 с о

 Page 4 1B1A1402.0UT CAL3QHCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 11 TIME : 19:21:18

JOB: Site 1 Opt 1/2 2014 1B1A1402. DA3 RUN: BENZENE LINK CONTRIBUTION TABLES MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3

'Site 1 Opt 1/2 2014 1B1A1403.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BUTADIENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 2.330 2 1606 2.330 3 120 57 2.0 1606 21.45 1679 1 3 4 527 2.330 5 120 107 2.0 527 21.45 1700 1 3 6 1830 2.330 7 1830 2.330 8 1830 2.330 9 3568 2.330 10 3568 2.330 11 3548 2.330 12 120 65 2.0 3548 21.45 1665 1 3 13 20 2.330 14 20 2.330 15 120 115 2.0 20 21.45 1752 1 3 16 4130 2.330 17 4130 2.330 18 958 2.330 19 958 2.330 20 958 2.330 21 120 94 2.0 958 21.45 1523 1 3 22 45 2.330 23 85 2.330 24 120 109 2.0 85 21.45 1694 1 3 25 739 2.330 26 739 2.330 27 739 2.330

1B1A1403.OUT CAL3OHCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 1 TIME : 10:14: 1 JOB: Site 1 Opt 1/2 2014 1B1A1403.DA3 RUN: BUTADIENE General Information A Tier 1 Area 2 VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 044.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 318. 262. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 318. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 * 182. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 2 TIME : 10:14: 1 JOB: Si te 1 0pt 1/2 2014 1B1A1403.DA3 RUN: BUTADIENE Link Data Constants - (Variable data in *.LNK file) LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUMATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1220.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1262.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (16 -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1403.0UT 1B1A1403.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 10:14: 1 JOB: Site 1 Opt 1/2 2014 1B1A1403.DA3 RUN: BUTADIENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) (MICROGRAMS/M**3) REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 884.5 1043.5 1013.1 969.9 500.4 471.1 985.4 736.6 672.0 681.6 WI ND DI R* 70 40 25 285 10 0 280 280 340 285 JULIAN * 3 2 2 1 2 2 1 1 2 1 HOUR * 2 20 17 21 14 12 20 20 8 21 * REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 MAX+BKG * 764. 0 939. 2 935. 3 1022. 7 315. 3 - BKG * 0. 0 0. 0 0. 0 0. 0 0. MAX * 764.0 939.2 935.3 1022.7 315.3 WI ND DI R* 95 250 250 100 105 JULI AN * 3 1 1 3 3 HOUR * 7 14 14 8 9 Output Section Output Section The Highest Average IN EACH OF THE FIRST TWO COLUMNS OF EACH TABLE BELOW ARE SUFFIXED BY AN ASTERISK (*). FOR PM OUTPUT, THERE IS ONLY ONE COLUMN AND ASTERISK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE. 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBER OF CALM HOURS USED IN PRODUCING EACH AVERAGE ARE PREFIXED BY A C. PRIMARY AND SECONDARY AVERAGES. FIVE HIGHEST 24-HOUR END-TO-END AVERAGE CONCENTRATIONS IN MICROGRAMS/M**3 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. Highest Second Highest Third Highest Fourth Highest Fifth Highest Reptr Ending Ending Ending Ending No. Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm 1 605.146 (2, 24) C 0 232.875 (1, 24) C 0 232.946 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 3 859.742 (2, 24) C 0 329.579 (1, 24) C 0 285.896 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 4 564.312 (2, 24) C 0 112.042 (1, 24) C 0 285.896 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 393.896 (2, 24) C 0 112.042 (1, 24) C 0 73.742 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 393.896 (2, 24) C 0 125.763 (1, 24) C 0 163.900 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 4 553.850 (2, 24) C 0 242.279 (1, 24) C 0 163.900 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 4 553.850 (2, 24) C 0 242.279 (1, 24) C 0 163.900 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 7 518.550 (2, 24) C 0 262.058 (1, 24) C 0 167.371 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 Page 2 Blal4403.0UT a 330.670 (2,517) ⊂ 0 125.773 (1,24) ⊂ 0 44.242 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 7 518 456 (2,24) ⊂ 0 125.779 (1,24) ⊂ 0 163.771 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 7 518 456 (2,24) ⊂ 0 242.058 (1,24) ⊂ 0 167.371 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 7 575.664 (2,24) ⊂ 0 239.392 (1,24) ⊂ 0 161.438 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 699.417 (3,24) ⊂ 0 549.435 (1,24) ⊂ 0 162.863 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 699.417 (3,24) ⊂ 0 549.435 (1,24) ⊂ 0 141.133 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 488.446 (3,24) ⊂ 0 744.766 (3,24) ⊂ 0 111.271 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 488.446 (3,24) ⊂ 0 456.542 (1,24) ⊂ 0 190.7788 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 488.446 (1,24) ⊂ 0 245.500 (2,24) ⊂ 0 111.271 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 5469.829 (1,24) ⊂ 0 259.633 (2,24) ⊂ 0 163.092 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 6468.175 (1,24) ⊂ 0 329.433 (2,24) ⊂ 0 161.4517 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 7 578.783 (1,24) ⊂ 0 329.433 (2,24) ⊂ 0 144.571 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 1 7 578.783 (1,24) ⊂ 0 348.488 (2,24) ⊂ 0 144.571 (3,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.55 (3,24) ⊂ 0 4348.188 (2,24) ⊂ 0 161.463 (1,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.50 (3,24) ⊂ 0 4348.188 (2,24) ⊂ 0 144.571 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.50 (3,24) ⊂ 0 4348.188 (2,24) ⊂ 0 144.571 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.50 (3,24) ⊂ 0 4348.188 (2,24) ⊂ 0 144.133 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.430 (3,24) ⊂ 0 4348.188 (1,24) ⊂ 0 44.3312 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.50 (3,24) ⊂ 0 4348.188 (1,24) ⊂ 0 44.133 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.50 (3,24) ⊂ 0 4348.188 (1,24) ⊂ 0 44.133 (2,24) ⊂ 0 0.000 (1, 0) ⊂ 0 0.000 (1, 0) ⊂ 0 2 744.300 (3,24) ⊂ 0 4348.188 (3,24) ⊂ 0 3 346.54 (3,24) ⊂ 0 3 346.53 (3,24) ⊂ 0 3 347.689 (1,324) ⊂ 0 3 348.691 (3,24) ⊂ 0 3 348.691 (3,24) ⊂ 0 3 348.6

Links 10+ 9.15 22.83 0.01 0.03 1.26 8.35 68.20 1.04 1.18 2.77 Links 20+ 21.68 0.07 0.15 0.98 1.76 0.82 0.71 0.00 0.00 0.00 SECOND HI GHEST 24-HOUR AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 Page 4 1B1A1403.0UT

'Site 1 Opt 1/2 2014 1B1A1404.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'FORMALDEHYDE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 6.860 2 1606 6.860 3 120 57 2.0 1606 60.83 1679 1 3 4 527 6.860 5 120 107 2.0 527 60.83 1700 1 3 6 1830 6.860 7 1830 6.860 8 1830 6.860 9 3568 6.860 10 3568 6.860 11 3548 6.860 12 120 65 2.0 3548 60.83 1665 1 3 13 20 6.860 14 20 6.860 15 120 115 2.0 20 60.83 1752 1 3 16 4130 6.860 17 4130 6.860 18 958 6.860 19 958 6.860 20 958 6.860 21 120 94 2.0 958 60.83 1523 1 3 22 45 6.860 23 85 6.860 24 120 109 2.0 85 60.83 1694 1 3 25 739 6.860 26 739 6.860 27 739 6.860

1B1A1404.OUT CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 1 TIME : 10:30:33 JOB: Site 1 Opt 1/2 2014 1B1A1404.DA3 RUN: FORMALDEHYDE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 01248.0 * 378. 263. AG 0.0 44.0 10. SB Rt1 aprch * 109.0 1248.0 1057.0 1231.0 * 338. 267. AG 0.0 36.0 3 13. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 318. 262. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1268.0 * 388. AG 0.0 32.0 16. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 2 TIME : 10:30:33 JOB: Si te 1 0pt 1/2 2014 1B1A1404.DA3 RUN: FORMALDEHYDE Link DATA CONSTANTS - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENCTH BRG TYPE H W NIANES LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUMATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR * X Y Z} \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec E} & (MLD S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec E} & (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec E} & (164 N) * 1341.0 1153.0 5.0 \\ \mbox{-} \\ \mbox{Rec W} & (101 D N) * 1343.0 1280.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec W} & (104 N) * 1136.0 1272.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec W} & (164 W) * 1137.0 1385.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec W} & (164 W) * 1145.0 1466.0 5.0 \\ \mbox{-} \\ \mb$ -----1B1A1404.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 10:30:33 JOB: Site 1 Opt 1/2 2014 1B1A1404.DA3 RUN: FORMALDEHYDE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 2559.4 3005.8 2918.3 2800.9 1448.1 1364.1 2845.4 2140.7 1942.4 1985.7 WIND DI R* 70 40 25 285 10 0 280 280 340 285 JULIAN * 3 2 2 1 2 2 1 1 2 1 HOUR * 2 20 17 21 14 12 20 20 8 21 * REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 MAX+BKG * 2217. 4 2737. 3 2726. 8 2978. 1 913. 9 - BKG * 0. 0 0. 0 0. 0 0. 0 0. MAX * 2217.4 2737.3 2726.8 2978.1 913.9 WI ND DI R* 95 250 250 100 105 JULI AN * 3 1 1 3 3 HOUR * 7 14 14 8 9 Output Section Output Section The Highest Average IN EACH OF THE FIRST TWO COLUMNS OF EACH TABLE BELOW ARE SUFFIXED BY AN ASTERISK (*). FOR PM OUTPUT, THERE IS ONLY ONE COLUMN AND ASTERISK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE. 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBER OF CALM HOURS USED IN PRODUCING EACH AVERAGE ARE PREFIXED BY A C. PRIMARY AND SECONDARY AVERAGES. FIVE HIGHEST 24-HOUR END-TO-END AVERAGE CONCENTRATIONS IN MICROGRAMS/M**3 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. Highest Second Highest Third Highest Fourth Highest Fifth Highest Reptr Ending Ending Ending Ending No. Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm 11755.771 (2, 24) C 0 676.804 (1, 24) C 0 655.212 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 22479.492 (2, 24) C 0 982.675 (1, 24) C 0 824.425 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 473.692 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.675 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.055 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.055 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 51140.055 (2, 24) C 0 324.104 (1, 24) C 0 185.954 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 Falbal404.0UT Control 2013 Cont С 0 0.000 с о $\begin{array}{c} 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \\ 0 & 0.000 \end{array}$ 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0) C 0 0. 000 (0

19 1254.857 (3,24) C 0 20 1300.325 (3,24) C 0 21 1198 378 (3,24) C 0 22 1434.567 (3,24) C 0 23 1401.374 (3,24) C 0 24 1353.062 (3,24) C 0 MAXI MUR 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMS/M**3 The field for th

Li nks 10+ 26.93 64.73 0.05 0.08 3.57 24.60200.81 3.08 3.46 8.15 Li nks 20+ 61.51 0.21 0.43 2.76 5.20 2.42 2.09 0.00 0.00 0.00 SECOND HI GHEST 24-HOUR AVERAGED LI NK CONTRI BUTI ONS IN MILCROGRAMS/M**3 Page 4 1B1A1404.0UT

JOB: Site 1 Opt 1/2 2014 1B1A1404. DA3 RUN: FORMALDEHYDE MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 41140.164 (3, 24) 0.00 1140.16 8.47251.82 96.07 32.59120.27 44.67 4.92 2.20 6.12 11.27 Links 10+ 72.67 63.41 0.07 0.33 8.75103.70 74.52 3.96 2.59 21.33 Links 20+ 67.06 6.58 9.70108.92 13.56 1.86 2.75 0.00 0.00 0.00 Page 5 181A1404.0UT 5 559.490 (3, 24) 0.00 559.49 8.24 58.68 44.56 12.81 76.53 29.25 4.72 2.15 5.91 10.35 Links 10+ 43.57 53.47 0.06 0.18 6.17 39.12 57.06 3.22 1.81 9.26 Links 10+ 43.57 53.47 0.06 0.18 6.17 39.12 57.06 3.22 1.81 9.26 Links 10+ 43.57 53.47 0.00 0.07 0.22 8.07 34.81 46.30 3.28 1.86 9.07 Links 10+ 43.57 53.20.07 0.22 8.07 34.81 46.30 3.28 1.86 9.07 Links 10+ 54.05 63.32 0.07 0.22 8.07 34.81 46.30 3.28 1.86 9.07 Links 20+ 45.17 3.75 12.12 3.92 7.24 1.41 2.32 0.00 0.00 0.00 0.00 71070.255 (3, 24) 0.00 0170.26 7.28176.27 42.10 20.99 75.98117.38 5.87 2.46 6.89 13.72 Links 10+150.83133.14 0.158 11.56 74.52 54.29 4.05 2.68 19.45 Links 20+ 68.68 3.63 11.31131.47 17.61 2.00 2.85 0.00 0.00 0.00 8 953.117 (3, 24) 0.00 953.12 6.01 39.48 20.57 9.33 4.8 87279.36 7.85 2.93 8.29 19.04 Links 10+150.83133.14 0.18 0.77 33.16 37.90 38.28 4.08 2.60 13.00 Links 20+ 62.90 0.84 1.94 13.79 13.03 2.07 2.90 0.00 0.00 0.00 9 938.178 (3, 24) 0.00 918.18 5.05 1.90 71 2.45 5.35 5.4293.31 11.32 3.56 10.21 28.94 Links 10+160.03179.99 0.42 0.55 34.39 21.00 28.72 3.98 2.38 35 Links 20+ 62.30 0.38 0.83 5.34 8.06 1.90 2.87 0.00 0.00 0.00 10 918.529 (3, 24) 0.00 918.53 4.15 11.67 7.77 3.29 26.3330.73 21.47 4.73 13.94 58.66 Links 10+160.03179.99 0.42 0.55 19.19 7.12 3.75 10.00 0.00 0.00 113837.536 (3, 24) 0.00 1387.54 3.37 7.29 5.00 2.17 20.06 59.00 45.91 7.02 23.35459.71 Links 20+ 42.35 0.19 0.41 2.58 4.74 1.61 2.77 0.00 0.00 0.00 131545.070 (3, 24) 0.00 1545.07 4.95 11.85 7.99 3.53 2.753 87.82 16.66 4.46 13.55 67.82 Links 10+564.7752.20 8 0.65 0.73 47.11 23.34 0.00 0.00 0.00 131545.070 (3, 24) 0.00 1545.07 4.95 17.44 11.40 5.20 35.02 86.55 10.69 3.57 10.53 33.15 Links 10+564.7752.20 8 0.65 0.73 47.11 23.34 0.94 10.00 0.00 0.00 131545.070 (3, 24) 0.00 1545.07 4.95 17.44 11.40 5.20 35.02 86.55 10.69 3.57 10. Calm Winds Occurrence (Julian day/hour ending) of Significant Occurrences No calm wind hours were encountered during this processing period. Program terminated normally Page 6 'Site 1 Opt 1/2 2014 1B1A1405.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1

```
1 1 99 1 3 99
99999 99 99999 99
1 1 'u'
'REC E (MID S) ' 743. 1116. 5.0
'REC E (164 S) ' 857. 1123. 5.0
'REC E (82 S) ' 939. 1128. 5.0
'REC E (CNR) ' 1020. 1134. 5.0
'REC E (82 E) ' 1022. 1053. 5.0
'REC E (82 E) ' 1075. 1056. 5.0
'REC E (CNR) ' 1076. 1137. 5.0
'REC E (82 N) ' 1156. 1142. 5.0
'REC E (164 N) ' 1238. 1146. 5.0
'REC E (MID N) ' 1341. 1153. 5.0
'REC W (MID N) ' 1453. 1280. 5.0
'REC W (164 N) ' 1316. 1272. 5.0
'REC W (82 N) ' 1234. 1269. 5.0
'REC W (CNR) ' 1138. 1288. 5.0
'REC W (82 W) ' 1137. 1385. 5.0
'REC W (164 W) ' 1145. 1466. 5.0
'REC W (MID W) ' 1156. 1626. 5.0
'REC W (MID W) ' 1072. 1597. 5.0
'REC W (164 W) ' 1043. 1434. 5.0
'REC W (82 W) ' 1026. 1354. 5.0
'REC W (CNR) ' 995. 1273. 5.0
'REC W (82 S) ' 900. 1248. 5.0
'REC W (164 S) ' 819. 1243. 5.0
'REC W (MID S) ' 692. 1235. 5.0
'REC W (church) ' 568. 1376. 5.0
1 'p'
1 1 1 1 1 1 1
'NAPHTHALENE' 27
1 1
'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56
2 1
'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56
32
'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3
4 1
'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44
52
'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2
6 1
'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56
7 1
'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44
8 1
'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44
9 1
'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44
10 1
'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44
11 1
'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56
12 2
'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3
13 1
'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32
```

14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 0.679 2 1606 0.679 3 120 57 2.0 1606 7.841 1679 1 3 4 527 0.679 5 120 107 2.0 527 7.841 1700 1 3 6 1830 0.679 7 1830 0.679 8 1830 0.679 9 3568 0.679 10 3568 0.679 11 3548 0.679 12 120 65 2.0 3548 7.841 1665 1 3 13 20 0.679 14 20 0.679 15 120 115 2.0 20 7.841 1752 1 3 16 4130 0.679 17 4130 0.679 18 958 0.679 19 958 0.679 20 958 0.679 21 120 94 2.0 958 7.841 1523 1 3 22 45 0.679 23 85 0.679 24 120 109 2.0 85 7.841 1694 1 3 25 739 0.679 26 739 0.679 27 739 0.679 1B1A1405.OUT CAL3QHCR (Dated: 95221)

DATE : 3/ 5/10 PAGE: 1 TIME : 19:46:29 JOB: Site 1 Opt 1/2 2014 1B1A1405.DA3 RUN: NAPHTHALENE Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) X1 Y1 X2 Y2 '(1) (ULG) (F1) (F1) NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 24.0 0 NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 0 NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 24.0 0 NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 24.0 0 NB Rt1 depart* 1784.0 1227.0 2072.0 1272.0 * 291. 81. AG 0.0 44.0 NB Rt1 depart* 1784.0 1227.0 2072.0 1272.0 * 291. 81. AG 0.0 44.0 SB Rt1 aprch * 2069.0 1311.0 1694.0 1264.0 * 378. 263. AG 0.0 44.0 . SB Rt1 aprch * 1094.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 26.0 2 . SB Rt1 th+rt * 1395.0 1248.0 1057.0 1231.0 * 338. 262. AG 0.0 36.0 3 . SB Rt1 left * 1240.0 1217.0 1058.0 1208.0 * 182. 267. AG 0.0 32.0 . SB Rt1 left * 1240.0 1217.0 1245.0 1216.0 * 182. 267. AG 0.0 32.0 . SB Rt1 left * 1240.0 1217.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 12. 13. 14. 15. 15. SB RTI LETT * 1147.0 1212.0 1245.0 1216.0 * 98. 88 CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 2 TIME : 19:46:29 JOB: Site 1 Opt 1/2 2014 1B1A1405.DA3 RUN: NAPHTHALENE Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) 1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * SB Rt1 depart* 1056.0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 654. 267. AG 0.0 56.0 EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 44.0 WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 WB Rt28 depar* 1050.0 1141.0 1050.0 1170.0 * 233. 13. AG 0.0 44.0 WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 624. 12. AG 0.0 32.0 eptor Data 16. 17. 18 19 20. 21. 22. 23. 24. 25. 26. 27. Receptor Data * COORDI NATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \text{CEPTOR} & \star & \text{YZ} \\ \hline \\ \text{REC E} & (\text{MID S}) & \star & 743.0 & 1116.0 & 5.0 \\ \text{REC E} & (164 & \text{S}) & \star & 857.0 & 1123.0 & 5.0 \\ \text{REC E} & (82 & \text{S}) & \star & 93.0 & 1128.0 & 5.0 \\ \text{REC E} & (82 & \text{S}) & \star & 1022.0 & 1053.0 & 5.0 \\ \text{REC E} & (82 & \text{E}) & \star & 1022.0 & 1053.0 & 5.0 \\ \text{REC E} & (82 & \text{E}) & \star & 1075.0 & 1056.0 & 5.0 \\ \text{REC E} & (82 & \text{E}) & \star & 1076.0 & 1137.0 & 5.0 \\ \text{REC E} & (82 & \text{E}) & \star & 1076.0 & 1142.0 & 5.0 \\ \text{REC E} & (82 & \text{N}) & \star & 1156.0 & 1142.0 & 5.0 \\ \text{REC E} & (82 & \text{N}) & \star & 1136.0 & 1142.0 & 5.0 \\ \text{REC E} & (164 & \text{N}) & \star & 1431.0 & 1153.0 & 5.0 \\ \text{REC E} & (82 & \text{N}) & \star & 1341.0 & 1153.0 & 5.0 \\ \text{REC W} & (\text{MID N}) & \star & 1435.0 & 1280.0 & 5.0 \\ \text{CREC W} & (82 & \text{N}) & \star & 1138.0 & 1288.0 & 5.0 \\ \text{REC W} & (82 & \text{N}) & \star & 1138.0 & 1288.0 & 5.0 \\ \text{REC W} & (164 & \text{N}) & \star & 1138.0 & 1288.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1137.0 & 1385.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1143.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1143.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (82 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (82 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (82 & \text{W}) & \star & 1024.0 & 1354.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1024.0 & 1354.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1024.0 & 1354.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043.0 & 1434.0 & 5.0 \\ \text{REC W} & (164 & \text{W}) & \star & 1043$ 2. 3. 4. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 20. REC W (82 W) * 1026.0 1354.0 5.0 Page 1 1B1A1405.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 3 TIME : 19: 46: 29 JOB: Site 1 Opt 1/2 2014 1B1A1405.DA3 RUN: NAPHTHALENE Receptor Data * COORDI NATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED

(MLCROGRAMS/M* (MI CROGRAMS/M**3)
 * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 Output Section Output Section MOTES PERTAINING TO THE REPORT 1. THE HIGHEST AVERAGE IN EACH OF THE FIRST TWO COLUMNS OF EACH TABLE BELOW ARE SUFFIXED BY AN ASTERISK (*). FOR PM OUTPUT, THERE IS ONLY ONE COLUMN AND ASTERISK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE. 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBER OF CALM HOURS USED IN PRODUCING EACH AVERAGE ARE PREFIXED BY A C. PRIMARY AND SECONDARY AVERAGES. FIVE HIGHEST 24-HOUR END-TO-END AVERAGE CONCENTRATIONS IN MICROGRAMS/M**3 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. Highest Second Highest Third Highest Fourth Highest Fifth Highest Reptr Ending Ending Ending Ending No. Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm Conc Day Hr Calm 1194.033 (2, 24) C 0 73.908 (1, 24) C 0 73.604 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 2 291.500* (2, 24) C 0 108.154 (1, 24) C 0 73.604 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 3 286.000 (2, 24) C 0 108.154 (1, 24) C 0 73.604 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 3 286.000 (2, 24) C 0 108.154 (1, 24) C 0 73.604 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 127.871 (2, 24) C 0 108.154 (1, 24) C 0 73.604 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 127.871 (2, 24) C 0 108.154 (1, 24) C 0 75.200 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 5 127.871 (2, 24) C 0 108.154 (1, 24) C 0 21.029 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 6 119.521 (2, 24) C 0 141.971 (1, 24) C 0 51.867 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 7 161.283 (2, 24) C 0 141.971 (1, 24) C 0 52.633 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 7 161.283 (2, 24) C 0 74.671 (1, 24) C 0 52.633 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 9 181.450.0UT 9 181.450.0UT 9 181.850 (UZ 24) C 0 74.671 (1, 24) C 0 50.804 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 10 149.270 (2, 24) C 0 74.671 (1, 24) C 0 55.864 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 9 10 149.270 (2, 24) C 0 74.671 (1, 24) C 0 55.864 (3, 24) C 0 0.000 (1, 0) C 0 0.000 (1, 0) C 0 9 181. / 161.285 (2, 24) C 0 141.971 (1, 24) C 0 55.633 (3, 24) C 0 0.000 (1, 0) C 0 0. C 0 C 0) C 0) C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0 C 0

In this 10+ 49. 13 49. 07 0. 10 0. 12 12. 00 1. 12 0. 22 1. 17 0. 08 1. 32 181A1405. 0UT Links 20+ 19. 12 0. 00 0.00 0. 00 1. 65 0. 56 0. 85 0. 00 0. 00 0. 00 10 169. 700 (2, 24) 0. 00 169. 70 0. 00 0. 03 0. 01 0. 02 0. 06 47. 98 0. 96 0. 10 0. 64 11. 67 Links 20+ 13. 45 0. 00 0. 00 0. 00 0. 65 0. 46 0. 81 0. 00 0. 00 0. 00 11 228. 525 (3, 24) 0. 00 228. 52 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 Links 20+ 13. 45 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 12 244. 279 (1, 24) 0. 00 228. 52 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 Links 10+ 0. 00121. 91 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 Links 10+ 0. 00 12. 91 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 Links 10+ 0. 00 242. 75 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 13 242. 729 (1, 24) 0. 00 242. 75 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 Links 10+ 85. 16 94. 40 0. 15 0. 08 6. 40 4. 19 6. 82 0. 03 0. 24 1.89 Links 10+ 85. 16 94. 40 0. 15 0. 08 6. 40 4. 19 6. 82 0. 03 0. 24 1.89 Links 10+ 85. 16 94. 40 0. 15 0. 08 6. 40 4. 19 6. 82 0. 03 0. 04 1.89 Links 10+ 85. 16 94. 40 0. 15 0. 08 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 14 157. 258 (3, 24) 0. 00 242. 75 0. 00 0. 00 0. 00 0. 00 0. 00 0. 00 14 157. 258 (3, 24) 0. 00 157. 26 0. 00 0. 06 0. 00 0. 00 0. 00 0. 00 15 154. 404 (1, 24) 0. 00 157. 26 0. 00 0. 06 0. 00 0. 00 0. 00 16 16 6. 78 1.77 0. 04 0.11 10. 02 0. 00 0. 00 0. 00 0. 00 16 16 6. 78 1.77 0. 00 0. 02 0. 40 0. 00 0. 00 0. 00 0. 00 16 16 4. 36 1. 32 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 0. 00 162. 45 1.53 3. 62 3. 52 1. 20 13. 02 0.90 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 0. 00 162. 45 1.53 3. 62 3. 52 1. 20 13. 02 0.90 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 0. 00 10. 03 8. 09 9. 01 0. 06 7. 94 5. 56 Links 20+ 83. 40 5. 0. 30 .07 0. 62 5. 32 15. 82 0. 00 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 0. 01 6. 25. 32 15. 82 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 1.00 162. 45 1.53 3. 62 3. 52 1. 20 13. 02 0.90 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 1.77 0. 01 6. 25. 32 15. 82 0. 00 0. 00 0. 00 16 162. 450 (1, 24) 1.72 2014 181A1405. DA3 RUN: NAPHTHALENE Page 3 1B1A1405.0UT

CAL30HCR (Dated 9521) DATE : 3/ 5/10 PAGE: 9 TIME : 19:46:30 JOB: Site 1 Opt 1/2 2014 1B1A1405. DA3 RUN: NAPHTHALENE LINK CONTRIBUTION TABLES SECOND HIGHEST 24-HOUR AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 INCLUDING, AMPLENE RACKCROLIND, CONCENTRATIONS MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 'Site 1 Opt 1/2 2014 1B1A1406.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99

```
99999 99 99999 99
1 1 'u'
'REC E (MID S) ' 743. 1116. 5.0
'REC E (164 S) ' 857. 1123. 5.0
'REC E (82 S) ' 939. 1128. 5.0
'REC E (CNR) ' 1020. 1134. 5.0
'REC E (82 E) ' 1022. 1053. 5.0
'REC E (82 E) ' 1075. 1056. 5.0
'REC E (CNR) ' 1076. 1137. 5.0
'REC E (82 N) ' 1156. 1142. 5.0
'REC E (164 N) ' 1238. 1146. 5.0
'REC E (MID N) ' 1341. 1153. 5.0
'REC W (MID N) ' 1453. 1280. 5.0
'REC W (164 N) ' 1316. 1272. 5.0
'REC W (82 N) ' 1234. 1269. 5.0
'REC W (CNR) ' 1138. 1288. 5.0
'REC W (82 W) ' 1137. 1385. 5.0
'REC W (164 W) ' 1145. 1466. 5.0
'REC W (MID W) ' 1156. 1626. 5.0
'REC W (MID W) ' 1072. 1597. 5.0
'REC W (164 W) ' 1043. 1434. 5.0
'REC W (82 W) ' 1026. 1354. 5.0
'REC W (CNR) ' 995. 1273. 5.0
'REC W (82 S) ' 900. 1248. 5.0
'REC W (164 S) ' 819. 1243. 5.0
'REC W (MID S) ' 692. 1235. 5.0
'REC W (church) ' 568. 1376. 5.0
1 'p'
1 1 1 1 1 1 1
'ACENAPHTHENE' 27
1 1
'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56
2 1
'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56
3 2
'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3
4 1
'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44
52
'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2
6 1
'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56
7 1
'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44
8 1
'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44
91
'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44
10 1
'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44
11 1
'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56
12 2
'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3
13 1
'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32
14 1
```

'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0041 2 1606 .0041 3 120 57 2.0 1606 .0103 1679 1 3 4 527 .0041 5 120 107 2.0 527 .0103 1700 1 3 6 1830 .0041 7 1830 .0041 8 1830 .0041 9 3568 .0041 10 3568 .0041 11 3548 .0041 12 120 65 2.0 3548 .0103 1665 1 3 13 20 .0041 14 20 .0041 15 120 115 2.0 20 .0103 1752 1 3 16 4130 .0041 17 4130 .0041 18 958 .0041 19 958 .0041 20 958 .0041 21 120 94 2.0 958 .0103 1523 1 3 22 45 .0041 23 85 .0041 24 120 109 2.0 85 .0103 1694 1 3 25 739 .0041 26 739 .0041 27 739 .0041 IB1A1406.0UT CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 1 TIME : 20:30:13

JOB: Site 1 Opt 1/2 2014 1B1A1406 DA3 RUN: ACENAPHTHENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants $VS = 0.0 \ \text{CM/S VD} = 0.0 \ \text{CM/S ZO} = 321. \ \text{CM ATIM} = 60.$ Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT)

 16. SB Rt1 depart* 1056.0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0

 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0

 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0

 19. EB Rt28 aprch* 1028.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0

 20. EB Rt28 aprch* 1072.0 1425.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0

 21. EB Rt28 aprch* 1072.0 1425.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0

 22. EB Rt28 aprch* 1072.0 1425.0 1072.0 1426.0 * 268. 192. AG 0.0 36.0 3

 22. EB Rt28 depar* 1039.0 1194.0 1043.0 1015.0 * 179. 179. AG 0.0 32.0

 23. WB Rt28 depar* 1039.0 1194.0 1043.0 1015.0 * 179. 179. AG 0.0 24.0 2

 24. WB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 44.0

 25. WB Rt28 depar* 1069.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0

 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0

 27. WB Rt28 depar* 1120.0 1424.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0

 27. WB Rt28 depar* 1120.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0

 27. WB Rt28 depar* 1120.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0

 27. WB Rt28 depar* 1120.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0

 28. WB Rt28 depar* 1120.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0

 _____ * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \label{eq:constraints} \begin{array}{c} \text{REC B} \\ \text{REC E} \\ (\text{MID S}) & \text{*} & 743.0 \\ \text{REC E} \\ (\text{MID S}) & \text{*} & 743.0 \\ \text{REC E} \\ (\text{CRC E}) & \text{*} & 857.0 \\ 1123.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{CNR}) & \text{*} & 1020.0 \\ 134.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{S}2 \\ \text{S}) & \text{*} & 93.0 \\ 1128.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{CE E} \\ (\text{S}2 \\ \text{S}) & \text{*} & 1020.0 \\ 1134.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{S}2 \\ \text{E}) & 1075.0 \\ 1056.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{S}2 \\ \text{S}) & \text{*} & 1075.0 \\ 1156.0 \\ 1142.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{S}2 \\ \text{N}) & \text{*} & 1156.0 \\ 1142.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{S}2 \\ \text{N}) & \text{*} & 1136.0 \\ 1142.0 \\ \text{S}.0 \\ \text{REC E} \\ (\text{MID N}) & \text{*} & 1431.0 \\ 1153.0 \\ 1280.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID N}) & \text{*} & 1134.0 \\ 1269.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{CNR}) & \text{*} & 1138.0 \\ 1286.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{S}2 \\ \text{N}) & \text{*} & 1137.0 \\ 1385.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1145.0 \\ 1460.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1043.0 \\ 1434.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1043.0 \\ 1354.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1043.0 \\ 1354.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1043.0 \\ 1354.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1043.0 \\ 1354.0 \\ \text{S}.0 \\ \text{S}.0 \\ \text{REC W} \\ (\text{MID W}) & \text{*} & 1043.0 \\ 1354.0 \\ \text{S}.0 \\ \text{S}.0$ 1. 3. 4. 5. 6. 7. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 19. REC W (164 W) * 1043.0 1434.0 5.0 20. REC W (82 W) * 1026.0 1354.0 5.0 Page 1 1BTA1406.OUT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 3 TI ME : 20:30:13 JOB: Si te 1 Opt 1/2 2014 1B1A1406.DA3 RUN: ACENAPHTHENE Receptor Data * COORDI NATES (FT) RECEPTOR * X Y Z 23. 24. 25. . REC W (164 S) * 819.0 1243.0 5.0 . REC W (MID S) * 692.0 1235.0 5.0 . REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3)

* REC1 REC2 REC3 RÉC4 REC5 REC6 REC7 REC8 REC9 REC10

MAX * 0.9 1.0 1.0 1.0 0.5 0.4 1.2 0.8 1.0 0.8 WIND DIR* 65 295 285 275 280 280 285 75 70 270 JULIAN * 3 1 1 1 1 1 3 1 HOUR * 1 23 21 19 20 20 21 3 2 18 * REC11 REC13 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 MAX * 1.1 1.3 1.2 1.0 0.7 0.7 0.6 0.6 0.7 0.9 WI ND DI R* 250 250 245 260 240 220 205 155 155 110 JULI AN * 1 1 1 1 1 1 3 6 12 8 5 19 19 10 * REC21 REC22 REC23 REC24 REC25 * -----Output Section

INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. Page 4 1B1A1406.0UT

INCLUDING AMBIENT BACKGROUND CONCENTRATIONS.

Calm Winds Occurrence (Julian day/hour ending) of Significant Occurrences No calm wind hours were encountered during this processing period. Program terminated normally Page 6

'Site 1 Opt 1/2 2014 1B1A1407.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'ANTHRACENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0051 2 1606 .0051 3 120 57 2.0 1606 .0127 1679 1 3 4 527 .0051 5 120 107 2.0 527 .0127 1700 1 3 6 1830 .0051 7 1830 .0051 8 1830 .0051 9 3568 .0051 10 3568 .0051 11 3548 .0051 12 120 65 2.0 3548 .0127 1665 1 3 13 20 .0051 14 20 .0051 $15\ 120\ 115\ 2.0\ 20\ .0127\ 1752\ 1\ 3$ 16 4130 .0051 17 4130 .0051 18 958 .0051 19 958 .0051 20 958 .0051 21 120 94 2.0 958 .0127 1523 1 3 22 45 .0051 23 85 .0051 24 120 109 2.0 85 .0127 1694 1 3 25 739 .0051 26 739 .0051 27 739 .0051

1B1A1407.OUT CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 1 TIME : 21: 8:12 JOB: Site 1 Opt 1/2 2014 1B1A1407.DA3 RUN: ANTHRACENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 044.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 318. 262. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 318. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 * 182. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 2 TIME : 21: 8:12 JOB: Si te 1 0pt 1/2 2014 1B1A1407.DA3 RUN: ANTHRACENE Link Data Constants - (Variable data in *.LNK file) LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDU MATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RecC} E (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 P) * 1076.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{$ -----1B1A1407.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 5/10 PAGE: 3 TIME : 21: 8:12 JOB: Site 1 Opt 1/2 2014 1B1A1407.DA3 RUN: ANTHRACENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 1.5 1.5 1.5 1.2 0.9 0.7 0.8 0.7 0.8 1.0 WI ND DI R* 255 245 255 250 220 205 210 135 110 110 JULI AN * 1 5 13 15 14 8 5 6 15 10 10 * REC21 REC22 REC23 REC24 REC25 * MAX+BKG * 1.2 1.6 1.6 1.7 0.4 - BKG * 0.0 0.0 0.0 0.0 0.0 _____ MAX * 1.2 1.6 1.6 1.7 0.4 WIND DIR* 100 250 245 100 220 JULIAN * 3 1 1 3 1 HOUR * 8 14 13 8 8 THE: J7: B.25 JDE: SI F0 JPT J2 J014 IBIN1407. DA3 RUN: ANTHRACENE THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING OF EACH TABLE DELOW ARE SUFFIXED BY AN ASTEDISK (*). TO REE MIGRICA WEREGE IN CLAR OF COLUMN ADD ASTENES FOR THE ANNUAL AVERAGE/PERIOD OF COMERN TABLE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOW FOR THE PRECEDING AVERAGE. THE NUMBERS IN PARENTHESES AND AVERAGE CONCENTRATIONS IN MICROGRAMS/M**3 INCLUDING MARIENT BACKGOUND CONCENTRATIONS. HIGHEST SECOND HY CLAIM CONCE DAY H' CLAIM CONCE DAY H' CLAIM TO THE PRECEDING AVERAGE. HIGHEST SECOND HY CLAIM CONCE DAY H' CLAIM CONCE DAY H' CLAIM TO CONCEND THE CLAIM CONCENTRATIONS IN MICROGRAMS/M**3 INCLUDING AND H' CLAIM CONCEND H' CLAIM CONCEND DAY (1) 0 C 0 0.0000 (1, 0) C 0 0.0000 (1, 0) C 0 0.000 (1, 0) C 0 0.0000 (1, 0) C 0 0.0000 (1, 0) C 0 0.000 (1, 0) C 0 0.000 (1, 0) Output Section

 19
 0.366
 (3.24)
 C 0

 21
 0.577
 (3.24)
 C 0

 23
 0.577
 (3.24)
 C 0

 23
 0.33
 (3.24)
 C 0

 25
 0.33
 (3.24)
 C 0

 25
 0.33
 (3.24)
 C 0

 100
 100
 100
 100
 100
 100
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00
 0.00

Page 4 1B1A1407.0UT

'Site 1 Opt 1/2 2014 1B1A1408.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'ACENAPHTHYLE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0203 2 1606 .0203 3 120 57 2.0 1606 .0509 1679 1 3 4 527 .0203 5 120 107 2.0 527 .0509 1700 1 3 6 1830 .0203 7 1830 .0203 8 1830 .0203 9 3568 .0203 10 3568 .0203 11 3548 .0203 12 120 65 2.0 3548 .0509 1665 1 3 13 20 .0203 14 20 .0203 15 120 115 2.0 20 .0509 1752 1 3 16 4130 .0203 17 4130 .0203 18 958 .0203 19 958 .0203 20 958 .0203 21 120 94 2.0 958 .0509 1523 1 3 22 45 .0203 23 85 .0203 24 120 109 2.0 85 .0509 1694 1 3 25 739 .0203 26 739 .0203 27 739 .0203

1B1A1408.OUT CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 1 TIME : 19:18:49 JOB: Site 1 Opt 1/2 2014 1B1A1408.DA3 RUN: ACENAPHTHYLE ------General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 044.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 388. 267. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1240.0 1217.0 1058.0 1208.0 * 182. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 2 TIME : 19: 18:49 JOB: Si te 1 0pt 1/2 2014 1B1A1408.DA3 RUN: ACENAPHTHYLE Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENCTH BRG TYPE H W NIANES LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LI NK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 044.0 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 5. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUNATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1220.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1262.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 01434.0 5.0 . REC W (164 N) * 104 -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16 17 18. 19. 20. REC W (82 Page 1 1B1A1408.OUT 1B1A1408.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 3 TIME : 19:18:49 JOB: Site 1 Opt 1/2 2014 1B1A1408.DA3 RUN: ACENAPHTHYLE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 6.1 6.9 6.5 5.0 3.7 3.4 3.5 3.3 3.6 4.2 WIND DIR* 250 255 255 250 245 230 220 160 155 105 JULIAN * 1 1 1 1 1 1 3 3 3 HOUR * 14 15 15 14 13 10 8 20 19 9 * REC21 REC22 REC23 REC24 REC25 Output Section

 19
 1.836
 (3.24)
 C 0

 21
 2.617
 (3.24)
 C 0

 23
 1.649
 (3.24)
 C 0

 23
 1.649
 (3.24)
 C 0

 23
 1.649
 (3.24)
 C 0

 23
 1.746
 (3.24)
 C 0

 23
 0.776
 (3.23)
 C 0

 10
 3.633
 C 2.21
 0.600
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000

Page 4 1B1A1408.0UT

Page 5 1B1A1408.0UT

'Site 1 Opt 1/2 2014 1B1A1409.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BENZOB' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0009 2 1606 .0009 3 120 57 2.0 1606 .0023 1679 1 3 4 527 .0009 5 120 107 2.0 527 .0023 1700 1 3 6 1830 .0009 7 1830 .0009 8 1830 .0009 9 3568 .0009 10 3568 .0009 11 3548 .0009 12 120 65 2.0 3548 .0023 1665 1 3 13 20 .0009 14 20 .0009 $15\ 120\ 115\ 2.0\ 20\ .0023\ 1752\ 1\ 3$ 16 4130 .0009 17 4130 .0009 18 958 .0009 19 958 .0009 20 958 .0009 21 120 94 2.0 958 .0023 1523 1 3 22 45 .0009 23 85 .0009 24 120 109 2.0 85 .0023 1694 1 3 25 739 .0009 26 739 .0009 27 739 .0009

1B1A1409.OUT CAL30HCR (Dated: 95221) DATE: 3/6/10 PAGE: 1 TIME: 19:53: 2 JOB: Site 1 Opt 1/2 2014 1B1A1409.DA3 RUN: BENZOB General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 316. 83. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1420.0 1217.0 1058.0 1207.0 * 318. 262. AG 0.0 32.0 14. SB Rt1 left * 1440.0 1226.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 2 TIME : 19:53: 2 JOB: Si te 1 0pt 1/2 2014 1B1A1409.DA3 RUN: BENZOB Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (ET) * LENCTH BRG TYPE H W NIANES LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUNATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1220.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1262.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1043.0 0. -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1409. OUT 1B1A1409.0UT 21. REC W (CRN) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 3 TIME : 19:53: 2 JOB: Site 1 Opt 1/2 2014 1B1A1409.DA3 RUN: BENZOB Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10
 *
 *

 MAX+BKG * 0.2 0.3 0.3 0.2 0.1

 - BKG * 0.0 0.0 0.0 0.0 0.0

 MAX * 0.2 0.3 0.3 0.2 0.1

 WI ND DI R* 230 255 255 185 220

 JULI AN * 1 1 1 1

 HOUR * 10 15 15 1 8

 - 0.0 20100
 THE: 19:52.18 JUBE: 31:62 JUBE: JUB Output Section

19 0.000 (1, 0) C 0 20 0.022 (3, 24) C 0 21 0.065 (3, 24) C 0 22 0.100 (3, 24) C 0 23 0.104 (3, 24) C 0 24 0.106* (3, 24) C 0 25 0.004 (3, 24) C 0 MAXI MUM 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMS/M*3 23 0.104 (2), 24, 24, 0.00 (2), 24, 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 25, 0.00 (2), 24, 0.00 (2), 20, 0.00 (2), 0.0

Page 4 1B1A1409.0UT

JOB: Site 1 Opt 1/2 2014 1B1A1409. DA3 RUN: BENZOB LINK CONTRIBUTION TABLES MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 4 0.000 (0.000

'Site 1 Opt 1/2 2014 1B1A1410.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BENZOK' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0009 2 1606 .0009 3 120 57 2.0 1606 .0023 1679 1 3 4 527 .0009 5 120 107 2.0 527 .0023 1700 1 3 6 1830 .0009 7 1830 .0009 8 1830 .0009 9 3568 .0009 10 3568 .0009 11 3548 .0009 12 120 65 2.0 3548 .0023 1665 1 3 13 20 .0009 14 20 .0009 $15\ 120\ 115\ 2.0\ 20\ .0023\ 1752\ 1\ 3$ 16 4130 .0009 17 4130 .0009 18 958 .0009 19 958 .0009 20 958 .0009 21 120 94 2.0 958 .0023 1523 1 3 22 45 .0009 23 85 .0009 24 120 109 2.0 85 .0023 1694 1 3 25 739 .0009 26 739 .0009 27 739 .0009

1B1A1410.OUT CAL3OHCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 1 TIME : 20:24:35 JOB: Site 1 Opt 1/2 2014 1B1A1410.DA3 RUN: BENZOK General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) 1. NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 01248.0 * 378. 263. AG 0.0 44.0 10. SB Rt1 aprch * 1096.0 1248.0 1057.0 1231.0 * 338. 267. AG 0.0 36.0 3 13. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 318. 262. AG 0.0 32.0 14. SB Rt1 left * 1440.0 1227.0 1245.0 * 299. 267. AG 0.0 32.0 15. SB Rt1 left * 1470.0 1212.0 1245.0 1268.0 * 182. 267. AG 0.0 32.0 14. SB Rt1 left * 1147.0 1212.0 1245.0 1268.0 * 182. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 2 TIME : 20:24:35 JOB: Si te 1 0pt 1/2 2014 1B1A1410.DA3 RUN: BENZOK Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (ET) * LENCTH BRG TYPE H W NI ANES LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUMATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1220.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1262.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (16 -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1410.OUT 1B1A1410.0UT 21. REC W (CRR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 3 TIME : 20:24:35 JOB: Site 1 Opt 1/2 2014 1B1A1410.DA3 RUN: BENZOK Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10
 *
 *

 MAX+BKG * 0.2 0.3 0.3 0.2 0.1

 - BKG * 0.0 0.0 0.0 0.0 0.0

 MAX * 0.2 0.3 0.3 0.2 0.1

 WI ND DI R* 230 255 255 185 220

 JULI AN * 1 1 1 1

 HOUR * 10 15 15 1 8

 - 0.0 20100
 TTHE : 30.24.69 JUBE: 316 JPT JQT JQT JQT JPT JPT JQT JPT JPT JPT JPT JQT JQLWNS OF FAOT TABLE BELOW ARE SUFFIXED BY AW ASTEDISK (*). TO THE INTERNATIONAL AVERAGE IN R.LWO THE FIRST TWO COLUMNS OF FAOT TABLE BELOW ARE SUFFIXED BY AW ASTEDISK (*). TO THE INTERNATIONAL AVERAGE IN R.LWO THE FIRST TWO COLUMNS OF FAOT TABLE BELOW ARE SUFFIXED BY AW ASTEDISK (*). TO THE INTERNATIONAL AVERAGE IN R.LWO THE FIRST TWO COLUMNS OF FAOT TABLE BELOW ARE SUFFIXED BY AW ASTEDISK (*). TO THE INTERNATIONAL AVERAGE IN R.LWO THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. THE NUMBERS IN THE ARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. THE NUMBERS TO TALE HOURS USED IN THE NOTOLING EACH AVERAGE ARE FREFIXED BY A C. HYVE H CHEST 24-HOURS USED IN THE AVERAGE CONCENTRATIONS IN MICROGRAMS/M**3 INCLUING KAMENY BACKGONNO CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FOUTH TO 1096 (2.44) (* 0 0.055 (1.44) (* 0 0.052 (3.44) (* 0 0.000 (1.0) (* 0 0.000 Output Section

19 0.000 (1, 0) C 0 20 0.022 (3, 24) C 0 21 0.065 (3, 24) C 0 22 0.100 (3, 24) C 0 23 0.104 (3, 24) C 0 24 0.106* (3, 24) C 0 25 0.004 (3, 24) C 0 MAXI MUM 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMS/M*3 23 0.104 (2), 24, 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 25 0.004 (2), 24, 00 26 0.000 (2), 20 0.000 (2), 2

Li nks 10+ 0, 20 0, 00

JOB: Site 1 Opt 1/2 2014 1B1A1410. DA3 RUN: BENZOK LINK CONTRIBUTION TABLES MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 4 0.000 (0.000

'Site 1 Opt 1/2 2014 1B1A1411.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BENZA' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0017 2 1606 .0017 3 120 57 2.0 1606 .0043 1679 1 3 4 527 .0017 5 120 107 2.0 527 .0043 1700 1 3 6 1830 .0017 7 1830 .0017 8 1830 .0017 9 3568 .0017 10 3568 .0017 11 3548 .0017 12 120 65 2.0 3548 .0043 1665 1 3 13 20 .0017 14 20 .0017 15 120 115 2.0 20 .0043 1752 1 3 16 4130 .0017 17 4130 .0017 18 958 .0017 19 958 .0017 20 958 .0017 21 120 94 2.0 958 .0043 1523 1 3 22 45 .0017 23 85 .0017 24 120 109 2.0 85 .0043 1694 1 3 25 739 .0017 26 739 .0017 27 739 .0017

1B1A1411.OUT CAL3QHCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 1 TIME : 12:32: 3 JOB: Site 1 Opt 1/2 2014 1B1A1411.DA3 RUN: BENZA General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 179. 179. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUNATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RecC} E (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 P) * 1076.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{$ -----1B1A1411.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 12:32: 3 JOB: Site 1 Opt 1/2 2014 1B1A1411.DA3 RUN: BENZA Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10

 *
 *
 0.4
 0.4
 0.4
 0.2
 0.2
 0.4
 0.4
 0.5
 0.4

 BKG *
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0</ MAX * 0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.2 0.3 WIND DIR* 245 240 250 230 230 230 225 220 185 165 JULIAN * 1 1 1 1 1 1 1 1 3 HOUR * 13 12 14 10 10 10 9 8 1 21 * REC21 REC22 REC23 REC24 REC25 * * REC21 REC22 REC23 REC24 REC25 MAX+BKG * 0.5 0.6 0.6 0.6 0.1 - BKG * 0.0 0.0 0.0 0.0 0 MAX * 0.5 0.6 0.6 0.6 0.1 WIND DIR* 240 245 115 245 185 JULIAN * 14 0 245 115 245 185 JULIAN * 12 13 11 13 1 HOUR * 12 13 11 13 1 CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 4 TIME : 12:32: 3 JOB: Si te 1 Opt 1/2 2014 1B1A1411. DA3 RUN: BENZA THE HIGHEST CONCENTRATION OF 0.60 UG/M**3 OCCURRED AT RECEPTOR REC22. □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 5 TIME : 12:32: 3 JOB: Si te 1 Opt 1/2 2014 1B1A1411. DA3 RUN: BENZA THE HIGHEST CONCENTRATION OF 0.60 UG/M**3 OCCURRED AT RECEPTOR REC22. □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 5 TIME : 12:32: 3 JOB: Si te 1 Opt 1/2 2014 1B1A1411. DA3 RUN: BENZA THE: 12:23. THE: 14:22. THE: 14:22. THE: 14:22. THE: 15:25. THE: Output Section

19 0.079 (3,24) C 0 20 0.097 (3,24) C 0 21 0.187 (3,24) C 0 22 0.251 (3,24) C 0 23 0.254 (3,24) C 0 24 0.254* (3,24) C 0 25 0.039 (3,24) C 0 MAXI MUM 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMS/M*3

Li hks 10+ 0, 20 0, 00

JOB: Site 1 Opt 1/2 2014 1B1A1411.DA3 RUN: BENZA LINK CONTRIBUTION TABLES MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 INCLUDING AMPLENT BACKOROUND CONTRIBUTIONS

'Site 1 Opt 1/2 2014 1B1A1412.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BENZOA' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0009 2 1606 .0009 3 120 57 2.0 1606 .0023 1679 1 3 4 527 .0009 5 120 107 2.0 527 .0023 1700 1 3 6 1830 .0009 7 1830 .0009 8 1830 .0009 9 3568 .0009 10 3568 .0009 11 3548 .0009 12 120 65 2.0 3548 .0023 1665 1 3 13 20 .0009 14 20 .0009 $15\ 120\ 115\ 2.0\ 20\ .0023\ 1752\ 1\ 3$ 16 4130 .0009 17 4130 .0009 18 958 .0009 19 958 .0009 20 958 .0009 21 120 94 2.0 958 .0023 1523 1 3 22 45 .0009 23 85 .0009 24 120 109 2.0 85 .0023 1694 1 3 25 739 .0009 26 739 .0009 27 739 .0009

1B1A1412.OUT CAL30HCR (Dated: 95221) DATE: 3/ 6/10 PAGE: 1 TIME: 21:17:21 JOB: Site 1 Opt 1/2 2014 1B1A1412.DA3 RUN: BENZOA General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RecC} E (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 P) * 1076.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{$ -----1B1A1412.0UT 21. REC W (CRR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 3 TIME : 21:17:21 JOB: Site 1 Opt 1/2 2014 1B1A1412.DA3 RUN: BENZOA Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10
 *
 *

 MAX+BKG * 0.2 0.3 0.3 0.2 0.1

 - BKG * 0.0 0.0 0.0 0.0 0.0

 MAX * 0.2 0.3 0.3 0.2 0.1

 WI ND DI R* 230 255 255 185 220

 JULI AN * 1 1 1 1

 HOUR * 10 15 15 1 8

 - 0.0 20100
 THE: J1:77:36 JDE: SIF 1 OF 172 2014 IBIAN12.DA3 RUN: BENZOA THE NUMBERS IN PARENTHESES AND THE REPORT NOTES PERTAINING TO THE REPORT NOTES PERTAINING TO THE REPORT NOTES PERTAINING TO THE REPORT THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOUR FOR THE RECOIN AN EXCHANGE (*). THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND EXDING HOUR FOR THE RECOIN CAVERAGE. THE NUMBERS OF CALL HOURS USED IN PRODUCING EACH AVERAGE ARE FREFIXED BY A C. THE NUMBERS THE ARENTHESES ARE THE JULIAN DAY AND EXDING HOUR FOR THE RECOINS AVERAGE. THE NUMBERS THE ARENTHESES ARE THE JULIAN DAY AND EXDING HOUR FOR THE RECOINS AVERAGE. THE NUMBERS THE ARENTHESES ARE THE JULIAN DAY AND EXDING HOUR FOR THE RECOINS AVERAGE. THE NUMBERS THE ARENT HACKNER CONCENTRATIONS IN ACCORDANY.**3 INCLUING KABLENT BACKENDON CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FORTH TO THE THE STORE THE AND THE AND THE AND THE AND THE ADD THE CAN TONCE DAY HF CAIM TO THE CAN THE AND THE AND THE AND THE ADD Output Section

19 0.000 (1, 0) C 0 20 0.022 (3, 24) C 0 21 0.065 (3, 24) C 0 22 0.100 (3, 24) C 0 23 0.104 (3, 24) C 0 24 0.106* (3, 24) C 0 25 0.004 (3, 24) C 0 MAXI MUM 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMS/M*3 23 0.104 (2), 24, 24, 0.00 (2), 24, 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 25, 0.00 (2), 24, 0.00 (2), 20, 0.00 (2),

Li nks 10+ 0, 20 0, 00

JOB: Site 1 Opt 1/2 2014 1B1A1412. DA3 RUN: BENZOA LINK CONTRIBUTION TABLES MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 INCLUDING AMPLENT PACKGROUND CONSTRUCT a 0.000 (0.000

'Site 1 Opt 1/2 2014 1B1A1413.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'BENZOGHI' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0015 2 1606 .0015 3 120 57 2.0 1606 .0037 1679 1 3 4 527 .0015 5 120 107 2.0 527 .0037 1700 1 3 6 1830 .0015 7 1830 .0015 8 1830 .0015 9 3568 .0015 10 3568 .0015 11 3548 .0015 12 120 65 2.0 3548 .0037 1665 1 3 13 20 .0015 14 20 .0015 15 120 115 2.0 20 .0037 1752 1 3 16 4130 .0015 17 4130 .0015 18 958 .0015 19 958 .0015 20 958 .0015 21 120 94 2.0 958 .0037 1523 1 3 22 45 .0015 23 85 .0015 24 120 109 2.0 85 .0037 1694 1 3 25 739 .0015 26 739 .0015 27 739 .0015

1B1A1413.OUT CAL3OHCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 1 TIME : 21:52: 0 JOB: Site 1 Opt 1/2 2014 1B1A1413.DA3 RUN: BENZOGHI General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 044.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 388. 267. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1240.0 1217.0 1058.0 1208.0 * 182. 267. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 2 TIME : 21:52: 0 JOB: Si te 1 0pt 1/2 2014 1B1A1413.DA3 RUN: BENZOGHI Link Data Constants - (Variable data in *.LNK file) LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 25. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUNATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RecC} E (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 P) * 1076.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{$ -----1B1A1413.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 6/10 PAGE: 3 TIME : 21:52: 0 JOB: Site 1 Opt 1/2 2014 1B1A1413.DA3 RUN: BENZOGHI Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10

 *
 *
 0.4
 0.4
 0.4
 0.2
 0.2
 0.4
 0.4
 0.5
 0.4

 BKG *
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0</ MAX * 0.5 0.5 0.5 0.4 0.3 0.2 0.2 0.2 0.1 0.2 0.3 WIND DIR* 245 240 250 230 230 230 225 220 185 165 JULIAN * 1 1 1 1 1 1 1 1 3 HOUR * 13 12 14 10 10 10 9 8 1 21 * REC21 REC22 REC23 REC24 REC25 * * REC21 REC22 REC24 REC25 * REC21 REC23 REC24 REC25 * REC21 REC22 REC24 REC25 * REC21 REC24 REC25 * REC22 REC24 REC25 * REC21 REC22 REC24 REC25 * REC21 REC24 REC25 * REC21 REC24 REC25 * REC24 REC24 REC25 * REC25 REC24 REC25 * REC24 REC24 REC25 * REC25 REC25 REC25 * REC25 REC5 * REC25 REC25 * REC25 REC25 * REC25 REC25 * REC5 Time: J::2:14 JOB: 316: 10f: 10f: 122 JOH: TBIAI413.DA3 RUN: BENZOGH JOB: 316: 10f: 10f: 122 JOH: TBIAI413.DA3 RUN: BENZOGH JOH: 2007 JOH: 2007 JOH: 2007 JOH: FIRST TWO COLUMNS OF FACH TABLE BELOW ARE SUFFIXED BY AN ASTERISK (*). TOR FIG UTIVIT: THERE IS ONLY OWE COLUMN AND ASTERN SK FOR THE ANNUAL AVERAGE/PERIOD OF CONCERN TABLE. 2. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOUR FOR THE PRECEDING AVERAGE. 3. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOURAWEST. 3. THE NUMBERS IN PARENTHESES ARE THE JULIAN DAY AND ENDING HOURAWEST. 3. THE NUMBERS IN PARENTHESES AND AVERAGE CONCENTRATIONS. IN ICRODENAMY. 3. AND FOR THE CAIM. 5. CONCENT DAY HE CAIM. 5. CONCEN Output Section

19 0.079 (3,24) C 0 20 0.097 (3,24) C 0 21 0.187 (3,24) C 0 22 0.251 (3,24) C 0 23 0.254 (3,24) C 0 24 0.254* (3,24) C 0 25 0.039 (3,24) C 0 MAXI MUM 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMMS/M*3

Li hks 10+ 0, 20 0, 00

JOB: Site 1 Opt 1/2 2014 1B1A1413. DA3 RUN: BENZOGHI LINK CONTRIBUTION TABLES MAXIMUM 3 - DAY AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 INCLUDING AMPLENT BACKGROUND CONTRIBUTIONS

'Site 1 Opt 1/2 2014 1B1A1414.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'CHRYSENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0007 2 1606 .0007 3 120 57 2.0 1606 .0018 1679 1 3 4 527 .0007 5 120 107 2.0 527 .0018 1700 1 3 6 1830 .0007 7 1830 .0007 8 1830 .0007 9 3568 .0007 10 3568 .0007 11 3548 .0007 12 120 65 2.0 3548 .0018 1665 1 3 13 20 .0007 14 20 .0007 15 120 115 2.0 20 .0018 1752 1 3 16 4130 .0007 17 4130 .0007 18 958 .0007 19 958 .0007 20 958 .0007 21 120 94 2.0 958 .0018 1523 1 3 22 45 .0007 23 85 .0007 24 120 109 2.0 85 .0018 1694 1 3 25 739 .0007 26 739 .0007 27 739 .0007

1B1A1414.OUT CAL3QHCR (Dated: 95221) DATE : 3/ 7/10 PAGE: 1 TIME : 21:12: 6 JOB: Site 1 Opt 1/2 2014 1B1A1414.DA3 RUN: CHRYSENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUMATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RECEPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RECE} (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 R) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 R) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 R) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} E (164 R) * 1138.0 1272.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} W (164 W) * 1137.0 1385.0 5.0 \\ \mbox{-} \\$ -----1B1A1414.OUT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 7/10 PAGE: 3 TIME : 21:12: 6 JOB: Site 1 Opt 1/2 2014 1B1A1414.DA3 RUN: CHRYSENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10
 *
 *

 MAX+BKG * 0.2 0.3 0.3 0.2 0.1

 - BKG * 0.0 0.0 0.0 0.0 0.0

 MAX * 0.2 0.3 0.3 0.2 0.1

 WI ND DI R* 230 255 255 185 220

 JULI AN * 1 1 1 1

 HOUR * 10 15 15 1 8

 - 0.0 20100
 THE: J7:12.22 JDE: SIF 12:22 JDE: SIF 12:22 NOTES PERTAINING TO THE REPORT TO THE INFORMATION OF THE REPORT THE INFORMATION OF THE INFORMATION OF THE INFORMATION OF HOUR FOR THE REPORT INFORMATION HIGHEST SECOND HIGHEST THICH HIGHEST FOULTH HIGHEST FOR THE ANNUAL AVERAGE PERFORMANCE TO THE INFORMATION OF THE INFORMATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FOULTH HIGHEST FOR THE ADD THE CAIN CONCE DAY HF CAIN TO THE INFORMATION OF THE INFORMATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FOULTH HIGHEST FOR THE INFORMATION OF Output Section

19 0.000 (1, 0) C 0 20 0.022 (3, 24) C 0 21 0.065 (3, 24) C 0 22 0.100 (3, 24) C 0 23 0.104 (3, 24) C 0 24 0.106* (3, 24) C 0 25 0.004 (3, 24) C 0 MAXI MUM 24-HOUR AVERAGED LINK CONTRI BUTI ONS IN MI CROGRAMS/M*3 23 0.104 (2), 24, 24, 0.00 (2), 24, 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 24, 0.00 (2), 25, 0.00 (2), 24, 0.00 (2), 20, 0.00 (2),

Li nks 10+ 0, 20 0, 00

 4 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 0.000
 Calm Winds Occurrence (Julian day/hour ending) of Significant Occurrences No calm wind hours were encountered during this processing period. Program terminated normally Page 6 'Site 1 Opt 1/2 2014 1B1A1415.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1

```
1 1 99 1 3 99
99999 99 99999 99
1 1 'u'
'REC E (MID S) ' 743. 1116. 5.0
'REC E (164 S) ' 857. 1123. 5.0
'REC E (82 S) ' 939. 1128. 5.0
'REC E (CNR) ' 1020. 1134. 5.0
'REC E (82 E) ' 1022. 1053. 5.0
'REC E (82 E) ' 1075. 1056. 5.0
'REC E (CNR) ' 1076. 1137. 5.0
'REC E (82 N) ' 1156. 1142. 5.0
'REC E (164 N) ' 1238. 1146. 5.0
'REC E (MID N) ' 1341. 1153. 5.0
'REC W (MID N) ' 1453. 1280. 5.0
'REC W (164 N) ' 1316. 1272. 5.0
'REC W (82 N) ' 1234. 1269. 5.0
'REC W (CNR) ' 1138. 1288. 5.0
'REC W (82 W) ' 1137. 1385. 5.0
'REC W (164 W) ' 1145. 1466. 5.0
'REC W (MID W) ' 1156. 1626. 5.0
'REC W (MID W) ' 1072. 1597. 5.0
'REC W (164 W) ' 1043. 1434. 5.0
'REC W (82 W) ' 1026. 1354. 5.0
'REC W (CNR) ' 995. 1273. 5.0
'REC W (82 S) ' 900. 1248. 5.0
'REC W (164 S) ' 819. 1243. 5.0
'REC W (MID S) ' 692. 1235. 5.0
'REC W (church) ' 568. 1376. 5.0
1 'p'
1 1 1 1 1 1 1
'DIBENZO' 27
1 1
'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56
2 1
'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56
32
'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3
4 1
'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44
52
'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2
6 1
'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56
7 1
'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44
8 1
'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44
9 1
'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44
10 1
'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44
11 1
'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56
12 2
'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3
13 1
'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32
```

14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0000 2 1606 .0000 3 120 57 2.0 1606 .0000 1679 1 3 4 527 .0000 5 120 107 2.0 527 .0000 1700 1 3 6 1830 .0000 7 1830 .0000 8 1830 .0000 9 3568 .0000 10 3568 .0000 11 3548 .0000 12 120 65 2.0 3548 .0000 1665 1 3 13 20 .0000 14 20 .0000 15 120 115 2.0 20 .0000 1752 1 3 16 4130 .0000 17 4130 .0000 18 958 .0000 19 958 .0000 20 958 .0000 21 120 94 2.0 958 .0000 1523 1 3 22 45 .0000 23 85 .0000 24 120 109 2.0 85 .0000 1694 1 3 25 739 .0000 26 739 .0000 27 739 .0000 'Site 1 Opt 1/2 2014 1B1A1416.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1

```
1 1 99 1 3 99
99999 99 99999 99
1 1 'u'
'REC E (MID S) ' 743. 1116. 5.0
'REC E (164 S) ' 857. 1123. 5.0
'REC E (82 S) ' 939. 1128. 5.0
'REC E (CNR) ' 1020. 1134. 5.0
'REC E (82 E) ' 1022. 1053. 5.0
'REC E (82 E) ' 1075. 1056. 5.0
'REC E (CNR) ' 1076. 1137. 5.0
'REC E (82 N) ' 1156. 1142. 5.0
'REC E (164 N) ' 1238. 1146. 5.0
'REC E (MID N) ' 1341. 1153. 5.0
'REC W (MID N) ' 1453. 1280. 5.0
'REC W (164 N) ' 1316. 1272. 5.0
'REC W (82 N) ' 1234. 1269. 5.0
'REC W (CNR) ' 1138. 1288. 5.0
'REC W (82 W) ' 1137. 1385. 5.0
'REC W (164 W) ' 1145. 1466. 5.0
'REC W (MID W) ' 1156. 1626. 5.0
'REC W (MID W) ' 1072. 1597. 5.0
'REC W (164 W) ' 1043. 1434. 5.0
'REC W (82 W) ' 1026. 1354. 5.0
'REC W (CNR) ' 995. 1273. 5.0
'REC W (82 S) ' 900. 1248. 5.0
'REC W (164 S) ' 819. 1243. 5.0
'REC W (MID S) ' 692. 1235. 5.0
'REC W (church) ' 568. 1376. 5.0
1 'p'
1 1 1 1 1 1 1
'FLUORANTHENE' 27
1 1
'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56
2 1
'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56
32
'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3
4 1
'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44
52
'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2
6 1
'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56
7 1
'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44
8 1
'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44
9 1
'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44
10 1
'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44
11 1
'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56
12 2
'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3
13 1
'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32
```

14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0050 2 1606 .0050 3 120 57 2.0 1606 .0126 1679 1 3 4 527 .0050 5 120 107 2.0 527 .0126 1700 1 3 6 1830 .0050 7 1830 .0050 8 1830 .0050 9 3568 .0050 10 3568 .0050 11 3548 .0050 12 120 65 2.0 3548 .0126 1665 1 3 13 20 .0050 14 20 .0050 15 120 115 2.0 20 .0126 1752 1 3 16 4130 .0050 17 4130 .0050 18 958 .0050 19 958 .0050 20 958 .0050 21 120 94 2.0 958 .0126 1523 1 3 22 45 .0050 23 85 .0050 24 120 109 2.0 85 .0126 1694 1 3 25 739 .0050 26 739 .0050 27 739 .0050

1B1A1416.OUT CAL30HCR (Dated: 95221) DATE : 3/ 7/10 PAGE: 1 TIME : 22:15:31 JOB: Site 1 Opt 1/2 2014 1B1A1416.DA3 RUN: FLUORANTHENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 044.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 388. 267. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1240.0 1217.0 1058.0 1208.0 * 182. 267. AG 0.0 32.0 16. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 7/10 PAGE: 2 TIME : 22:15:31 JOB: Si te 1 0pt 1/2 2014 1B1A1416.DA3 RUN: FLUORANTHENE Link DATA CONSTANTS - (Variable data in *.LNK file) LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUMATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR * X Y Z} \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec E} & (MLD S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec E} & (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec E} & (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec E} & (164 N) * 1341.0 1153.0 5.0 \\ \mbox{-} \\ \mbox{Rec W} & (101 D N) * 1343.0 1280.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec W} & (104 N) * 1136.0 1272.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec W} & (164 W) * 1137.0 1385.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec W} & (164 W) * 1145.0 1466.0 5.0 \\ \mbox{-} \\ \mb$ -----1B1A1416.0UT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 7/10 PAGE: 3 TIME : 22:15:31 JOB: Site 1 Opt 1/2 2014 1B1A1416.DA3 RUN: FLUORANTHENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 1.5 1.5 1.5 1.2 0.9 0.7 0.8 0.7 0.8 1.0 WI ND DI R* 255 245 255 250 220 205 210 135 110 110 JULI AN * 1 5 13 15 14 8 5 6 15 10 10 * REC21 REC22 REC23 REC24 REC25 * MAX+BKG * 1.2 1.6 1.6 1.7 0.4 - BKG * 0.0 0.0 0.0 0.0 0.0 0.0 MAX * 1.2 1.6 1.6 1.7 0.4 WIND DIR* 100 250 245 100 220 JULIAN * 3 1 1 3 1 HOUR * 8 14 13 8 8 THE: 12:15:60 JDE: 316 10 FT JDE: 2014 IBIA1416.DA3 RUN: FLUORANTHENE THE NUMBERS IN PARENTHESES ARE THE JULAN DAY AND ENDING OF EACH TABLE DELOW ARE SUFFIXED BY AN ASTEDISK (*). TO REE INFORMATION OF THE REPORT THE NUMBERS IN PARENTHESES ARE THE JULAN DAY AND ENDING HOUR FOR THE RECEDING ARE SUFFIXED BY AN ASTEDISK (*). THE NUMBERS OF CALM HOURS USED IN PRODUCING EACH AREAGASTER FIXED BY A C. THE NUMBERS IN PARENTHESES ARE THE JULAN DAY AND ENDING HOUR FOR THE RECEDING AREAGE. THE NUMBERS TO THE REPORT THE NUMBERS TO THE NUMBE USED IN PRODUCING EACH AREAGASTER THE PROCEDING AREAGE. THE NUMBERS TO THE NUMBE USED IN THE AREAGASTER THE JULAN DAY AND ENDING HOUR FOR THE RECEDING AREAGE. THE NUMBERS TO THE NUMBE USED IN THE AND ALL AREAGASTER THE REPORT A C. THE NUMBERS TO THE NUMBE USED IN THE AND ALL AREAGASTER THE REPORT A C. THE NUMBERS TO SUMBE USED IN THE AND ALL AREAGASTER THE SUMME CONCENTRATIONS IN MICROGRAMS.MM*33 INCLUDING MARIENT BACKGROUND CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FORTH HIGHEST IN MICROGRAMS.MM*33 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FOR THE HIGH CONCE DAY HF CAIN CONCENTRATIONS IN MICROGRAMS.MM*33 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FOR THE ADMIC CONCENTRATIONS IN MICROGRAMS.MM*33 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST FOR THE ADMIC CONCENTRATIONS IN MICROGRAMS.MM*33 INCLUDING AMBIENT BACKGROUND CONCENTRATIONS. HIGHEST SECOND HIGHEST THICH HIGHEST HI Output Section

 1700.396 (3.24) C0

 1700.466 (3.24) C0

 1700.476 (3.24) C0

 1

Li hks 10+ 0, 20 0, 00

'Site 1 Opt 1/2 2014 1B1A1417.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'FLUORENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0086 2 1606 .0086 3 120 57 2.0 1606 .0215 1679 1 3 4 527 .0086 5 120 107 2.0 527 .0215 1700 1 3 6 1830 .0086 7 1830 .0086 8 1830 .0086 9 3568 .0086 10 3568 .0086 11 3548 .0086 12 120 65 2.0 3548 .0215 1665 1 3 13 20 .0086 14 20 .0086 15 120 115 2.0 20 .0215 1752 1 3 16 4130 .0086 17 4130 .0086 18 958 .0086 19 958 .0086 20 958 .0086 21 120 94 2.0 958 .0215 1523 1 3 22 45 .0086 23 85 .0086 24 120 109 2.0 85 .0215 1694 1 3 25 739 .0086 26 739 .0086 27 739 .0086

1B1A1417.OUT CAL3QHCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 1 TIME : 13: 4:51 JOB: Site 1 Opt 1/2 2014 1B1A1417.DA3 RUN: FLUORENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDU MATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RECEPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RECE} (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 R) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 R) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{REC} E (282 R) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} E (164 R) * 1138.0 1280.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{REC} W (164 R) * 1137.0 1385.0 5.0 \\ \mbox{-} \\$ -----1B1A1417.OUT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 13: 4.51 JOB: Site 1 Opt 1/2 2014 1B1A1417.DA3 RUN: FLUORENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10
 MAX+BKG
 *
 2.1
 2.3
 2.3
 2.2
 1.2
 1.1
 2.2
 2.1
 1.9
 2.0

 - BKG
 *
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0
 0.0</td MAX * 2.1 2.3 2.3 2.2 1.2 1.1 2.2 2.1 1.9 2.0 WIND DIR*55 55 285 285 10 290 275 280 275 285 JULIAN * 2 2 1 1 2 1 1 1 1 HOUR * 23 23 21 2 14 22 19 20 19 21 * REC11 REC12 REC13 REC14 REC15 REC16 REC17 REC18 REC19 REC20 MAX * 2.7 2.9 2.9 2.1 1.7 1.5 1.4 1.6 1.5 1.8 WIND DIR* 255 250 260 245 225 225 210 175 145 105 JULIAN * 1 1 1 1 1 1 3 3 3 HOUR* 15 14 16 13 9 9 6 23 17 9 * REC21 REC22 REC23 REC24 REC25 Time: 13: 4.52 JOB: 314: 104 T12 Cold TBIA1417. DAS RUN: FLUORENE JOB: 314: 02 T14 JAN 20 T14 REPORT T1 F12 Section NTES PERTAINING T0 THE REPORT T1 F12 Section T1 F12 Output Section

19 0.761 (3.24) C 0 21 1.935 (3.24) C 0 21 1.935 (3.24) C 0 23 1.935 (3.24) C 0 24 1.935 (3.24) C 0 25 0.714 (3.24) C 0 27 1.875 (2.24) C 0 27 1.975 (2.24) C 0 27 1.975 (2.24) C 0 27 1.975 (2.24) C 0

Page 4 1B1A1417.0UT CAL30HCR (Dated: 95221) DATE: 3/ 8/10 PAGE: 10 TIME: 13: 4:52 JOB: Site 1 Opt 1/2 2014 1B1A1417. DA3 RUN: FLUORENE LINK CONTRIBUTION TABLES SECOND HI GHEST 24-HOUR AVERAGED LINK CONTRIBUTIONS IN MICROGRAMS/M**3 INCLUDING AMBLENT BACKGROUND CONCENTRATIONS

4 0.710 (2,27) (2,27) (2,20) (2,00)

'Site 1 Opt 1/2 2014 1B1A1418.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'IDENO' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0004 2 1606 .0004 3 120 57 2.0 1606 .0010 1679 1 3 4 527 .0004 5 120 107 2.0 527 .0010 1700 1 3 6 1830 .0004 7 1830 .0004 8 1830 .0004 9 3568 .0004 10 3568 .0004 11 3548 .0004 12 120 65 2.0 3548 .0010 1665 1 3 13 20 .0004 14 20 .0004 15 120 115 2.0 20 .0010 1752 1 3 16 4130 .0004 17 4130 .0004 18 958 .0004 19 958 .0004 20 958 .0004 21 120 94 2.0 958 .0010 1523 1 3 22 45 .0004 23 85 .0004 24 120 109 2.0 85 .0010 1694 1 3 25 739 .0004 26 739 .0004 27 739 .0004

1B1A1418.OUT CAL3OHCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 1 TIME : 13:11:15 JOB: Site 1 Opt 1/2 2014 1B1A1418.DA3 RUN: IDENO General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUMATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1220.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1262.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (16 -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1418.OUT 1B1A1418.OUT 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 13:11:15 JOB: Site 1 Opt 1/2 2014 1B1A1418.DA3 RUN: IDENO Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

'Site 1 Opt 1/2 2014 1B1A1419.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'PHENANTHRENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0137 2 1606 .0137 3 120 57 2.0 1606 .0343 1679 1 3 4 527 .0137 5 120 107 2.0 527 .0343 1700 1 3 6 1830 .0137 7 1830 .0137 8 1830 .0137 9 3568 .0137 10 3568 .0137 11 3548 .0137 12 120 65 2.0 3548 .0343 1665 1 3 13 20 .0137 14 20 .0137 15 120 115 2.0 20 .0343 1752 1 3 16 4130 .0137 17 4130 .0137 18 958 .0137 19 958 .0137 20 958 .0137 21 120 94 2.0 958 .0343 1523 1 3 22 45 .0137 23 85 .0137 24 120 109 2.0 85 .0343 1694 1 3 25 739 .0137 26 739 .0137 27 739 .0137

1B1A1419.OUT CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 1 TIME : 13:16:25 JOB: Site 1 Opt 1/2 2014 1B1A1419.DA3 RUN: PHENANTHRENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) 1. NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 01248.0 * 378. 263. AG 0.0 44.0 10. SB Rt1 aprch * 109.0 1248.0 1057.0 1231.0 * 338. 267. AG 0.0 36.0 3 13. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 138. 262. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1147.0 1212.0 1245.0 1268.0 * 98. 88. AG 0.0 32.0 14. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 2 TIME : 13:16:25 JOB: Si te 1 0pt 1/2 2014 1B1A1419.DA3 RUN: PHENANTHRENE Link DATA CONSTANTS - (Variable data in *.LNK file) LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 23. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1050.0 1197.0 1121.0 1424.0 * 233. 13. AG 0.0 44.0 26. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDU MATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z $\begin{array}{c} \mbox{-} COORDINATES (F1) \\ \mbox{RecCPTOR} * X Y Z \\ \mbox{-} \\ \mbox{-} \\ \mbox{-} \\ \mbox{RecC} E (MID S) * 743.0 1116.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 S) * 857.0 1123.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 939.0 1128.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 S) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1022.0 1053.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 E) * 1076.0 1137.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 P) * 1076.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1176.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{Rec} E (282 N) * 1136.0 1142.0 5.0 \\ \mbox{-} \\ \mbox{-} \\ \mbox{Rec} E (164 N) * 1238.0 1146.0 5.0 \\ \mbox{-} \\ \mbox{$ -----181A1419.001 21. REC W (CNR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 13: 16: 25 JOB: Site 1 Opt 1/2 2014 1B1A1419.DA3 RUN: PHENANTHRENE Paccenter Data Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 4.2 4.8 4.5 3.4 2.5 2.3 2.2 2.1 2.3 2.7 WI ND DI R* 250 255 250 245 235 230 210 135 145 110 JULI AN * 1 1 1 1 1 1 3 3 HOUR * 14 15 14 13 11 10 6 15 17 10 * REC21 REC22 REC23 REC24 REC25 * Output Section

Page 4 1B1A1419. OUT

'Site 1 Opt 1/2 2014 1B1A1420.DA3' 60.0 321. 0.000 0.000 25 0.30480000 1 1 1 99 1 3 99 99999 99 99999 99 1 1 'u' 'REC E (MID S) ' 743. 1116. 5.0 'REC E (164 S) ' 857. 1123. 5.0 'REC E (82 S) ' 939. 1128. 5.0 'REC E (CNR) ' 1020. 1134. 5.0 'REC E (82 E) ' 1022. 1053. 5.0 'REC E (82 E) ' 1075. 1056. 5.0 'REC E (CNR) ' 1076. 1137. 5.0 'REC E (82 N) ' 1156. 1142. 5.0 'REC E (164 N) ' 1238. 1146. 5.0 'REC E (MID N) ' 1341. 1153. 5.0 'REC W (MID N) ' 1453. 1280. 5.0 'REC W (164 N) ' 1316. 1272. 5.0 'REC W (82 N) ' 1234. 1269. 5.0 'REC W (CNR) ' 1138. 1288. 5.0 'REC W (82 W) ' 1137. 1385. 5.0 'REC W (164 W) ' 1145. 1466. 5.0 'REC W (MID W) ' 1156. 1626. 5.0 'REC W (MID W) ' 1072. 1597. 5.0 'REC W (164 W) ' 1043. 1434. 5.0 'REC W (82 W) ' 1026. 1354. 5.0 'REC W (CNR) ' 995. 1273. 5.0 'REC W (82 S) ' 900. 1248. 5.0 'REC W (164 S) ' 819. 1243. 5.0 'REC W (MID S) ' 692. 1235. 5.0 'REC W (church) ' 568. 1376. 5.0 1 'p' 1 1 1 1 1 1 1 'PYRENE' 27 1 1 'NB Rt1 aprch ' 'AG' 58. 1109. 581. 1136. 0. 56 2 1 'NB Rt1 thru ' 'AG' 582. 1136. 1083. 1166. 0. 56 32 'NB Rt1 thru ' 'AG' 984. 1160. 818. 1150. 0. 36 3 4 1 'NB Rt1 left ' 'AG' 572. 1167. 1065. 1195. 0. 44 5 2 'NB Rtl left ' 'AG' 983. 1190. -621. 1101. 0. 24 2 6 1 'NB Rt1 depart' 'AG' 1085. 1167. 1470. 1188. 0. 56 7 1 'NB Rt1 depart' 'AG' 1470. 1188. 1784. 1227. 0. 44 8 1 'NB Rt1 depart' 'AG' 1784. 1227. 2072. 1272. 0. 44 91 'SB Rt1 aprch ' 'AG' 2069. 1311. 1694. 1264. 0. 44 10 1 'SB Rt1 aprch ' 'AG' 1694. 1264. 1395. 1248. 0. 44 11 1 'SB Rt1 th+rt ' 'AG' 1395. 1248. 1057. 1231. 0. 56 12.2 'SB Rt1th+rt ' 'AG' 1144. 1236. 6449. 1497. 0. 36 3 13 1

'SB Rt1 left ' 'AG' 1378. 1236. 1241. 1217. 0. 32 14 1 'SB Rt1 left ' 'AG' 1240. 1217. 1058. 1208. 0. 32 15 2 'SB Rt1 left ' 'AG' 1147. 1212. 1245. 1216. 0. 12 1 16 1 'SB Rt1 depart' 'AG' 1056. 1231. 921. 1221. 0. 56 17 1 'SB Rt1 depart' 'AG' 921. 1221. 58. 1172. 0. 56 18 1 'EB Rt28 aprch' 'AG' 1226. 2185. 1087. 1547. 0. 32 19 1 'EB Rt28 aprch' 'AG' 1088. 1547. 1072. 1425. 0. 56 20 1 'EB Rt28 aprch' 'AG' 1072. 1425. 1025. 1202. 0. 56 21 2 'EB Rt28 aprch' 'AG' 1043. 1287. 1174. 1924. 0. 36 3 22 1 'EB Rt28 depar' 'AG' 1039. 1194. 1043. 1015. 0. 32 23 1 'WB Rt28 aprch' 'AG' 1052. 1015. 1049. 1190. 0. 44 24 2 'WB Rt28 aprch' 'AG' 1050. 1141. 1050. 1116. 0. 24 2 25 1 'WB Rt28 depar' 'AG' 1069. 1197. 1121. 1424. 0. 44 26 1 'WB Rt28 depar' 'AG' 1121. 1424. 1126. 1570. 0. 32 27 1 'WB Rt28 depar' 'AG' 1126. 1570. 1257. 2180. 0. 32 9 0.0 1 2133 .0071 2 1606 .0071 3 120 57 2.0 1606 .0178 1679 1 3 4 527 .0071 5 120 107 2.0 527 .0178 1700 1 3 6 1830 .0071 7 1830 .0071 8 1830 .0071 9 3568 .0071 10 3568 .0071 11 3548 .0071 12 120 65 2.0 3548 .0178 1665 1 3 13 20 .0071 14 20 .0071 15 120 115 2.0 20 .0178 1752 1 3 16 4130 .0071 17 4130 .0071 18 958 .0071 19 958 .0071 20 958 .0071 21 120 94 2.0 958 .0178 1523 1 3 22 45 .0071 23 85 .0071 24 120 109 2.0 85 .0178 1694 1 3 25 739 .0071 26 739 .0071 27 739 .0071

1B1A1420.OUT CAL30HCR (Dated: 95221) DATE: 3/ 8/10 PAGE: 1 TIME: 13:30:17 JOB: Site 1 Opt 1/2 2014 1B1A1420.DA3 RUN: PYRENE General Information Run start date: 1/ 1/99 Julian: 1 end date: 1/ 3/99 Julian: 3 A Tier 1 approach was used for input data preparation. The MODE flag has been set to p for calculating PM averages. Ambient background concentrations are included in the averages below. Site & Meteorological Constants VS = 0.0 CM/S VD = 0.0 CM/S ZO = 321. CM ATIM = 60. Met. Sfc. Sta. Id & Yr = 99999 99 Upper Air Sta. Id & Yr = 99999 99 Urban mixing heights were processed. In 1999, Julian day 1 is a Friday. Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) . NB Rt1 aprch * 58.0 1109.0 581.0 1136.0 * 524. 87. AG 0.0 56.0 2. NB Rt1 thru * 582.0 1136.0 1083.0 1166.0 * 502. 87. AG 0.0 56.0 3. NB Rt1 thru * 984.0 1160.0 818.0 1150.0 * 166. 267. AG 0.0 36.0 3 4. NB Rt1 left * 572.0 1167.0 1065.0 1195.0 * 494. 87. AG 0.0 44.0 5. NB Rt1 left * 983.0 1190.0 -621.0 1101.0 * 1606. 267. AG 0.0 24.0 2 6. NB Rt1 depart* 1085.0 1167.0 1470.0 1188.0 * 386. 87. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1227.0 0272.0 1272.0 * 291. 81. AG 0.0 44.0 9. SB Rt1 depart* 1784.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 044.0 10. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 44.0 11. SB Rt1 aprch * 1694.0 1264.0 1395.0 1248.0 * 299. 267. AG 0.0 36.0 3 33. SB Rt1 left * 1378.0 1236.0 6449.0 1497.0 * 5311. 87. AG 0.0 36.0 3 14. SB Rt1 left * 1470.0 1212.0 1241.0 1217.0 * 388. 267. AG 0.0 32.0 14. SB Rt1 left * 1470.0 1223.0 1241.0 1217.0 * 388. AG 0.0 32.0 15. SB Rt1 left * 1240.0 1217.0 1058.0 1208.0 * 182. 267. AG 0.0 32.0 16. SB Rt1 left * 1147.0 1212.0 1245.0 1216.0 * 98. 88. AG 0.0 12.0 1 CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 2 TIME : 13:30:17 JOB: Si te 1 0pt 1/2 2014 1B1A1420.DA3 RUN: PYRENE Link Data Constants - (Variable data in *.LNK file) LINK DESCRIPTION * LINK COORDINATES (ET) * LENCTH BRG TYPE H W NIANES LI NK Data Constants - (Vari able data in *. LNK file) LI NK DESCRIPTION * LINK COORDINATES (FT) * LENGTH BRG TYPE H W NLANES * X1 Y1 X2 Y2 * (FT) (DEG) (FT) (FT) * 16. SB Rt1 depart* 1056. 0 1231.0 921.0 1221.0 * 135. 266. AG 0.0 56.0 17. SB Rt1 depart* 921.0 1221.0 58.0 1172.0 * 864. 267. AG 0.0 56.0 18. EB Rt28 aprch* 1226.0 2185.0 1087.0 1547.0 * 653. 192. AG 0.0 32.0 19. EB Rt28 aprch* 1088.0 1547.0 1072.0 1425.0 * 123. 187. AG 0.0 56.0 20. EB Rt28 aprch* 1043.0 1287.0 1072.0 1220.0 * 228. 192. AG 0.0 36.0 3 21. EB Rt28 aprch* 1043.0 1287.0 1174.0 1924.0 * 650. 12. AG 0.0 36.0 3 22. EB Rt28 aprch* 1052.0 1015.0 1049.0 1190.0 * 175. 359. AG 0.0 24.0 2 25. WB Rt28 aprch* 1050.0 1141.0 1050.0 1116.0 * 25. 180. AG 0.0 24.0 2 25. WB Rt28 depar* 1121.0 1424.0 1126.0 1570.0 * 146. 2. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 27. WB Rt28 depar* 1126.0 1570.0 1257.0 2180.0 * 624. 12. AG 0.0 32.0 28. CODDUNATES (FT) * COORDINATES (FT) RECEPTOR * X Y Z REC E (MID S) * 743.0 1116.0 5.0 REC E (MID S) * 743.0 1116.0 5.0 REC E (164 S) * 857.0 1123.0 5.0 REC E (164 S) * 939.0 1128.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1020.0 1134.0 5.0 REC E (CNR) * 1075.0 1056.0 5.0 REC E (82 E) * 1075.0 1142.0 5.0 REC E (CNR) * 1076.0 1137.0 5.0 REC E (CNR) * 1156.0 1142.0 5.0 REC E (164 N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC E (MID N) * 1341.0 1153.0 5.0 . REC W (MID N) * 1341.0 1288.0 5.0 . REC W (164 N) * 1136.0 1272.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1220.0 5.0 . REC W (164 N) * 1137.0 1385.0 5.0 . REC W (164 N) * 1136.0 1262.0 5.0 . REC W (164 N) * 1072.0 1597.0 5.0 . REC W (164 N) * 1043.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (164 N) * 1042.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 . REC W (22 W) * 1026.0 1354.0 5.0 -----5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. REC W (82 Page 1 1B1A1420.OUT 1B1A1420.0UT 21. REC W (CRR) * 995.0 1273.0 5.0 22. REC W (82 S) * 900.0 1248.0 5.0 □ CAL30HCR (Dated: 95221) DATE : 3/ 8/10 PAGE: 3 TIME : 13:30:17 JOB: Site 1 Opt 1/2 2014 1B1A1420.DA3 RUN: PYRENE Receptor Data * COORDINATES (FT) RECEPTOR * X Y Z 23. REC W (164 S) * 819.0 1243.0 5.0 24. REC W (MID S) * 692.0 1235.0 5.0 25. REC W (church) * 568.0 1376.0 5.0 Model Results

Remarks : In search of the wind direction corresponding to the maximum concentration, only the first direction, of the directions with the same maximum

concentrations, is indicated as the maximum. * MAXIMUM HOURLY CONCENTRATIONS WITH ANY AMBIENT BACKGROUND CONCENTRATIONS (BKG) ADDED * (MICROGRAMS/M**3) * REC1 REC2 REC3 REC4 REC5 REC6 REC7 REC8 REC9 REC10 MAX * 2.2 2.3 2.3 1.7 1.3 1.3 1.2 1.2 1.3 1.5 WIND DIR* 250 260 255 235 250 235 205 155 120 105 JULIAN * 1 1 1 1 1 1 3 3 3 HOUR * 14 16 15 11 14 11 5 19 12 9 * REC21 REC22 REC23 REC24 REC25 Output Section

 19 0.051 (3.24) C 0

 21 1.100 (3.24) C 0

 21 1.100 (3.24) C 0

 21 1.100 (3.24) C 0

 23 1.100 (3.24) C 0

 23 1.100 (3.24) C 0

 24 1.100 (3.24) C 0

 25 0.033 (3.25) C 0

 25 0.033 (3.25) C 0

 25 0.033 (3.25) C 0

 100 (1.25) C 0

 101 (1.25) C 0

 11 (1.25) C 0

Page 4 1B1A1420. OUT